Quantitative methods for Regulatory layer selectionnpcw17.imm.dtu.dk/Proceedings/Session 7 Control...

23
Ramprasad Yelchuru, Quantitative methods for regulatory layer selection, 1 Quantitative methods for Regulatory layer selection Ramprasad Yelchuru Sigurd Skogestad

Transcript of Quantitative methods for Regulatory layer selectionnpcw17.imm.dtu.dk/Proceedings/Session 7 Control...

Page 1: Quantitative methods for Regulatory layer selectionnpcw17.imm.dtu.dk/Proceedings/Session 7 Control Theory/Quantitative... · Ramprasad Yelchuru, Quantitative methods for regulatory

Ramprasad Yelchuru, Quantitative methods for regulatory layer selection, 1

Quantitative methods for

Regulatory layer selection

Ramprasad Yelchuru Sigurd Skogestad

Page 2: Quantitative methods for Regulatory layer selectionnpcw17.imm.dtu.dk/Proceedings/Session 7 Control Theory/Quantitative... · Ramprasad Yelchuru, Quantitative methods for regulatory

Ramprasad Yelchuru, Quantitative methods for regulatory layer selection, 2

Outline

• Motivation

• Problem formulation

• Distillation column Case study

• Results

4.1 CV2 (c = H2y) as individual measurements

4.2 CV2 (c = H2y) as measurement combinations

5. Conclusions

CV2 – controlled variable y – measurements vector

'yn'd

ydG

cs = 0 +

+

+ +

+ - K

H2

yG y

c

u

dW nW

Page 3: Quantitative methods for Regulatory layer selectionnpcw17.imm.dtu.dk/Proceedings/Session 7 Control Theory/Quantitative... · Ramprasad Yelchuru, Quantitative methods for regulatory

Ramprasad Yelchuru, Quantitative methods for regulatory layer selection, 3

Control system hierarchy for plantwide control

Self optimizing control

Scope of this work

Page 4: Quantitative methods for Regulatory layer selectionnpcw17.imm.dtu.dk/Proceedings/Session 7 Control Theory/Quantitative... · Ramprasad Yelchuru, Quantitative methods for regulatory

Ramprasad Yelchuru, Quantitative methods for regulatory layer selection, 4

Regulatory layer should (1) facilitate stable operation regulate the process keep the plant in a linear operating region (2) be simple (3) avoid control loop reconfiguration

1. Motivation

How to quantify ?

Page 5: Quantitative methods for Regulatory layer selectionnpcw17.imm.dtu.dk/Proceedings/Session 7 Control Theory/Quantitative... · Ramprasad Yelchuru, Quantitative methods for regulatory

Ramprasad Yelchuru, Quantitative methods for regulatory layer selection, 5

1. Motivation

(1) Minimize state drift by assuming perfect control c(jω)=0 and excluding stabilization (2) Simple: Close minimum number of loops

(3) Avoid control loop reconfiguration

2

2( ) ( ) : state weighting matrixJ Wx j Wω ω=

Quantified the regulatory layer objectives

Page 6: Quantitative methods for Regulatory layer selectionnpcw17.imm.dtu.dk/Proceedings/Session 7 Control Theory/Quantitative... · Ramprasad Yelchuru, Quantitative methods for regulatory

Ramprasad Yelchuru, Quantitative methods for regulatory layer selection, 6

1. Motivation Typical frequency dependancy plot

with single closed loop with proportional control gain ’k’ for a 2 x 2 MIMO system

Steady state based state drift is fairly good over a frequency bandwidth

k = 0 :open loop k = 10 :close to perfect control

Page 7: Quantitative methods for Regulatory layer selectionnpcw17.imm.dtu.dk/Proceedings/Session 7 Control Theory/Quantitative... · Ramprasad Yelchuru, Quantitative methods for regulatory

Ramprasad Yelchuru, Quantitative methods for regulatory layer selection, 7

Outline

• Motivation

• Problem formulation

• Distillation column Case study

• Results

4.1 CVs (c = H2y) as individual measurements

4.2 CVs (c = H2y) as measurement combinations

5. Conclusions

CV2 – controlled variable y – measurements vector

'yn'd

ydG

cs = 0 +

+

+ +

+ - K

H2

yG y

c

u

dW nW

Page 8: Quantitative methods for Regulatory layer selectionnpcw17.imm.dtu.dk/Proceedings/Session 7 Control Theory/Quantitative... · Ramprasad Yelchuru, Quantitative methods for regulatory

