Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in...

76
“Standard” anomalies Noncommutative spaces Anomalies on spectral triples Conclusions Quantum Anomalies in Noncommutative Geometry Micha l Eckstein JagiellonianUniversity,Krak´ow Zakopane, june 11, 2010 Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Transcript of Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in...

Page 1: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Quantum Anomalies in Noncommutative Geometry

Micha l Eckstein

Jagiellonian University, Krakow

Zakopane, june 11, 2010

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 2: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Outline

1 “Standard” anomaliesWhat are anomalies?Approaches to anomalies

2 Noncommutative spacesThe axiomsExample

3 Anomalies on spectral triplesSome resultsGeometrical approachNoncommutative 2-torus

4 Conclusions

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 3: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Outline

1 “Standard” anomaliesWhat are anomalies?Approaches to anomalies

2 Noncommutative spacesThe axiomsExample

3 Anomalies on spectral triplesSome resultsGeometrical approachNoncommutative 2-torus

4 Conclusions

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 4: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Outline

1 “Standard” anomaliesWhat are anomalies?Approaches to anomalies

2 Noncommutative spacesThe axiomsExample

3 Anomalies on spectral triplesSome resultsGeometrical approachNoncommutative 2-torus

4 Conclusions

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 5: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Outline

1 “Standard” anomaliesWhat are anomalies?Approaches to anomalies

2 Noncommutative spacesThe axiomsExample

3 Anomalies on spectral triplesSome resultsGeometrical approachNoncommutative 2-torus

4 Conclusions

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 6: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Outline

1 “Standard” anomaliesWhat are anomalies?Approaches to anomalies

2 Noncommutative spacesThe axiomsExample

3 Anomalies on spectral triplesSome resultsGeometrical approachNoncommutative 2-torus

4 Conclusions

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 7: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Outline

1 “Standard” anomaliesWhat are anomalies?Approaches to anomalies

2 Noncommutative spacesThe axiomsExample

3 Anomalies on spectral triplesSome resultsGeometrical approachNoncommutative 2-torus

4 Conclusions

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 8: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Outline

1 “Standard” anomaliesWhat are anomalies?Approaches to anomalies

2 Noncommutative spacesThe axiomsExample

3 Anomalies on spectral triplesSome resultsGeometrical approachNoncommutative 2-torus

4 Conclusions

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 9: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Outline

1 “Standard” anomaliesWhat are anomalies?Approaches to anomalies

2 Noncommutative spacesThe axiomsExample

3 Anomalies on spectral triplesSome resultsGeometrical approachNoncommutative 2-torus

4 Conclusions

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 10: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Outline

1 “Standard” anomaliesWhat are anomalies?Approaches to anomalies

2 Noncommutative spacesThe axiomsExample

3 Anomalies on spectral triplesSome resultsGeometrical approachNoncommutative 2-torus

4 Conclusions

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 11: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Outline

1 “Standard” anomaliesWhat are anomalies?Approaches to anomalies

2 Noncommutative spacesThe axiomsExample

3 Anomalies on spectral triplesSome resultsGeometrical approachNoncommutative 2-torus

4 Conclusions

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 12: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Outline

1 “Standard” anomaliesWhat are anomalies?Approaches to anomalies

2 Noncommutative spacesThe axiomsExample

3 Anomalies on spectral triplesSome resultsGeometrical approachNoncommutative 2-torus

4 Conclusions

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 13: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

What are anomalies?Approaches to anomalies

Outline

1 “Standard” anomalies

2 Noncommutative spaces

3 Anomalies on spectral triples

4 Conclusions

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 14: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

What are anomalies?Approaches to anomalies

Heuristic introduction

Classical FT Quantum FT

imposed symmetries broken symmetries

L[Aµ] = L[Agµ] Z[Aµ] 6= Z[Agµ]y xconserved currents

−−−−→

quantum anomalies

Dµjµ = 0 Dµj

µ = A

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 15: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

What are anomalies?Approaches to anomalies

Heuristic introduction

Classical FT Quantum FT

imposed symmetries broken symmetries

L[Aµ] = L[Agµ] Z[Aµ] 6= Z[Agµ]y xconserved currents

−−−−→

quantum anomalies

Dµjµ = 0 Dµj

µ = A

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 16: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

