QA4ECV D3.8 v1.0 web · 2!/22!!!! ! & ! Work(package&...

22
Grant agreement n°607405 Date: 24 March 2016 Lead Beneficiary: IASBBIRA (#2) Nature: Report Dissemination level: PU QA4ECV Report / Deliverable n° D3.8 Historical record of independent reference data for NO 2 , HCHO, and CO

Transcript of QA4ECV D3.8 v1.0 web · 2!/22!!!! ! & ! Work(package&...

Page 1: QA4ECV D3.8 v1.0 web · 2!/22!!!! ! & ! Work(package& WP3!(QA!of!independent!reference!data!andin(situ!protocols)& Deliverable& Deliverable!3.8!–!Draft!version1.0! Title& Historical

     

                                         

                                                                   

 

                                                           Grant  agreement  n°607405      

   Date:  24  March  2016  Lead  Beneficiary:  IASB-­‐BIRA  (#2)  Nature:  Report  Dissemination  level:  PU  

 

QA4ECV  Report  /  Deliverable  n°  D3.8  

Historical  record  of  independent  reference  data  for  NO2,  HCHO,  and  CO    

Page 2: QA4ECV D3.8 v1.0 web · 2!/22!!!! ! & ! Work(package& WP3!(QA!of!independent!reference!data!andin(situ!protocols)& Deliverable& Deliverable!3.8!–!Draft!version1.0! Title& Historical

    2  /  22    

     

   

Work-­‐package   WP3  (QA  of  independent  reference  data  and  in-­‐situ  protocols)  Deliverable   Deliverable  3.8  –  Draft  version  1.0  Title   Historical  record  of  independent  reference  data  for  NO2,  HCHO  

and  CO.  Nature   R  Dissemination   PU  Lead  Beneficiary   IASB-­‐BIRA  (#2)  Date   24  March  2016  Status   Preliminary  Authors   F.  Hendrick  (IASB-­‐BIRA),  B.  Dils  (IASB-­‐BIRA),  C.  Gielen  (IASB-­‐BIRA),  

B.  Langerock  (IASB-­‐BIRA),  G.  Pinardi  (IASB-­‐BIRA),  M.  De  Mazière  (IASB-­‐BIRA),  M.  Van  Roozendael  (IASB-­‐BIRA),  E.  Peters  (IUP-­‐UB),  A.  Richter  (IUP-­‐UB),  A.  Piters  (KNMI),  S.  Beirle  (MPG),  T.  Wagner  (MPG),  T.  Drosoglou  (AUTH),  A.  Bais  (AUTH),  S.  Wang  (CSIC),  C.  Cuevas  (CSIC),  A.  Saiz-­‐Lopez  (CSIC)  

Editors   F.  Hendrick  (IASB-­‐BIRA)  Reviewers   Name  (Affiliation),  Name  (Affiliation)  Contact   F.  Hendrick,  IASB-­‐BIRA  ([email protected])  URL   http://www.qa4ecv.eu/  

   This   document   has   been   produced   in   the   context   of   the   QA4ECV   project   (Quality   Assurance   for   Essential  Climate   Variables).   The   research   leading   to   these   results   has   received   funding   from   the   European  Union's  Seventh   Framework   Programme   (FP7   THEME   [SPA.2013.1.1-­‐03])   under   grant   agreement   n°   607405.   All  information  in  this  document  is  provided  "as  is"  and  no  guarantee  or  warranty  is  given  that  the  information  is   fit   for  any  particular  purpose.  The  user  thereof  uses   the   information  at   its   sole   risk  and   liability.  For   the  avoidance   of   all   doubts,   the   European   Commission   has   no   liability   in   respect   of   this   document,   which   is  merely  representing  the  authors’  view.  

Page 3: QA4ECV D3.8 v1.0 web · 2!/22!!!! ! & ! Work(package& WP3!(QA!of!independent!reference!data!andin(situ!protocols)& Deliverable& Deliverable!3.8!–!Draft!version1.0! Title& Historical

    3  /  22    

     

Executive  Summary  /  Abstract    This  reports  describes  the  work  undertaken  in  QA4ECV  to  build  consistent  historical  record  of  independent  reference  data  for  NO2,  HCHO,  and  CO  columns.  For  NO2  and  HCHO,  a  systematic  approach  has  been  adopted  to  harmonise  MAX-­‐DOAS  retrievals  of   these   species   at   12   sites   selected   for   inclusion   in   the   project   database.   This  harmonisation  effort  has  consisted  in  three  steps:  (1)  an  intercomparison  of  NO2  and  HCHO   slant   column   densities   (SCDs)   retrievals   from   a   common   set   of   measured  spectra   in   order   to   assess   the   consistency   of   DOAS   retrieval   tools   in   use   in   the  community   and   to   derive   recommendations   for   standardised   analysis   settings,   (2)  the   development   of   generic   look-­‐up   tables   of   air   mass   factors   (AMFs)   generally  applicable  within  the  network  to  convert  SCDs  into  vertical  column  densities  (VCDs),  and   (3)   the   systematic   use   of   the   Generic   Earth   Observation   Metadata   Standard  (GEOMS)   hdf   format   for   data   reporting.   In   addition,   best   practices   for   instrument  characterisation,   calibration,   and   operation,   as  well   as   harmonised   approaches   for  cloud   flagging   and   for   the   characterization   of   the   horizontal   representativeness   of  the  measurements   have   been   proposed   and   documented.   The   corresponding   data  sets  will  be  used  as  independent  reference  for  the  quality  assessment  of  the  QA4ECV  satellite-­‐based  ECVs.    In   the   second  part  of   the   report,   FTIR  measurements  of   total   column  CO  currently  undertaken  by   the  Network   for   the  Detection  of  Atmospheric  Composition  Change  (NDACC)   and   the   Total   Carbon  Column  Observing  Network   (TCCON)   are   described.  NDACC  and  TCCON  differ  in  terms  of  both  retrieval  methods  (optimal  estimation  and  profile   scaling   approach,   respectively)   and   microwindows   used   of   the   spectral   fit.  Within   NDACC,   an   harmonisation   effort   on   the   CO   inversion   is   currently   under  progress   through   the   comparisons   of   retrieval   strategy   and   software   packages  (PROFFIT   and   SFIT),   and   uncertainty   characterization.   A   best-­‐practice   document  based   on   this   exercise   will   be   distributed   within   the   NDACC   FTIR   Working   Group  (IRWG)  and  presented  at  the  upcoming  IRWG  workshop.  All  PI’s  will  be  then  invited  to   reprocess   their   time   series   using   these   harmonized   settings.   Historical   CO   total  column   time-­‐series   at   Lauder,   Jungfraujoch,   Izana,   Kiruna   and   Zugspitze   currently  available  on  the  NDACC  database  are  shown  here  as  example.  Regarding  TCCON,  the  current   retrieval   strategy   and   error   characterization   are   described.   Unlike   NDACC,  they   are   both   uniform   throughout   the   network.   A   comparison   study   between  selected  NDACC  and  TCCON  sites  was  part  of  the  EU  FP7  NORS  project.  The  general  conclusion  is  that  both  NDACC  and  TCCON  agree  well,  but  not  perfectly:  the  seasonal  cycle   of   the   relative   difference   is   in-­‐phase   with   the   seasonal   cycle   of   the   total  columns   itself,   indicating   that   the   NDACC   profile   retrieval   is   more   sensitive   to  concentration  changes  than  the  TCCON  retrieval.      