Ramprasad Yelchuru, Quantitative methods for regulatory layer selection, 8

22

2 2

( , )

( )

opt opt

opt

L J J u d

Wx Wx d

= −

= −

Ref: Halvorsen et al. I&ECR, 2003 Kariwala et al. I&ECR, 2008

2. Problem Formulation

21/2 12 2 2 2( )

uu

yavg F

L J H G H Y−=

Loss is due to (i) Varying disturbances (ii) Implementation error in controlling c at set point cs

12 2 2

2

[( ) ]

[ ]uu ud

y yd d n

d n

Y G J J G W W

F W W

−= −

= 2

optyFd

∂=

u

dGy Gd

y

Gx Gdx

ymu0x

H2c

+

-

Cs=0K(s) y

Page 9: Quantitative methods for Regulatory layer selectionnpcw17.imm.dtu.dk/Proceedings/Session 7 Control Theory/Quantitative... · Ramprasad Yelchuru, Quantitative methods for regulatory

Ramprasad Yelchuru, Quantitative methods for regulatory layer selection, 9

2

1/2 12 2 2 2min ( )

uu

y

FHJ H G H Y− Non-convex

optimization problem

1 1

-1 -1 1 -1 -12 y 2 2 y 2 2 y 2 2 y 2 (H G ) H (H G ) D DH (DH G ) DH (H G ) H −= = =

12 2H DH=D : any non-singular matrix

We use D to make 1/22

yuuH G J=

22 2H

min H Y F

subject to 1/22 2uu

yH G J=

Convex optimization problem

Global solution

Problem is convex in decision matrix H2

2. Problem : Convex formulation

Page 10: Quantitative methods for Regulatory layer selectionnpcw17.imm.dtu.dk/Proceedings/Session 7 Control Theory/Quantitative... · Ramprasad Yelchuru, Quantitative methods for regulatory

Ramprasad Yelchuru, Quantitative methods for regulatory layer selection, 10

2. Problem formulation

Pick nc columns in Hu Pick 1 column in Hy and nc -1 columns in Hu Pick 2 columns in Hy and nc -2 columns in Hu Pick k columns in Hy and nc -k columns in Hu Pick nc columns in Hy and 0 columns in Hu

2 0[ ]mc H y u=

u

dGy Gd

y

Gx Gdx

ymu0x

H2c

+

-

Cs=0K(s) y

Example

1,1 1,2 1,4 1,5 1,6 1,82

2,1 2,2 2,4 2,5 2,6 2,8

y uH H

h h h h h hH

h h h h h h

=

nym number of ym nu0 number of physical valves

nc = number of CVs =nu

nym =4 nu0 =4

nc = 2=nu

P1. Close 0 loops : Select (nc variables from u0)

or (0 variables from ym)

P2. Close 1 loops : Select 1 variables from ym

P3. Close 2 loops : Select 2 variables from ym

P4. Close k loops : Select k variables from ym

P5. Close nc loops : Select nc variables from ym

Page 11: Quantitative methods for Regulatory layer selectionnpcw17.imm.dtu.dk/Proceedings/Session 7 Control Theory/Quantitative... · Ramprasad Yelchuru, Quantitative methods for regulatory

Ramprasad Yelchuru, Quantitative methods for regulatory layer selection, 11

2. Solution approach

{0,1}1,2, ,

i

yi nσ ∈∀ =

1 2

1 2

1 2 2*2

( 1)* 1 ( 1)* 2 *

ny

ny

ny ny ny

nc ny nc ny nc ny nu ny

x x xx x x

H

x x x

σ σ σ

+ +

− + − + ×

=

( )

{ }

,

( 1)*

min

.

0,11,2, ,

T

T

x

y

i

ny ii i

nu ny i

i

y

x Fx

st G x jn

xM MxM M

M Mx

i n

δ δδ δσ

δ δ

δσ

σ σ

σ

+

− +

==

− − ≤ ≤ −

∈∀ =

δ

P

1

2

1yy

n n

δ

σσ

σ

σ×

=

(1, )max( ) / min( )

T

y

F Y Yones ny

upper bound for M J G

δ δ

δ

==

=

P

We solve this MIQP for n = nu to ny

Big M approach

1

2

* ( * ) 1nu ny nu ny

xx

X

x

δ

×

=

P, n are modified to fit our requirement

Page 12: Quantitative methods for Regulatory layer selectionnpcw17.imm.dtu.dk/Proceedings/Session 7 Control Theory/Quantitative... · Ramprasad Yelchuru, Quantitative methods for regulatory