What are anomalies?Approaches to anomalies

Heuristic introduction

Classical FT Quantum FT

imposed symmetries broken symmetries

L[Aµ] = L[Agµ] Z[Aµ] 6= Z[Agµ]y xconserved currents

−−−−→

quantum anomalies

Dµjµ = 0 Dµj

µ = A

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 17: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

What are anomalies?Approaches to anomalies

Heuristic introduction

Classical FT Quantum FT

imposed symmetries broken symmetries

L[Aµ] = L[Agµ] Z[Aµ] 6= Z[Agµ]y xconserved currents −−−−→ quantum anomalies

Dµjµ = 0 Dµj

µ = A

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 18: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

What are anomalies?Approaches to anomalies

Heuristic introduction

Classical FT Quantum FT

imposed symmetries broken symmetries

L[Aµ] = L[Agµ] Z[Aµ] 6= Z[Agµ]y xconserved currents −−−−→ quantum anomalies

Dµjµ = 0 Dµj

µ = A

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 19: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

What are anomalies?Approaches to anomalies

QFT methods

Feynman diagrams

Figure: Triangle diagram appearing in the famous ABJ anomaly computation.

Path-integrals - the Fujikawa method

The non-invariance of the path-integral measure!

J [β,Aµ] = e−∫MβA

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 20: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

What are anomalies?Approaches to anomalies

QFT methods

Feynman diagrams

Figure: Triangle diagram appearing in the famous ABJ anomaly computation.

Path-integrals - the Fujikawa method

The non-invariance of the path-integral measure!

J [β,Aµ] = e−∫MβA

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 21: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

What are anomalies?Approaches to anomalies

QFT methods

Feynman diagrams

Figure: Triangle diagram appearing in the famous ABJ anomaly computation.

Path-integrals - the Fujikawa method

The non-invariance of the path-integral measure!

J [β,Aµ] = e−∫MβA

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 22: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

What are anomalies?Approaches to anomalies

Geometry of anomalies

BRST cohomology

BRST (non)invariance sL = 0, sW [Aµ] = ANilpotency s2 = 0 ⇒ s

∫MνaAaconsistent = 0

Wess-Zumino consistency conditions

Chain of descent equations =⇒ A2nconsistent ←→ A2n+2

singlet

Index theory

Singlet anomaly ←→ AS index theoremNon-abelian anomaly

AS index theorem for families of elliptic operators

AS index theorem in 2n+ 2 dimensions (AGG)The winding number of the fermionic determinant

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 23: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

What are anomalies?Approaches to anomalies

Geometry of anomalies

BRST cohomology

BRST (non)invariance sL = 0, sW [Aµ] = ANilpotency s2 = 0 ⇒ s

∫MνaAaconsistent = 0

Wess-Zumino consistency conditions

Chain of descent equations =⇒ A2nconsistent ←→ A2n+2

singlet

Index theory

Singlet anomaly ←→ AS index theoremNon-abelian anomaly

AS index theorem for families of elliptic operators

AS index theorem in 2n+ 2 dimensions (AGG)The winding number of the fermionic determinant

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 24: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

What are anomalies?Approaches to anomalies

Geometry of anomalies

BRST cohomology

BRST (non)invariance sL = 0, sW [Aµ] = ANilpotency s2 = 0 ⇒ s

∫MνaAaconsistent = 0

Wess-Zumino consistency conditions

Chain of descent equations =⇒ A2nconsistent ←→ A2n+2

singlet

Index theory

Singlet anomaly ←→ AS index theoremNon-abelian anomaly

AS index theorem for families of elliptic operators

AS index theorem in 2n+ 2 dimensions (AGG)The winding number of the fermionic determinant

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 25: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

What are anomalies?Approaches to anomalies

Geometry of anomalies

BRST cohomology

BRST (non)invariance sL = 0, sW [Aµ] = ANilpotency s2 = 0 ⇒ s

∫MνaAaconsistent = 0

Wess-Zumino consistency conditions

Chain of descent equations =⇒ A2nconsistent ←→ A2n+2

singlet

Index theory

Singlet anomaly ←→ AS index theoremNon-abelian anomaly

AS index theorem for families of elliptic operators

AS index theorem in 2n+ 2 dimensions (AGG)The winding number of the fermionic determinant

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 26: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