Page 4: QA4ECV D3.8 v1.0 web · 2!/22!!!! ! & ! Work(package& WP3!(QA!of!independent!reference!data!andin(situ!protocols)& Deliverable& Deliverable!3.8!–!Draft!version1.0! Title& Historical

    4  /  22    

     

Table  of  Contents  

Table  of  Contents  1.  Part  1  –  Historical  record  for  independent  reference  data  for  NO2,  HCHO  ............  5  1.1.  Introduction  ....................................................................................................................................  5  1.2.  Recommended  settings  for  NO2  and  HCHO  DOAS  analyses  ...........................................................  5  1.3.  Development  of  NO2  and  HCHO  AMF  LUTs  ....................................................................................  7  1.4.  Generation  of  GEOMS  hdf  files  .....................................................................................................  10  1.5.  MAX-­‐DOAS  instrument  best  practice  ...........................................................................................  13  1.6.  MAX-­‐DOAS  spatial  representativeness  characterisation  ..............................................................  13  1.7.  MAX-­‐DOAS  cloud  screening  ..........................................................................................................  14  1.8.  Schedule  of  the  remaining  tasks  ...................................................................................................  15  1.9.  References  ....................................................................................................................................  15  

2.  Part  2  –  Historical  record  for  independent  reference  data  for  CO  .........................  17  2.1  Introduction  ...................................................................................................................................  17  2.2  Historical  NDACC  CO  reference  time  series  ...................................................................................  17  2.2  Harmonization  strategy  and  best  practice  document.  ..................................................................  19  2.3  Historical  TCCON  CO  reference  series  ...........................................................................................  21  2.4  References  .....................................................................................................................................  22        

Page 5: QA4ECV D3.8 v1.0 web · 2!/22!!!! ! & ! Work(package& WP3!(QA!of!independent!reference!data!andin(situ!protocols)& Deliverable& Deliverable!3.8!–!Draft!version1.0! Title& Historical

    5  /  22    

     

1.  Part  1  –  Historical  record  for  independent  reference  data  for  NO2,  HCHO  

1.1.  Introduction    Part   1   of   this   document   describes   the   harmonization   effort   on   NO2   and   HCHO   column  retrievals  at  the  QA4ECV  reference  MAXDOAS  sites.  Those  are  listed  in  Table  1:      

 

     

             

Table  1:  List  of  QA4ECV  MAXDOAS  reference  stations.    

This  harmonisation  effort  has  consisted  in  three  main  steps:      

1. Intercomparison   of   NO2   and   HCHO   slant   column   densities   (SCDs)   retrieved   from  common   spectra   in   order   to   assess   the   overall   consistency   of   the   retrievals  performed   within   the   MAXDOAS   community   and   to   derive   recommendations   for  standardized  analysis  settings.  

2. Development   of   NO2   and   HCHO   airmass   factor   (AMF)   look-­‐up   tables   in   order   to  harmonize  the  conversion  of  SCDs  into  vertical  column  densities  (VCDs)  

3. Generation   of  MAXDOAS   data   files   using   the  Generic   Earth  Observation  Metadata  Standard   (GEOMS)   hdf   format.   The   implementation   of   this   format   by   all   QA4ECV  MAXDOAS   groups   has   been   successfully   realised   leading   to   the   creation   of   a   first  version  –  not  yet  fully  harmonised  on  the  content  –  of  the  MAX-­‐DOAS  database.  

 These  three  steps  are  described  in  Sections  1.2,  1.3,  and  1.4,  respectively.  Best  practices  for  instrument   characterisation,   calibration,   and   operation   are   discussed   in   Section   1.5.    Standard  approaches  developed   for   the  characterization  of   spatial   representativeness  and  cloud   conditions   are   given   in   Sections   1.6   and   1.7.   The   schedule   for   the   remaining  main  tasks  is  given  in  Section  1.8.    

1.2.  Recommended  settings  for  NO2  and  HCHO  DOAS  analyses    In  order  to  derive  standard  settings  for  the  NO2  and  HCHO  DOAS  analyses,  NO2  and  HCHO  SCDs   have   been   retrieved   by   the   different   groups   from   common   absorption   spectra  

Station   Lat,  Long   Class     Data  Source  De  Bilt/Cabauw  (NL)   52°N,  5°E   Sub-­‐urban   KNMI  Uccle  (BE)   50°N,  4°E   Urban   IASB-­‐BIRA  Beijing  (CHN)   40°N,  116°E   Urban   IASB-­‐BIRA,  MPG  Xianghe  (CHN)   39°N,  117°E   Sub-­‐urban   IASB-­‐BIRA  Bujumbura  (BU)   3°S,  29°E   Sub-­‐urban   IASB-­‐BIRA  Bremen  (DE)   53°N,  9°E   Urban   IUP-­‐UB  Nairobi  (KEN)   1°S,  37°E   Rural  /  Urban   IUP-­‐UB  Athens  (GR)   38°N,  23°E   Urban   IUP-­‐UB  Mainz  (DE)   50°N,  8°E   Urban   MPG  Greater  Noida  (IND)   28°N,  77°E   Urban   MPG  Thessaloniki  (GR)   41°N,  23°E   Urban   AUTH  Madrid  (ESP)   40°N,  3°W   Urban   CSIC  

Page 6: QA4ECV D3.8 v1.0 web · 2!/22!!!! ! & ! Work(package& WP3!(QA!of!independent!reference!data!andin(situ!protocols)& Deliverable& Deliverable!3.8!–!Draft!version1.0! Title& Historical