Ramprasad Yelchuru, Quantitative methods for regulatory layer selection, 12

Outline

• Motivation

• Problem formulation

• Distillation column Case study

• Results

4.1 CVs (c = H2y) as individual measurements

4.2 CVs (c = H2y) as measurement combinations

5. Conclusions

CV2 – controlled variable y – measurements vector

'yn'd

ydG

cs = 0 +

+

+ +

+ - K

H2

yG y

c

u

dW nW

Page 13: Quantitative methods for Regulatory layer selectionnpcw17.imm.dtu.dk/Proceedings/Session 7 Control Theory/Quantitative... · Ramprasad Yelchuru, Quantitative methods for regulatory

Ramprasad Yelchuru, Quantitative methods for regulatory layer selection, 13

3. Case Study : Distillation Column

T1, T2, T3,…, T41

Tray temperatures qF

Binary Distillation Column Shown : LV configuration 41 Trays Level loops closed with D,B

2 MVs – L,V 41 Measurements – T1,T2,T3,…,T41

3 DVs – F, ZF, qF *Compositions are indirectly controlled by controlling the tray temperatures

2

2J Wx=

u

dGy Gd

y

Gx Gdx

ymu0x

H2c

+

-

Cs=0K(s) y

0

LL V

u uV D

B

= =

Page 14: Quantitative methods for Regulatory layer selectionnpcw17.imm.dtu.dk/Proceedings/Session 7 Control Theory/Quantitative... · Ramprasad Yelchuru, Quantitative methods for regulatory

Ramprasad Yelchuru, Quantitative methods for regulatory layer selection, 14

3. Case Study : Distillation Column

10.83 -10.96 5.85 11.17 10.9015.36 -15.55 8.30 15.86 15.47

;13.01 -12.81 5.85 13.10 12.90 8.76 -8.62 3.94 8.82 8.68

0.2 0 00 0.1 00 0 0.1

y yd

d

G G

W

= =

=

; (0.5* (41,1))Wn diag ones

=

41 2 41 3 2 2 3 3 3 41 412 2; ; ; ; ;

uu ud

y yd d nG G J S J W W× × × × ×

+∈ ∈ ∈ ∈ ∈ ∈

Data

21/2 12 2 2 2( )

uu

yavg F

L J H G H Y−= 12 2 2[( ) ]

uu ud

y yd d nY G J J G W W−= −

Page 15: Quantitative methods for Regulatory layer selectionnpcw17.imm.dtu.dk/Proceedings/Session 7 Control Theory/Quantitative... · Ramprasad Yelchuru, Quantitative methods for regulatory

Ramprasad Yelchuru, Quantitative methods for regulatory layer selection, 15

Outline

• Motivation

• Problem formulation

• Distillation column Case study

• Results

4.1 CVs (c = H2y) as individual measurements

4.2 CVs (c = H2y) as measurement combinations

5. Conclusions

CV2 – controlled variable y – measurements vector

'yn'd

ydG

cs = 0 +

+

+ +

+ - K

H2

yG y

c

u

dW nW

Page 16: Quantitative methods for Regulatory layer selectionnpcw17.imm.dtu.dk/Proceedings/Session 7 Control Theory/Quantitative... · Ramprasad Yelchuru, Quantitative methods for regulatory

Ramprasad Yelchuru, Quantitative methods for regulatory layer selection, 16

4. Results 4.1 CVs (c = H2y) as individual measurements

Pick 2 columns in Hu Pick 1 column in Hy and 1 column in Hu Pick 2 columns in Hy and 0 column in Hu

2 0[ ]mc H y u=

u

dGy Gd

y

Gx Gdx

ymu0x

H2c

+

-

Cs=0K(s) y

1,1 1,2 1,41 1,42 1,43 1,44 1,452

2,1 2,2 2,41 2,42 2,43 2,44 2,45

y uH H

h h h h h h hH

h h h h h h h

=

nym number of ym nu0 number of physical valves

nc = number of CVs =nu

nym =41 nu0 =4

nc = 2=nu

P1. Close 0 loops : Select (2 variables from u0)

or (0 variables from ym)