What are anomalies?Approaches to anomalies

Geometry of anomalies

BRST cohomology

BRST (non)invariance sL = 0, sW [Aµ] = ANilpotency s2 = 0 ⇒ s

∫MνaAaconsistent = 0

Wess-Zumino consistency conditions

Chain of descent equations =⇒ A2nconsistent ←→ A2n+2

singlet

Index theory

Singlet anomaly ←→ AS index theoremNon-abelian anomaly

AS index theorem for families of elliptic operators

AS index theorem in 2n+ 2 dimensions (AGG)The winding number of the fermionic determinant

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 27: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

What are anomalies?Approaches to anomalies

Geometry of anomalies

BRST cohomology

BRST (non)invariance sL = 0, sW [Aµ] = ANilpotency s2 = 0 ⇒ s

∫MνaAaconsistent = 0

Wess-Zumino consistency conditions

Chain of descent equations =⇒ A2nconsistent ←→ A2n+2

singlet

Index theory

Singlet anomaly ←→ AS index theoremNon-abelian anomaly

AS index theorem for families of elliptic operators

AS index theorem in 2n+ 2 dimensions (AGG)The winding number of the fermionic determinant

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 28: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

What are anomalies?Approaches to anomalies

Geometry of anomalies

BRST cohomology

BRST (non)invariance sL = 0, sW [Aµ] = ANilpotency s2 = 0 ⇒ s

∫MνaAaconsistent = 0

Wess-Zumino consistency conditions

Chain of descent equations =⇒ A2nconsistent ←→ A2n+2

singlet

Index theory

Singlet anomaly ←→ AS index theoremNon-abelian anomaly

AS index theorem for families of elliptic operators

AS index theorem in 2n+ 2 dimensions (AGG)The winding number of the fermionic determinant

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 29: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

What are anomalies?Approaches to anomalies

Geometry of anomalies

BRST cohomology

BRST (non)invariance sL = 0, sW [Aµ] = ANilpotency s2 = 0 ⇒ s

∫MνaAaconsistent = 0

Wess-Zumino consistency conditions

Chain of descent equations =⇒ A2nconsistent ←→ A2n+2

singlet

Index theory

Singlet anomaly ←→ AS index theoremNon-abelian anomaly

AS index theorem for families of elliptic operators

AS index theorem in 2n+ 2 dimensions (AGG)The winding number of the fermionic determinant

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 30: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

What are anomalies?Approaches to anomalies

Geometry of anomalies

BRST cohomology

BRST (non)invariance sL = 0, sW [Aµ] = ANilpotency s2 = 0 ⇒ s

∫MνaAaconsistent = 0

Wess-Zumino consistency conditions

Chain of descent equations =⇒ A2nconsistent ←→ A2n+2

singlet

Index theory

Singlet anomaly ←→ AS index theoremNon-abelian anomaly

AS index theorem for families of elliptic operators

AS index theorem in 2n+ 2 dimensions (AGG)The winding number of the fermionic determinant

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 31: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

What are anomalies?Approaches to anomalies

Geometry of anomalies

BRST cohomology

BRST (non)invariance sL = 0, sW [Aµ] = ANilpotency s2 = 0 ⇒ s

∫MνaAaconsistent = 0

Wess-Zumino consistency conditions

Chain of descent equations =⇒ A2nconsistent ←→ A2n+2

singlet

Index theory

Singlet anomaly ←→ AS index theoremNon-abelian anomaly

AS index theorem for families of elliptic operators

AS index theorem in 2n+ 2 dimensions (AGG)The winding number of the fermionic determinant

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 32: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

The axiomsExample

Outline

1 “Standard” anomalies

2 Noncommutative spaces

3 Anomalies on spectral triples

4 Conclusions

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 33: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

The axiomsExample

The axioms of noncommutative geometry

(A,H,D) - spectral triple

A - dense ∗-subalgebra of a C∗-algebra, unital

H - Hilbert space; by GNS construction∃ a faithful representation ρ(A) ' B(H)

D - the Dirac operator - selfadjoint, unbounded

D−1 - compact[D, ρ(a)] ∈ B(H) for all a ∈ A

γ ∈ B(H) - chirality - selfadjoint, unitary

γ2 = id, ∀a∈A γa = aγ, Dγ = −γDThe Z2-grading of the Hilbert space H = H+ ⊕H−

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 34: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