    6  /  22    

     

recorded   by   the   IUP-­‐UB   MAXDOAS   spectrometer   on   18/06/2013   during   the   MADCAT  intercomparison   campaign   held   in   Mainz   in   June-­‐July   2013   (http://joseba.mpch-­‐mainz.mpg.de/mad_cat.htm).   Tests   on   synthetic   spectra   were   also   included   in   both  exercises  led  by  IUP-­‐UB  (NO2)  and  IASB-­‐BIRA  (HCHO).  It  should  be  noted  that  the  selection  of  settings  to  be  tested  by  the  different  groups  has  been  based  on  previous  SCD  comparison  studies  carried  out  within  the  framework  of  the  CINDI  and  MADCAT  campaigns  (see  Pinardi  et   al.,   2013   and   http://joseba.mpch-­‐mainz.mpg.de/mad_analysis.htm,   respectively).   The  preliminary   recommendations  on  DOAS   settings  derived   from   the  SCD  comparison   results  are  described  in  Tables  2  (NO2)  and  3  (HCHO)  and  have  been  sent  to  the  different  groups  for  discussion.  A  firm  decision  on  these  settings  will  be  taken  by  end  of  March  2016  and  they  will  be  then  used  for  the  generation  of  the  QA4ECV  MAX-­‐DOAS  reference  data  sets.      

 Table  2:  Recommended  DOAS  settings  for  NO2.  

   

Page 7: QA4ECV D3.8 v1.0 web · 2!/22!!!! ! & ! Work(package& WP3!(QA!of!independent!reference!data!andin(situ!protocols)& Deliverable& Deliverable!3.8!–!Draft!version1.0! Title& Historical

    7  /  22    

     

 Table  3:  Recommended  DOAS  settings  for  HCHO.  

 

1.3.  Development  of  NO2  and  HCHO  AMF  LUTs    The  MAXDOAS  groups  involved  in  QA4ECV  use  different  methods  for  the  conversion  of  SCDs  into  VCDs:  an  AMF  LUT  approach  for  KNMI  (Vlemmix  et  al.,  2011),  a  full  OEM-­‐based  profiling  scheme   for   IASB-­‐BIRA  and   IUP-­‐UB,   and   the   so-­‐called  geometrical   approximation   for  MPG,  AUTH,  and  CSIC.  The  latter  consists  in  assuming  the  trace  gas  layer  to  be  located  below  the  scattering  altitude  at  30°  elevation,  so  that  tropospheric  NO2  or  HCHO  VCDs  can  be  derived  by  applying  a  geometrical  AMF  to  measured  DSCDs  at  30°  elevation  (Hönninger  et  al.,  2004;  Brinksma  et  al.,  2008).  Potentially,  using  such  different  methods  for   the  derivation  of  VCD  can   be   at   the   origin   of   discrepancies/bias   between   retrieval   results.   To   overcome   this  problem,   it   has   been   decided   to   use   an   AMF   LUT   approach   for   all   QA4ECV   MAXDOAS  stations.  The  approach  consists   in  dividing  the  differential  SCDs  with  respect   to   the  zenith  (90°elevation)  of  the  scan  by  the  corresponding  differential  AMFs:            where  α   an   off-­‐axis   elevation   angle   of   the   scan,   generally   chosen  between   15   and   30°   in  order  to  minimize  the  impact  of  aerosols  on  the  retrieval.    NO2   and   HCHO   AMF   LUTs   have   been   generated   by   IASB-­‐BIRA   using   the   bePRO/LIDORT  radiative  transfer  suite  (Clémer  et  al.,  2010;  Spurr,  2008)  for  the  following  parameter  values:      

°

°

−−

==90

90

AMFAMFSCDSCD

DAMFDSCDVCD

α

α

α

αα

Page 8: QA4ECV D3.8 v1.0 web · 2!/22!!!! ! & ! Work(package& WP3!(QA!of!independent!reference!data!andin(situ!protocols)& Deliverable& Deliverable!3.8!–!Draft!version1.0! Title& Historical

    8  /  22    

     

Table  4:  Parameter  values  for  which  the  LUTs  were  calculated.    In   order   to   extract   appropriate   AMF   values   for   each   QA4ECV   station,   an  extraction/interpolation  tool  has  been  developed  and  is  described  in  Figure  1.    

 Figure  1:  Flow  chart  of  the  NO2  and  HCHO  AMF  extraction  tool.  

 It  consists   in  a  Fortran  executable  fed  by  the  following  parameters   in  addition  to  the  AMF  LUTs:  

• Geometry  parameters  (solar  zenith,  relative  azimuth,  and  elevation  angles)  • Boundary  layer  height  (BLH;  which  is  used  in  a  first  approximation  to  initialise  SH;  see  

Vlemmix  et  al.,  2015),  aerosol  optical  depth  (AOD),  and  surface  albedo  values  • Profile  shapes  used  for  the  AMF  LUT  calculation  • NO2  and  HCHO  column  averaging  kernels  (AVKs)  LUTs  

 

Parameter   Value(s)  

Wavelength     NO2:  360,  427,  477nm;  HCHO:    343  nm  Altitude  grid     0-­‐2km/step  0.1  km  ;  2-­‐20km/step  1km    p,T,O3  profiles   AFGL  1976  Viewing  elevation  angle    10,  15,  20,  25,  30,  35o  (+zenith)  Relative  azimuth  angle   0,  30,  60,  90,  120,  150,  180o  Solar  zenith  angle   0,  20,  30,  40,  50,  60,  65,  70,  75,  80,  82,  84,  86,  88o  Surface  albedo   0,  0.5,  1  NO2  and  HCHO  vertical    Profiles  

Exponentially-­‐decreasing  profile:  Scaling  Height  (SH)=  0.2,  0.5,  1,  1.5,  3  km;  Tropospheric  NO2  and  HCHO  VCDs:  2e16  molec/cm2  

Aerosol  scenarios   Exponentially-­‐decreasing  profile:  Scaling  Height  (SH)=  0.2,  0.5,  1,  1.5,  3  km;  AOD:  0,  0.2,  0.5,  1,  2,  4;   single  scattering  albedo:  0.90;  asymmetry   factor:  0.72;  Henyey-­‐Greenstein  phase  function  

Cloud  scenarios   Clear-­‐sky  only  

Page 9: QA4ECV D3.8 v1.0 web · 2!/22!!!! ! & ! Work(package& WP3!(QA!of!independent!reference!data!andin(situ!protocols)& Deliverable& Deliverable!3.8!–!Draft!version1.0! Title& Historical