P2. Close 1 loops : Select 1 variables from ym

P3. Close 2 loops : Select 2 variables from ym

Page 17: Quantitative methods for Regulatory layer selectionnpcw17.imm.dtu.dk/Proceedings/Session 7 Control Theory/Quantitative... · Ramprasad Yelchuru, Quantitative methods for regulatory

Ramprasad Yelchuru, Quantitative methods for regulatory layer selection, 17

4.1 CV2 (c = H2y) as individual measurements

*

* In addition to two level loops

Page 18: Quantitative methods for Regulatory layer selectionnpcw17.imm.dtu.dk/Proceedings/Session 7 Control Theory/Quantitative... · Ramprasad Yelchuru, Quantitative methods for regulatory

Ramprasad Yelchuru, Quantitative methods for regulatory layer selection, 18

Distillation column : 1 loop closed (T18) + L constant

5 10 15 20 25 30 35 400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stages

Com

posi

tions

(x)

xopt for disturbance Fxopt for disturbance zFxopt for disturbance qFx for disturbance Fx for disturbance zFx for disturbance qF

Page 19: Quantitative methods for Regulatory layer selectionnpcw17.imm.dtu.dk/Proceedings/Session 7 Control Theory/Quantitative... · Ramprasad Yelchuru, Quantitative methods for regulatory

Ramprasad Yelchuru, Quantitative methods for regulatory layer selection, 19

Distillation column : 1 loop closed (T18) + L constant

5 10 15 20 25 30 35 4041-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Stages

∆ x

∆xopt for disturbance F

∆xopt for disturbance zF∆xopt for disturbance qF

5 10 15 20 25 30 35 4041-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Stages

∆ x

∆x for disturbance F∆x for disturbance zF∆x for disturbance qF∆x for measurement noise in L∆x for measurement noise in T18

Page 20: Quantitative methods for Regulatory layer selectionnpcw17.imm.dtu.dk/Proceedings/Session 7 Control Theory/Quantitative... · Ramprasad Yelchuru, Quantitative methods for regulatory

Ramprasad Yelchuru, Quantitative methods for regulatory layer selection, 20

Distillation column : 2 loops closed (T15,T27)

1 5 10 15 20 25 30 35 40 410

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stages

Com

posi

tions

(x)

xopt for disturbance Fxopt for disturbance zFxopt for disturbance qFx for disturbance Fx for disturbance zFx for disturbance qF

Page 21: Quantitative methods for Regulatory layer selectionnpcw17.imm.dtu.dk/Proceedings/Session 7 Control Theory/Quantitative... · Ramprasad Yelchuru, Quantitative methods for regulatory

Ramprasad Yelchuru, Quantitative methods for regulatory layer selection, 21

Distillation column : 2 loops closed (T15,T27)

1 5 10 15 20 25 30 35 4041-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Stages

∆ x

∆xopt for disturbance F

∆xopt for disturbance zF∆xopt for disturbance qF

1 5 10 15 20 25 30 35 4041-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Stages

∆ x

∆x for disturbance F∆x for disturbance zF∆x for disturbance qF∆x for measurement noise in T15∆x for measurement noise in T27

Page 22: Quantitative methods for Regulatory layer selectionnpcw17.imm.dtu.dk/Proceedings/Session 7 Control Theory/Quantitative... · Ramprasad Yelchuru, Quantitative methods for regulatory

Ramprasad Yelchuru, Quantitative methods for regulatory layer selection, 22

4.2 CV2 (c = H2y) as combinations of measurements

2 3 4 5 410.1

0.12

0.14

0.16

0.18

0.2

Loss

1/2

||M||2 F

No. of used meas. (n)

One loop closed

2 3 4 5 410

0.005

0.01

0.015

0.02

0.025

0.03

Loss

1/2

||M||2 F

No. of used meas. (n)

Two loop closed

Page 23: Quantitative methods for Regulatory layer selectionnpcw17.imm.dtu.dk/Proceedings/Session 7 Control Theory/Quantitative... · Ramprasad Yelchuru, Quantitative methods for regulatory

Ramprasad Yelchuru, Quantitative methods for regulatory layer selection, 23

5. Conclusions Quantified the regulatory layer objectives using state drift criterion

Extended the economic self-optimizing control concepts to state drift minimization in regulatory

layer

We showed that state drift minimization at steady-state is sufficient for distillation case study

Regulatory layer control variables (CV2) as individual measurements or measurement

combinations are selected to minimize the state drift

Optimal regulatory layer with 1,2 or more closed loops is obtained, to arrive at minimum

regulatory layer with acceptable loss.