The axiomsExample

The axioms of noncommutative geometry

(A,H,D) - spectral triple

A - dense ∗-subalgebra of a C∗-algebra, unital

H - Hilbert space; by GNS construction∃ a faithful representation ρ(A) ' B(H)

D - the Dirac operator - selfadjoint, unbounded

D−1 - compact[D, ρ(a)] ∈ B(H) for all a ∈ A

γ ∈ B(H) - chirality - selfadjoint, unitary

γ2 = id, ∀a∈A γa = aγ, Dγ = −γDThe Z2-grading of the Hilbert space H = H+ ⊕H−

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 35: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

The axiomsExample

The axioms of noncommutative geometry

(A,H,D) - spectral triple

A - dense ∗-subalgebra of a C∗-algebra, unital

H - Hilbert space; by GNS construction∃ a faithful representation ρ(A) ' B(H)

D - the Dirac operator - selfadjoint, unbounded

D−1 - compact[D, ρ(a)] ∈ B(H) for all a ∈ A

γ ∈ B(H) - chirality - selfadjoint, unitary

γ2 = id, ∀a∈A γa = aγ, Dγ = −γDThe Z2-grading of the Hilbert space H = H+ ⊕H−

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 36: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

The axiomsExample

The axioms of noncommutative geometry

(A,H,D) - spectral triple

A - dense ∗-subalgebra of a C∗-algebra, unital

H - Hilbert space; by GNS construction∃ a faithful representation ρ(A) ' B(H)

D - the Dirac operator - selfadjoint, unbounded

D−1 - compact[D, ρ(a)] ∈ B(H) for all a ∈ A

γ ∈ B(H) - chirality - selfadjoint, unitary

γ2 = id, ∀a∈A γa = aγ, Dγ = −γDThe Z2-grading of the Hilbert space H = H+ ⊕H−

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 37: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

The axiomsExample

The axioms of noncommutative geometry

(A,H,D) - spectral triple

A - dense ∗-subalgebra of a C∗-algebra, unital

H - Hilbert space; by GNS construction∃ a faithful representation ρ(A) ' B(H)

D - the Dirac operator - selfadjoint, unbounded

D−1 - compact[D, ρ(a)] ∈ B(H) for all a ∈ A

γ ∈ B(H) - chirality - selfadjoint, unitary

γ2 = id, ∀a∈A γa = aγ, Dγ = −γDThe Z2-grading of the Hilbert space H = H+ ⊕H−

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 38: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

The axiomsExample

The axioms of noncommutative geometry

(A,H,D) - spectral triple

A - dense ∗-subalgebra of a C∗-algebra, unital

H - Hilbert space; by GNS construction∃ a faithful representation ρ(A) ' B(H)

D - the Dirac operator - selfadjoint, unbounded

D−1 - compact[D, ρ(a)] ∈ B(H) for all a ∈ A

γ ∈ B(H) - chirality - selfadjoint, unitary

γ2 = id, ∀a∈A γa = aγ, Dγ = −γDThe Z2-grading of the Hilbert space H = H+ ⊕H−

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 39: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

The axiomsExample

The axioms of noncommutative geometry

(A,H,D) - spectral triple

A - dense ∗-subalgebra of a C∗-algebra, unital

H - Hilbert space; by GNS construction∃ a faithful representation ρ(A) ' B(H)

D - the Dirac operator - selfadjoint, unbounded

D−1 - compact[D, ρ(a)] ∈ B(H) for all a ∈ A

γ ∈ B(H) - chirality - selfadjoint, unitary

γ2 = id, ∀a∈A γa = aγ, Dγ = −γDThe Z2-grading of the Hilbert space H = H+ ⊕H−

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 40: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

The axiomsExample

The axioms of noncommutative geometry

(A,H,D) - spectral triple

A - dense ∗-subalgebra of a C∗-algebra, unital

H - Hilbert space; by GNS construction∃ a faithful representation ρ(A) ' B(H)

D - the Dirac operator - selfadjoint, unbounded

D−1 - compact[D, ρ(a)] ∈ B(H) for all a ∈ A

γ ∈ B(H) - chirality - selfadjoint, unitary

γ2 = id, ∀a∈A γa = aγ, Dγ = −γDThe Z2-grading of the Hilbert space H = H+ ⊕H−

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 41: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