    9  /  22    

     

For  each  station,  BLH   (SH),  AOD,  and  surface  albedo  values  can  be  defined  by   the  user  or  extracted   in   a   transparent   way   from   coupled   climatologies   based   on   collocated   ECMWF,  AERONET,  and  GOME  (Koelemeijer  et  al.,  2008)  data,  respectively.      As   an   output   of   the   extraction   tool,   interpolated   AMFs   and   corresponding   profile   shapes  and   column  averaging   kernels   are   generated.   This   information   is  needed   to  properly   take  into   account   the   differences   in   vertical   sensitivity   when   validating   satellite   nadir  measurements   using  MAXDOAS   observations:  MAXDOAS   shows   a  maximum   of   sensitivity  close   to   the   ground   (0-­‐1.5km   altitude   range)   while   for   the   satellite   measurements,   the  maximum  of  sensitivity  is  located  at  higher  altitudes  (see  Figure  2).  Column  AVK  LUTs  have  been   calculated   based   on   the   Eskes   and   Boersma   (2003)’s   approach,   using   the  bePRO/LIDORT   RTM   initialized   with   similar   parameter   values   as   for   the   AMF   LUTs  calculation  (see  Table  2).  The  profile  shapes  are  those  used  for  the  calculation  of  the  AMF  LUTs   and   are   interpolated   at   the   BLH   (SH)   values   provided   by   the   user   or   from   a   pre-­‐determined  ECMWF-­‐based  climatology.      

 Figure  2:  Typical  examples  of  MAXDOAS  and  satellite  nadir  (OMI)  HCHO  column  AVKs.  

 The   LUT   approach   has   been   successfully   tested   for   NO2   and   HCHO   at   IASB-­‐BIRA   stations  (Xianghe,  Bujumbura,  Uccle).  As  an  example,  Figure  3  shows  the  comparison  between  AMF-­‐based   HCHO   VCDs   at   15   and   30°   elevation   and   those   retrieved   by   the   bePRO/LIDORT  profiling  tool  and  the  geometrical  approximation  for  the  Xianghe  station  (year  2010).                          

Page 10: QA4ECV D3.8 v1.0 web · 2!/22!!!! ! & ! Work(package& WP3!(QA!of!independent!reference!data!andin(situ!protocols)& Deliverable& Deliverable!3.8!–!Draft!version1.0! Title& Historical

    10  /  22        

                                 Figure   3:   Comparison   of   HCHO   VCDs   retrieved   by   the   AMF-­‐based   approach   at   15   and   30°   elevation,   the  bePRO/LIDORT  profiling  tool,  and  the  geometrical  approximation  at  the  Xianghe  station  (year  2010).      As  can  be  seen,  for  the  present  case  (HCHO  in  Xianghe),  the  AMF  LUT  approach  significantly  improves   the   agreement   with   the   profiling   method   compared   to   the   simple   geometrical  approximation,   in  terms  of  both  mean  bias  and  seasonality  of  the  relative  differences  (the  latter   is  significantly  reduced  when  using  the  AMF  approach).  For  the  particular  conditions  of  the  Xianghe  site  (high  HCHO  content  and  high  aerosol  load),  optimal  results  are  obtained  at   30°   elevation   because   aerosol-­‐related   uncertainties   are   minimised   at   high   elevation.  Different  conclusions  might  eventually  be  reached  at  cleaner  sites.        

1.4.  Generation  of  GEOMS  hdf  files    The  GEOMS  UVVIS.DOAS  hdf   format  has  been  developed  during   the  FP7  NORS  project  by  the  NDACC/NORS  UV-­‐vis  Working  Group.   It  consists  of   four  templates  for  reporting  UV-­‐vis  data   in  off-­‐axis   (trace  gas  +  aerosols),   zenith,  and  direct-­‐sun  viewing  geometries.  They  are  described  on  the  AVDC  website  (http://avdc.gsfc.nasa.gov/index.php?site=1876901039).  An  example  GEOMS  hdf  file  is  shown  in  Figure  4.    

Page 11: QA4ECV D3.8 v1.0 web · 2!/22!!!! ! & ! Work(package& WP3!(QA!of!independent!reference!data!andin(situ!protocols)& Deliverable& Deliverable!3.8!–!Draft!version1.0! Title& Historical

    11  /  22        

 Figure  4:  Example  of  GEOMS  hdf  file  for  tropospheric  NO2  off-­‐axis  measurements.  

 The  added  value  of  such  file  format  is  the  possibility  to  include  ancillary  metadata  which  can  be  useful  for  the  interpretation  of  comparisons  between  MAX-­‐DOAS  and  satellite  or  model  data,   like  averaging  kernels,  cloud  conditions,   location  (latitude,   longitude)  of  the  effective  air  masses,  AOD,  in  addition  to  the  trace  gas  data.    The  QA4ECV  MAX-­‐DOAS  groups  have  generated  a  first  version  of  the  NO2  and  HCHO  GEOMS  hdf  files  for  their  stations  based  on  VCDs  retrieved  using  their  own  algorithms  and  settings  for  DOAS  spectral  fitting  and  SCDs  to  VCDs  conversion.  These  data  files  constitute  the  first  version  of   the  QA4ECV  MAX-­‐DOAS  database  and  are  made  available  at   ftp-­‐ae.oma.be   (for  username  and  password,  please  contact  the  PI’s  of  the  instruments).      The  structure  of  this  database  is  shown  in  Figure  5.  Although  this  data  base  is  not  yet  fully  harmonised,  the  main  motivations  to  create  it  are:  

(1) to   ensure   the   effective   implementation   of   the   GEOMS   hdf   format   by   all   QA4ECV  MAX-­‐DOAS  groups,  and    

(2) to  start   in  WP5  the  development  of  the  satellite  validation  tools  which  will  use  the  MAX-­‐DOAS  GEOMS  reference  files  as  input.  

 

Page 12: QA4ECV D3.8 v1.0 web · 2!/22!!!! ! & ! Work(package& WP3!(QA!of!independent!reference!data!andin(situ!protocols)& Deliverable& Deliverable!3.8!–!Draft!version1.0! Title& Historical

    12  /  22        

 Figure  5:  Structure  of  the  QA4ECV  MAX-­‐DOAS  database  (v1).  