The axiomsExample

The axioms of noncommutative geometry

(A,H,D) - spectral triple

A - dense ∗-subalgebra of a C∗-algebra, unital

H - Hilbert space; by GNS construction∃ a faithful representation ρ(A) ' B(H)

D - the Dirac operator - selfadjoint, unbounded

D−1 - compact[D, ρ(a)] ∈ B(H) for all a ∈ A

γ ∈ B(H) - chirality - selfadjoint, unitary

γ2 = id, ∀a∈A γa = aγ, Dγ = −γDThe Z2-grading of the Hilbert space H = H+ ⊕H−

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 42: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

The axiomsExample

A commutative spectral triple

Example 1

Let M be compact Riemannian spin manifold, then

A = C∞(M) - dense in C0(M)

unital if M is compact

H = L2(S(M)

)representation: ρ(f)ξ = f(x) · ξ(x)

D = γµ∂µ - the Dirac operator

γ = γ5 - chirality operator

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 43: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

The axiomsExample

A commutative spectral triple

Example 1

Let M be compact Riemannian spin manifold, then

A = C∞(M) - dense in C0(M)

unital if M is compact

H = L2(S(M)

)representation: ρ(f)ξ = f(x) · ξ(x)

D = γµ∂µ - the Dirac operator

γ = γ5 - chirality operator

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 44: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

The axiomsExample

A commutative spectral triple

Example 1

Let M be compact Riemannian spin manifold, then

A = C∞(M) - dense in C0(M)

unital if M is compact

H = L2(S(M)

)representation: ρ(f)ξ = f(x) · ξ(x)

D = γµ∂µ - the Dirac operator

γ = γ5 - chirality operator

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 45: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

The axiomsExample

A commutative spectral triple

Example 1

Let M be compact Riemannian spin manifold, then

A = C∞(M) - dense in C0(M)

unital if M is compact

H = L2(S(M)

)representation: ρ(f)ξ = f(x) · ξ(x)

D = γµ∂µ - the Dirac operator

γ = γ5 - chirality operator

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 46: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

The axiomsExample

A commutative spectral triple

Example 1

Let M be compact Riemannian spin manifold, then

A = C∞(M) - dense in C0(M)

unital if M is compact

H = L2(S(M)

)representation: ρ(f)ξ = f(x) · ξ(x)

D = γµ∂µ - the Dirac operator

γ = γ5 - chirality operator

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 47: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

The axiomsExample

A commutative spectral triple

Example 1

Let M be compact Riemannian spin manifold, then

A = C∞(M) - dense in C0(M)

unital if M is compact

H = L2(S(M)

)representation: ρ(f)ξ = f(x) · ξ(x)

D = γµ∂µ - the Dirac operator

γ = γ5 - chirality operator

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 48: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

The axiomsExample

A commutative spectral triple

Example 1

Let M be compact Riemannian spin manifold, then

A = C∞(M) - dense in C0(M)

unital if M is compact

H = L2(S(M)

)representation: ρ(f)ξ = f(x) · ξ(x)

D = γµ∂µ - the Dirac operator

γ = γ5 - chirality operator

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 49: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Some resultsGeometrical approachNoncommutative 2-torus

Outline

1 “Standard” anomalies

2 Noncommutative spaces

3 Anomalies on spectral triples

4 Conclusions

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 50: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Some resultsGeometrical approachNoncommutative 2-torus

Some results

Moyal plane R4?

(J.M. Gracia-Bondıa, C.P. Martın, Phys. Lett. B 479 (2000) 321)

A = α TrTa, T bT c + β Tr[Ta, T b]T c

Geometric approach(D. Perrot, Contemp. Math. 434 (2007) 125.)

The role of projections in A.

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 51: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Some resultsGeometrical approachNoncommutative 2-torus

Some results

Moyal plane R4?

(J.M. Gracia-Bondıa, C.P. Martın, Phys. Lett. B 479 (2000) 321)

A = α TrTa, T bT c + β Tr[Ta, T b]T c

Geometric approach(D. Perrot, Contemp. Math. 434 (2007) 125.)

The role of projections in A.

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 52: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Some resultsGeometrical approachNoncommutative 2-torus

Perrot’s procedure

Assumption: p-summability i.e. Tr(D−p) <∞, r - biggest integer < p

The action of the “classical” theory

S(ψ, ψ) =⟨ψ, (Q+A)ψ

⟩, Q = D + γm, A ∈ B(H)

Path-integral quantization

Z(A) =

∫dψdψ e−S(ψ,ψ,A) = det(1 +Q−1A)

W (A) = Tr log(1 +Q−1A) =

∞∑n=1

(−1)n+1

nTr(Q−1A)n

Regularization - trace extension τ(T ) = Resz=0

1z Tr(T |Q|−2z)

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 53: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Some resultsGeometrical approachNoncommutative 2-torus

Perrot’s procedure

Assumption: p-summability i.e. Tr(D−p) <∞, r - biggest integer < p

The action of the “classical” theory

S(ψ, ψ) =⟨ψ, (Q+A)ψ

⟩, Q = D + γm, A ∈ B(H)

Path-integral quantization

Z(A) =

∫dψdψ e−S(ψ,ψ,A) = det(1 +Q−1A)

W (A) = Tr log(1 +Q−1A) =

∞∑n=1

(−1)n+1

nTr(Q−1A)n

Regularization - trace extension τ(T ) = Resz=0

1z Tr(T |Q|−2z)

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 54: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Some resultsGeometrical approachNoncommutative 2-torus

Perrot’s procedure

Assumption: p-summability i.e. Tr(D−p) <∞, r - biggest integer < p

The action of the “classical” theory

S(ψ, ψ) =⟨ψ, (Q+A)ψ

⟩, Q = D + γm, A ∈ B(H)

Path-integral quantization

Z(A) =

∫dψdψ e−S(ψ,ψ,A) = det(1 +Q−1A)

W (A) = Tr log(1 +Q−1A) =

∞∑n=1

(−1)n+1

nTr(Q−1A)n

Regularization - trace extension τ(T ) = Resz=0

1z Tr(T |Q|−2z)

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 55: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Some resultsGeometrical approachNoncommutative 2-torus

Perrot’s procedure

Assumption: p-summability i.e. Tr(D−p) <∞, r - biggest integer < p

The action of the “classical” theory

S(ψ, ψ) =⟨ψ, (Q+A)ψ

⟩, Q = D + γm, A ∈ B(H)

Path-integral quantization

Z(A) =

∫dψdψ e−S(ψ,ψ,A) = det(1 +Q−1A)

W (A) = Tr log(1 +Q−1A) =

∞∑n=1

(−1)n+1

nTr(Q−1A)n

Regularization - trace extension τ(T ) = Resz=0

1z Tr(T |Q|−2z)

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 56: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Some resultsGeometrical approachNoncommutative 2-torus

Perrot’s procedure

BRST operator - de Rham differential on S1

s : C∞(S1)⊗A → Ω1(S1)⊗A.

Idempotent loopsg = 1 + (β − 1)p, C∞(S1) 3 β = e2π i t, A 3 p = p2

Note: (A,H,D)←→(MN (A),H⊗ CN ,D ⊗ 1

)Mauer-Cartan form (ghost field) ω = g−1sg = 2π i p dt

The potential is pure gauge A = g−1Qg −Q

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 57: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Some resultsGeometrical approachNoncommutative 2-torus

Perrot’s procedure

BRST operator - de Rham differential on S1

s : C∞(S1)⊗A → Ω1(S1)⊗A.

Idempotent loopsg = 1 + (β − 1)p, C∞(S1) 3 β = e2π i t, A 3 p = p2

Note: (A,H,D)←→(MN (A),H⊗ CN ,D ⊗ 1

)Mauer-Cartan form (ghost field) ω = g−1sg = 2π i p dt

The potential is pure gauge A = g−1Qg −Q

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 58: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Some resultsGeometrical approachNoncommutative 2-torus

Perrot’s procedure

BRST operator - de Rham differential on S1

s : C∞(S1)⊗A → Ω1(S1)⊗A.

Idempotent loopsg = 1 + (β − 1)p, C∞(S1) 3 β = e2π i t, A 3 p = p2

Note: (A,H,D)←→(MN (A),H⊗ CN ,D ⊗ 1

)Mauer-Cartan form (ghost field) ω = g−1sg = 2π i p dt

The potential is pure gauge A = g−1Qg −Q

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 59: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Some resultsGeometrical approachNoncommutative 2-torus

Perrot’s procedure

BRST operator - de Rham differential on S1

s : C∞(S1)⊗A → Ω1(S1)⊗A.