   

Page 13: QA4ECV D3.8 v1.0 web · 2!/22!!!! ! & ! Work(package& WP3!(QA!of!independent!reference!data!andin(situ!protocols)& Deliverable& Deliverable!3.8!–!Draft!version1.0! Title& Historical

    13  /  22        

1.5.  MAX-­‐DOAS  instrument  best  practice  

A  best  practice  report  on   instrument  characterisation,  calibration,  and  operation  has  been  drafted   by   IUP-­‐UB.   In   the   first   part,   the   main   components   of   the   different   MAX-­‐DOAS  instrument   types   are   described,   with   focus   on   telescopes   (pointing   or   imaging),   optical  components   (mirrors,   lenses,   prisms,   fiber   bundles   and   mixers,   filters),   and   temperature  stabilisation   of   both   spectrometers   and   detectors.   Supporting   measurements,   like   video  camera   (for   monitoring   the   sky   conditions   and   pointing   direction),   meteorological  observations   (needed   for   an   optimal   interpretation   of   MAX-­‐DOAS   data),   and   GPS   (for  accurate   time   synchronisation),   are   also   discussed.   The   second   part   of   the   document   is  dedicated   to   the   characterisation   of   spectral   (spectral   range   and   sampling,   slit   function,  stray   light)   and  pointing   (field  of   view,  possible   viewing  directions)   properties.   Calibration  and   characterisation   procedures   for   different   instrument   parameters   (field   of   view,  spectrometer   straylight,   polarisation,   dark   signal,   detector   linearity   and   pixel-­‐to-­‐pixel  variability,   and   temperature   dependence)   are   discussed   in   the   third   part.   Finally,   the  operation  parameters  (e.g.  viewing  geometries,  automatic  procedures  for  calibration,  data  acquisition  and  QA,  and  DOAS  spectral  fitting)  are  listed  and  described  in  the  last  part  of  the  document.   A   preliminary   version   of   this   best   practice   report   is   made   available   at   ftp-­‐ae.oma.be/qa4ecv_gb  (user:  qa4ecv_gb;  password:  ecv!MXDOAS),  in  folder  ‘documents’.  

1.6.  MAX-­‐DOAS  spatial  representativeness  characterisation  

As  for  all  remote  sensing  techniques,  MAX-­‐DOAS  observations  average  over  space  and  time  providing   integrated   values   representative   of   a   certain   atmospheric   volume.   The   vertical  and  horizontal  extents  of  this  volume  depend  strongly  on  the  wavelength,  viewing  geometry  (elevation  and  relative  azimuth  angles,  SZA),  and  sky  conditions  (presence  or  not  of  clouds  and/or  aerosols).      Within  QA4ECV,  MPG  has  extended  its  work  done  in  the  FP7  project  NORS  on  the  horizontal  representativeness  of  MAX-­‐DOAS  observations.  A  universal  2-­‐D  polynomial   function  of  the  SZA  and  relative  azimuth  angle  has  been  developed,  which  describes  the  ratio  between  the  measured   O4   DAMF   and   the   horizontal   distance   (in   km).   This   2D   function   is   determined  separately   for   the   four  wavelengths,   at  which   important  O4   absorption  bands   are   located  (360nm,  477nm,  577nm,  and  630nm).  It  is  valid  for  elevation  angles  <6°;  the  same  function  can  be  applied  to  O4  DAMFs  (differential  AMFs  with  respect  to  the  zenith)  derived  from  any  elevation  angle  between  1°  and  6°.  As  illustration,  Figure  5  shows  the  relationships  between  O4  DAMF  and  horizontal  extent  at  1°  elevation  at  360  and  630  nm.      

Page 14: QA4ECV D3.8 v1.0 web · 2!/22!!!! ! & ! Work(package& WP3!(QA!of!independent!reference!data!andin(situ!protocols)& Deliverable& Deliverable!3.8!–!Draft!version1.0! Title& Historical

    14  /  22        

 Figure   6:   Relationships   between   the   retrieved   O4   differential   AMF   (1°   elevation   –   90°   elevation)   and   the  horizontal   sensitivity   range   for  1°  elevation  angle  and  360  nm   (left)  and  630  nm   (right)   (SZA:  60°:   relative  azimuth  angles:  0°,  90°,  180°).  The  different  colours  represent  results  for  different  aerosol  extinction  (box)  profiles.    The   2D   polynomial   functions   including   the   corresponding   coefficients   are   described   in   a  dedicated   report   available   at   ftp-­‐ae.oma.be/qa4ecv_gb   (user:   qa4ecv_gb;   password:  ecv!MXDOAS),  in  folder  ‘documents’.    

1.7.  MAX-­‐DOAS  cloud  screening  

MAX-­‐DOAS  trace  gas  retrievals  can  be  strongly  affected  by  clouds  and  aerosols  due  to  their  impact  on   the  photon   light  path.   This   is   especially   true   in   the  presence  of  broken   clouds,  which  show  strong   temporal  and  spatial  variations.  To   reduce   the   impact  of  cloud-­‐related  errors  on  MAX-­‐DOAS  trace  gas  retrievals,  methods  have  been  developed  allowing  to  identify  cloudy  scans  so   they  can  be  excluded   from  subsequent  analysis   steps.  These  methods  are  based  on  the  use  of  4  main  parameters  (Wagner  et  al.,  2014;  Gielen  et  al.,  2014):  measured  radiance   (clouds   are  bright),   color   index   (CI=Iλlow/Iλhigh;   ratio  of   intensities   at   two  different  wavelengths)   (clouds   are   white),   and   O4   absorption   and   Ring   effect   (clouds   modify   the  atmospheric  light  path).    Within  QA4ECV,  a  simplified  version  of  the  cloud  screening  approach  described  in  Gielen  et  al.  (2014)  has  been  adopted.  This  uses  only  measured  CI  in  the  zenith  viewing  geometry,  so  that   no   radiative   transfer   model   simulations   are   needed.   This   method   can   therefore   be  easily  applied  at  all  QA4ECV  MAX-­‐DOAS  sites.    Firstly,   an   histrogram   analysis   is   made   on   the  measured   CI   values   and   the   region   [CImax-­‐FWHM,   CImax+FWHM]   is   defined:   scans   located   in   this   region   are   flagged   as   thick  clouds/extreme   pollution,   while   scans   outside   this   region   are   for   clear-­‐sky/thin   clouds  conditions.  Secondly,  the  presence  of  broken  clouds  is  detected  based  on  the  fit  of  a  double-­‐sine   functions   on   the   diurnal   variation   of   the   measured   CI   (zenith   geometry)   and   the  outliers,   identified  as   (CI-­‐fitted   function)/fitted   function>0.1,  are   flagged  as  being  affected  by  broken  clouds.    