Idempotent loopsg = 1 + (β − 1)p, C∞(S1) 3 β = e2π i t, A 3 p = p2

Note: (A,H,D)←→(MN (A),H⊗ CN ,D ⊗ 1

)Mauer-Cartan form (ghost field) ω = g−1sg = 2π i p dt

The potential is pure gauge A = g−1Qg −Q

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 60: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Some resultsGeometrical approachNoncommutative 2-torus

Perrot’s procedure

BRST operator - de Rham differential on S1

s : C∞(S1)⊗A → Ω1(S1)⊗A.

Idempotent loopsg = 1 + (β − 1)p, C∞(S1) 3 β = e2π i t, A 3 p = p2

Note: (A,H,D)←→(MN (A),H⊗ CN ,D ⊗ 1

)Mauer-Cartan form (ghost field) ω = g−1sg = 2π i p dt

The potential is pure gauge A = g−1Qg −Q

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 61: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Some resultsGeometrical approachNoncommutative 2-torus

Perrot’s procedure

The anomaly A(ω,A) := sWτ (A) =

r∑n=1

(−1)n+1

ns τ(Q−1A)n + (−1)r Tr

((ω+ −Q−1ω−Q)(Q−1A)r

),

Theorem (Perrot)

1

〈[D], [p]〉 =1

2π i

∮S1

A(ω,A) ∈ Z,

2 A(ω,A) is cohomologous, as a one-form, to the sum of residues

A(ω,A) := Resz=0

1

zTr(γωQ−2z

)+∑n≥1

∑k∈Nn

(−1)n+kc(k)×

× Resz=0

Γ(z + n+ k)

Γ(z + 1)Tr(

1+γ2

[ω,Q]A(k1)QA(k2)Q . . . A(kn)Q−2(z+n+k)).

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 62: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Some resultsGeometrical approachNoncommutative 2-torus

Perrot’s procedure

The anomaly A(ω,A) := sWτ (A) =

r∑n=1

(−1)n+1

ns τ(Q−1A)n + (−1)r Tr

((ω+ −Q−1ω−Q)(Q−1A)r

),

Theorem (Perrot)

1

〈[D], [p]〉 =1

2π i

∮S1

A(ω,A) ∈ Z,

2 A(ω,A) is cohomologous, as a one-form, to the sum of residues

A(ω,A) := Resz=0

1

zTr(γωQ−2z

)+∑n≥1

∑k∈Nn

(−1)n+kc(k)×

× Resz=0

Γ(z + n+ k)

Γ(z + 1)Tr(

1+γ2

[ω,Q]A(k1)QA(k2)Q . . . A(kn)Q−2(z+n+k)).

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 63: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Some resultsGeometrical approachNoncommutative 2-torus

Perrot’s procedure

The anomaly A(ω,A) := sWτ (A) =

r∑n=1

(−1)n+1

ns τ(Q−1A)n + (−1)r Tr

((ω+ −Q−1ω−Q)(Q−1A)r

),

Theorem (Perrot)

1

〈[D], [p]〉 =1

2π i

∮S1

A(ω,A) ∈ Z,

2 A(ω,A) is cohomologous, as a one-form, to the sum of residues

A(ω,A) := Resz=0

1

zTr(γωQ−2z

)+∑n≥1

∑k∈Nn

(−1)n+kc(k)×

× Resz=0

Γ(z + n+ k)

Γ(z + 1)Tr(

1+γ2

[ω,Q]A(k1)QA(k2)Q . . . A(kn)Q−2(z+n+k)).

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 64: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Some resultsGeometrical approachNoncommutative 2-torus

Results

The anomaly result A(ω,A) = A(ω,A) =

4π i dtResz=0

tr((β − 1)[D−, p][D+, p] + (2− β − β−1)[D−, p]p[D+, p]

)Q−2z−2

The index result

1

2π i

∮S1

A(ω,A) = 2Resz=0

tr(− [D−, p][D+, p] + 2[D−, p]p[D+, p]

)Q−2z−2

Agreement with Connes-Moscovici

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 65: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Some resultsGeometrical approachNoncommutative 2-torus

Results

The anomaly result A(ω,A) = A(ω,A) =

4π i dtResz=0

tr((β − 1)[D−, p][D+, p] + (2− β − β−1)[D−, p]p[D+, p]

)Q−2z−2

The index result

1

2π i

∮S1

A(ω,A) = 2Resz=0

tr(− [D−, p][D+, p] + 2[D−, p]p[D+, p]

)Q−2z−2

Agreement with Connes-Moscovici

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 66: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Some resultsGeometrical approachNoncommutative 2-torus

Results

The anomaly result A(ω,A) = A(ω,A) =

4π i dtResz=0

tr((β − 1)[D−, p][D+, p] + (2− β − β−1)[D−, p]p[D+, p]

)Q−2z−2

The index result

1

2π i

∮S1

A(ω,A) = 2Resz=0

tr(− [D−, p][D+, p] + 2[D−, p]p[D+, p]

)Q−2z−2

Agreement with Connes-Moscovici

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 67: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Some resultsGeometrical approachNoncommutative 2-torus

Projections

V U = e2π i θ UV, f(V ) =∑n∈Z

fn Vn

Power-Rieffel projection p = f(V )U + U−1f(V ∗) + g(V )

σ(p) = θ

〈[D], [p]〉 = −1

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 68: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Some resultsGeometrical approachNoncommutative 2-torus

Projections

V U = e2π i θ UV, f(V ) =∑n∈Z

fn Vn

Second order projectionp(2) = p2(V )U−2 + p1(V )U−1 + p0(V ) + Up1(V ∗) + U2p2(V ∗)

⟨[D], [p(2)]

⟩d2 = 0 d2 = 1

d3 = 0 2 4d3 = 1 −4 −2

σ(p(2)) d2 = 0 d2 = 1d3 = 0 θ 2θd3 = 1 1− 2θ 1− θ

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 69: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Conclusions

Anomaly cancellation condition

Classically: TrT a, T bT c

Moyal plane: TrT aT bT c

Generally: ?

The geometry of anomalies

The classical correspondence not clear

The role of projections

Thank you for your attention!

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 70: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Conclusions

Anomaly cancellation condition

Classically: TrT a, T bT c

Moyal plane: TrT aT bT c

Generally: ?

The geometry of anomalies

The classical correspondence not clear

The role of projections

Thank you for your attention!

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 71: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Conclusions

Anomaly cancellation condition

Classically: TrT a, T bT c

Moyal plane: TrT aT bT c

Generally: ?

The geometry of anomalies

The classical correspondence not clear

The role of projections

Thank you for your attention!

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 72: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Conclusions

Anomaly cancellation condition

Classically: TrT a, T bT c

Moyal plane: TrT aT bT c

Generally: ?

The geometry of anomalies

The classical correspondence not clear

The role of projections

Thank you for your attention!

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 73: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Conclusions

Anomaly cancellation condition

Classically: TrT a, T bT c

Moyal plane: TrT aT bT c

Generally: ?

The geometry of anomalies

The classical correspondence not clear

The role of projections

Thank you for your attention!

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 74: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Conclusions

Anomaly cancellation condition

Classically: TrT a, T bT c

Moyal plane: TrT aT bT c

Generally: ?

The geometry of anomalies

The classical correspondence not clear

The role of projections

Thank you for your attention!

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 75: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Conclusions

Anomaly cancellation condition

Classically: TrT a, T bT c

Moyal plane: TrT aT bT c

Generally: ?

The geometry of anomalies

The classical correspondence not clear

The role of projections

Thank you for your attention!

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry

Page 76: Quantum Anomalies in Noncommutative Geometryth- · 2010-06-11 · Quantum Anomalies in Noncommutative Geometry Micha l Eckstein Jagiellonian University, Krak ow Zakopane, june 11,

“Standard” anomaliesNoncommutative spaces

Anomalies on spectral triplesConclusions

Conclusions

Anomaly cancellation condition

Classically: TrT a, T bT c

Moyal plane: TrT aT bT c

Generally: ?

The geometry of anomalies

The classical correspondence not clear

The role of projections

Thank you for your attention!

Micha l Eckstein Quantum Anomalies in Noncommutative Geometry