Page 15: QA4ECV D3.8 v1.0 web · 2!/22!!!! ! & ! Work(package& WP3!(QA!of!independent!reference!data!andin(situ!protocols)& Deliverable& Deliverable!3.8!–!Draft!version1.0! Title& Historical

    15  /  22        

These   simplified   cloud   screening   methods   are   described   in   more   details   in   a   dedicated  report  available  at  ftp-­‐ae.oma.be/qa4ecv_gb  (user:  qa4ecv_gb;  password:  ecv!MXDOAS),  in  folder  ‘documents’.  

1.8.  Schedule  of  the  remaining  tasks  

The  schedule  of  main  remaining  tasks  on  MAX-­‐DOAS  harmonisation  within  QA4ECV  WP3  are  described   in   Table   5.   A   final   version   of   the   reference   data   for   NO2   and   HCHO   will   be  delivered  to  the  consortium  by  the  end  of  June  2016.  

    2016  

Jan-­‐Mar   Apr-­‐Jun  MADCAT  intercomparison  of  NO2  and  HCHO  SCD  +  recommendations  for  standard  settings  

Final  results  and  recommendations  provided  in  March  2016  by  IUP-­‐UB  (NO2)  and  IASB-­‐BIRA  (HCHO)    

Implementation  by  the  different  groups  

LUTs  of  NO2  and  HCHO  AMFs   LUTs  made  available  in  March  2016  by  IASB-­‐BIRA  

Implementation  by  the  different  groups  

NO2  and  HCHO  VCD  data  series  in  GEOMS  format  

Version  1  (based  on  own  retrieval  tools  and  settings)  made  available  in  February  2016  

Version  2  (harmonised  data  sets)  will  be  made  available  in  June  2016  

Document  on  Instrument  characterization  and  operation  protocol  

  Final  (draft  version  provided  in  June  2015  by  IUP-­‐UB)  

Document  on  harmonised  horizontal  representativeness  characterisation  

Provided  in  December  2015  by  MPG  

Document  on  harmonised  cloud  flagging  method  

Provided  in  September  2015  by  IASB-­‐BIRA  

Table  5:  Schedule  of  the  main  tasks  remaining  for  the  harmonisation  of  QA4ECV  MAX-­‐DOAS  data  sets.    

1.9.  References  

Brinksma,   E.   J.,     Pinardi,   G.,   Volten,   H.,     Braak,   R.,     Richter,   A.,     Schönhardt,   A.,   Van  Roozendael,  M.,    Fayt,  C.,    Hermans,  C.,    Dirksen,  R.  J.,  Vlemmix,  T.,  Berkhout,  A.  J.  C.,    Swart,  D.  P.   J.,  Oetjen,  H.,  Wittrock,  F.,  Wagner,  T.,   Ibrahim,  O.  W.,  de  Leeuw,  G.,    Moerman,  M.,    Curier,  R.  L.,    Celarier,  E.  A.,    Cede,  A.,    Knap,  W.  H.,    Veefkind,  J.  P.,    Eskes,  H.  J.,  Allaart,  M.,  Rothe,  R.,  Piters,  A.  J.  M.,  and  Levelt,  P.  F.:  The  2005  and  2006  DANDELIONS  NO2  and  aerosol  intercomparison   campaigns,   J.   Geophys.   Res.,   113,   D16S46,   doi:10.1029/2007JD008808,  2008.  

Clémer,   K.,  M.   Van   Roozendael,   C.   Fayt,   F.   Hendrick,   C.   Hermans,   G.   Pinardi,   R.   Spurr,   P.  Wang,   and  M.   De  Mazière,  Multiple   wavelength   retrieval   of   tropospheric   aerosol   optical  properties   from   MAXDOAS   measurements   in   Beijing,   Atmospheric   Measurement  Techniques,  3,  863-­‐878,  2010.  

Eskes,  H.  J.  and  K.  F.  Boersma,  Averaging  kernels  for  DOAS  total-­‐column  satellite  retrievals,  Atmos.  Chem.  Phys.,  3,  1285-­‐1291,  doi:10.5194/acp-­‐3-­‐1285-­‐2003,  2003.  

Gielen,  C.,  M.  Van  Roozendael,  F.  Hendrick,  G.  Pinardi,  T.  Vlemmix,  V.  De  Bock,  H.  De  Backer,  C.  Fayt,   C.  Hermans,   D.  Gillotay,   and   P.  Wang,   A   simple   and   versatile   cloud-­‐screening  

Page 16: QA4ECV D3.8 v1.0 web · 2!/22!!!! ! & ! Work(package& WP3!(QA!of!independent!reference!data!andin(situ!protocols)& Deliverable& Deliverable!3.8!–!Draft!version1.0! Title& Historical

    16  /  22        

method   for  MAX-­‐DOAS   retrievals,  Atmos.  Meas.   Tech.,   7,   3509-­‐3527,  doi:   10.5194/amt-­‐7-­‐3509-­‐2014,  2014.  

Honninger,   G.,   C.   von   Friedeburg,   and   U.   Platt,   Multi   axis   differential   optical   absorption  spectroscopy,  Atmos.  Chem.  Phys.,  4,  231–254,  2004.  

Koelemeijer,   R.   B.   A.,   J.   F.   de   Haan,   and   P.   Stammes,   A   database   of   spectral   surface  reflectivity   in   the   range   335   –   772   nm   derived   from   5.5   years   of   GOME   observations,   J.  Geophys.  Res.,  108(D2),  4070,  doi:10.1029/2002JD002429,  2003.  

Pinardi,   G.,   M.  Van  Roozendael,   N.  Abuhassan,   C.  Adams,   A.  Cede,   K.  Clémer,   C.  Fayt,  U.  Frieß,  M.  Gil,   J.  Herman,  C.  Hermans,  F.  Hendrick,  H.  Irie,  A.  Merlaud,  M.  Navarro  Comas,  E.  Peters,   A.  J.  M.  Piters,   O.  Puentedura,   A.  Richter,   A.  Schönhardt,   R.  Shaiganfar,   E.  Spinei,  K.  Strong,   H.  Takashima,   M.  Vrekoussis,   T.  Wagner,   F.  Wittrock,   and   S.  Yilmaz,   MAXDOAS  formaldehyde   slant   column   measurements   during   CINDI:   intercomparison   and   analysis  improvement,  Atmos.  Meas.  Tech.,  6,  167-­‐185,  2013.  

Rodgers,   C.   D.:   Inverse   Methods   for   Atmospheric   Sounding,   Theory   and   Practice.   World  Scientific  Publishing,  Singapore-­‐NewJersey-­‐London-­‐Hong  Kong,  2000.  

Spurr,   R.,   LIDORT   and   VLIDORT:   Linearized   pseudo-­‐spherical   scalar   and   vector   discrete  ordinate   radiative   transfer   models   for   use   in   remote   sensing   retrieval   problems,   Light  Scattering  Reviews,  Volume  3,  ed.  A.  Kokhanovsky,  Springer,  2008.  

Vlemmix,  T.,  A.  J.  M.  Piters,  A.  J.  C.  Berkhout,  L.  F.  L.  Gast,  P.  Wang,  and  P.  F.  Levelt  Atmos.  Meas.  Tech.,  4,  2659-­‐2684,  doi:10.5194/amt-­‐4-­‐2659-­‐2011,  2011.  

Vlemmix,  T.,  F.  Hendrick,  G.  Pinardi,  I.  De  Smedt,  C.  Fayt,  C.  Hermans,  A.  Piters,  P.  Levelt,  and  M.  Van  Roozendael,   MAX-­‐DOAS   observations   of   aerosols,   formaldehyde   and   nitrogen  dioxide   in   the   Beijing   area:   comparison   of   two   profile   retrieval   approaches,   Atmospheric  Measurement  Techniques,  8,  941-­‐963,  2015.  

Wagner,   T.,   A.   Apituley,   S.   Beirle,   S.   Dörner,   U.   Friess,   J.   Remmers,   J.,   and   R.   Shaiganfar,  Cloud  detection  and  classification  based  on  MAX-­‐DOAS  observations,  Atmos.  Meas.  Tech.,  7,  1289–1320,  doi:10.5194/amt-­‐7-­‐1289-­‐2014,  2014.  

Page 17: QA4ECV D3.8 v1.0 web · 2!/22!!!! ! & ! Work(package& WP3!(QA!of!independent!reference!data!andin(situ!protocols)& Deliverable& Deliverable!3.8!–!Draft!version1.0! Title& Historical

    17  /  22        

2.  Part  2  –  Historical  record  for  independent  reference  data  for  CO  

2.1  Introduction  

Total   column   measurements   of   CO,   using   ground-­‐based   solar-­‐absorption   FTIR  measurements  are  currently  undertaken  by  two  international  networks:  the  Network  for  the  Detection   of   Atmospheric   Composition   Change   (NDACC)   and   the   Total   Carbon   Column  Observing  Network  (TCCON).  They  differ  in  many  areas  but  primarily  in  the  fact  that  TCCON  measurements  are  undertaken   in  another  spectral   region  and  that   it  uses  a  profile  scaling  retrieval  method,   while   NDACC   adheres   to   optimal   estimation.   Details   on   both   networks  and  corresponding  CO  data  are  given  below.  

2.2  Historical  NDACC  CO  reference  time  series    

 Figure  1:  Overview  of  TCCON  and  NDACC  sites.  Only  NDACC  sites  submitting  data  in  Generic  Earth  

Observation  Metadata  Standard  (GEOMS)  HDF  format  are  shown.  

NDACC  is  a  cross-­‐border  international  research  network  of  remote  sounding  stations.  It  is  a  major  contributor  to  the  World  Meteorological  Organisation  (WMO)  GAW  programme  and  it   works   under   the   auspices   of   United   Nations   Environment   Programme   (UNEP)   and   the  International   Ozone   Commission   (IO3C).   Relying   on   a   strong   involvement   of   European  partners   and   efficient   collaboration   with   partners   worldwide,   the   network   started  operations  officially  in  1991,  but  a  few  data  records  extend  back  to  the  1970’s  and  even  to  the  1950’s.  At  present  time  it  includes  more  than  70  high-­‐quality,  remote-­‐sensing  research  stations/sites   distributed   worldwide   for   (i)   observing   and   understanding   the   physical   /  chemical   state   of   the   stratosphere   and   troposphere,   and   (ii)   assessing   the   impact   of  stratospheric  changes  on  the  underlying  troposphere  and  on  global  climate.    

Page 18: QA4ECV D3.8 v1.0 web · 2!/22!!!! ! & ! Work(package& WP3!(QA!of!independent!reference!data!andin(situ!protocols)& Deliverable& Deliverable!3.8!–!Draft!version1.0! Title& Historical

    18  /  22        

The  Fourier  Transform  Infrared  (FTIR)  spectrometer,  a  Michelson-­‐type  interferometer  is  an  official   NDACC   instrument   and   measures   the   absorbance   spectrum   of   solar   (lunar)   light  along  the  line  of  sight  through  the  atmosphere.    For  operational  measurements  the  ground-­‐based   FTIR   spectra   are   measured   with   a   typical   resolution   of   about   0.005   cm−1   (i.e.  maximum  optical  path  difference  (OPD)  of  180cm).          

 Figure  2:  Examples  of  AVK  transformation  matrices  acting  on  VMR  profiles.  Sensitivity  decreases  above  

20km.  

Atmospheric  CO  profile   is  one  of  the  official  FTIR  NDACC  targets  and  the  retrieval  strategy  has   already   been   harmonized   across   the   network.   The   profile   retrievals   have   sensitivity  mainly  in  the  troposphere  and  the  degrees  of  freedom  (DOF)  are  typically  between  2  and  3  (see   Figure   2).   The   retrieval  microwindows   are   at   2057.70-­‐2058.00,   2069.56-­‐2069.76   and  2157.50-­‐2159.15  wavenumber,  main   interfering   species   are  H2O,  O3,   CO2   and  OCS,   the   a-­‐priori  profile  data  is  derived  from  WACCM.      At  present  CO  data  on  NDACC  is  available  as  profile  data  in  the  Generic  Earth  Observation  Metadata  Standard  (GEOMS)  HDF  format,  but  also  column  only  or  data  in  ASCII  format  can  be  found  on  NDACC.  For  QA4ECV  reference  FTIR  data  sets  we  will  only  consider  time  series  provided  in  GEOMS  HDF  format  and  containing  profile  retrievals.  Data  provided  in  GEOMS  format   ensures   that   all   additional   variables   are   available:   a-­‐priori   data,   averaging   kernels,  surface   temperature,   pressure,   uncertainties   are   necessary   for   a   proper   treatment   of   the  FTIR  level  2  datasets.    From  Table  1,  it  is  clear  that,  although  the  FTIR  CO  retrieval  strategy  is  strongly  harmonized  across  the  different  sites,  the  reported  uncertainty  budgets  remain  strongly  site  dependent.      Site   Date  Range   Profile  data   Rand.  unc.  

[%]  Syst.  unc.  

[%]  Altzomoni   24/10/12   29/12/15   X   0.5   2  Arrival  Heights   09/02/97   20/02/16     4   -­‐  Bremen   08/05/03   25/11/14   X   -­‐   -­‐  Eureka   03/08/06   01/09/14   X   1   3.5  Izana   30/03/99   30/12/15   X   .5   2  Jungfraujoch   29/03/92   30/12/15   X   2.4   -­‐  Kiruna   27/03/96   20/11/15   X   .5   2  Lauder   23/02/94   27/02/16     3.5   -­‐  Mauna  Loa   25/08/95   30/12/12   X   1   2  Ny  Alesund   28/03/93   16/07/14   X   .5   .5  

Page 19: QA4ECV D3.8 v1.0 web · 2!/22!!!! ! & ! Work(package& WP3!(QA!of!independent!reference!data!andin(situ!protocols)& Deliverable& Deliverable!3.8!–!Draft!version1.0! Title& Historical

    19  /  22        

Reunion  Maido   05/03/13   15/12/15   X   1   3.5  Reunion  StDenis   08/08/04   01/11/12   X   1   1.5  Thule   10/10/99   08/10/13   X   2   2  Toronto   22/05/02   10/12/14   X   2   2  Wollongong   26/05/96   30/12/13   X   2   2  Zugspitze   30/06/95   18/09/14   X   -­‐   -­‐  

Table  1.  Overview  of  available  data  on  NDACC  and  averaged  reported  uncertainties.  

2.2  Harmonization  strategy  and  best  practice  document.  

The  harmonization  of  the  uncertainty  budgets  is  ongoing  and  is  done  simultaneously  for  the  FTIR  NDACC  CH4  and  O3  targets  within  the  EU  GAIA-­‐CLIIM  project  (www.gaia-­‐clim.eu).      As  described  in  Rodgers  (2000),  the  uncertainty  budget  on  an  optimally  estimated  profile  is  constructed  by  propagation  of  the  uncertainties  on  the  different  forward  model  parameters,  the  measured  spectrum  and  the  apriori  state  (smoothing  uncertainty).  Up  to  now,  the  two  main   FTIR   retrieval     software   packages   (PROFFIT   and   SFIT)   have   been   compared   and   this  resulted   in  an  update  of   the  uncertainty  computation   routines   for  SFIT   so   that   these  now  work  with   full   2D   covariance  matrices   instead   of   standard   deviation   profiles,   a   necessary  step  to  get  to  a  harmonized  uncertainty  budget.    The  comparison  of  all  leading  uncertainty  contribution  to  the  target  profile  is  ongoing.  NCEP  pressure,  temperature  and  water  profiles  are  used  as  apriori  data  in  the  retrieval    process.  Temperature   is   a   leading   term   in   the  uncertainty  budget.  A  detailed   comparison  of   these  NCEP  profiles  against  WOUDC  radiosonde  measurements  at  Reunion  has  been  performed  to  have  an  estimate  on  the  uncertainty  of  the  NCEP  temperature  and  water  profile  data  (see  Figure  3).  Uncertainty  on   the   spectroscopic  data   is   another   leading  uncertainty   term,   and  the  comparison  between  different  sites  is  still  ongoing.      When  the  comparison  exercise   is  completed,  a  best-­‐practice  document  will  be  distributed  within  the  NDACC  FTIR  working  group  and  presented  at  the  upcoming  IRWG  workshop.  All  PI’s   will   be   invited   to   reprocess   their   time   series   with   the   harmonized   strategy   and  corresponding  settings.      

 Figure  3:  Ensemble  description  of  WOUDC  sondes  used  to  estimate  the  NCEP  temperature  uncertainty.  An  ensemble  of  313  profile  differences  is  drawn  representative  for  continuous  measurements  throughout  the  day.  From  the  ensemble  of  differences,  a  random  (or  systematic)  covariance  uncertainty  can  be  estimated.  

FTIR retrieval setup Draft, March 18, 2016

(a) Individual T profile comparison (b) Individual H2O profile comparison

(c) T profile differences (d) H2O profile differences

(e) random T uncertainty (f) systematic T uncertainty

Figure 2.14: NCEP vs WOUDC Sonde profiles for uncertainty estimation

Document generated by BIRA-IASB 41-98

FTIR retrieval setup Draft, March 18, 2016

(a) Individual T profile comparison (b) Individual H2O profile comparison

(c) T profile differences (d) H2O profile differences

(e) random T uncertainty (f) systematic T uncertainty

Figure 2.14: NCEP vs WOUDC Sonde profiles for uncertainty estimation

Document generated by BIRA-IASB 41-98

Page 20: QA4ECV D3.8 v1.0 web · 2!/22!!!! ! & ! Work(package& WP3!(QA!of!independent!reference!data!andin(situ!protocols)& Deliverable& Deliverable!3.8!–!Draft!version1.0! Title& Historical

    20  /  22        

 

Figure  4  shows  example  time  series  presently  available  on  NDACC.  

   

   

 

Page 21: QA4ECV D3.8 v1.0 web · 2!/22!!!! ! & ! Work(package& WP3!(QA!of!independent!reference!data!andin(situ!protocols)& Deliverable& Deliverable!3.8!–!Draft!version1.0! Title& Historical

    21  /  22        

 Figure  4:  Example  long  term  FTIR  CO  time  series  at  Lauder,  Izana,  Jungfraujoch,  Kiruna  and  Zugspitze.  

2.3  Historical  TCCON  CO  reference  series    

The   Total   Carbon   Column   Observing   Network   (TCCON)   is   an   international   network   of  ground-­‐based   Fourier   transform   spectrometers   (FTSs)   designed   to   retrieve   precise   and  accurate   column   abundances   of   CO2,   CH4,   N2O   and   CO   from   near-­‐infrared   (NIR)   solar  absorption   spectra.   The   TCCON   became   operational   in   2004,   when   the   first   FTIR  measurements   using   the   TCCON   protocol   were   undertaken   in     Park   Falls   (USA),   shortly  followed  by  Lauder  (New  Zealand).  Since  then  the  number  of  stations  has  steadily  grown.  It  is  thus  a  far  younger  network  than  NDACC.  It  is  also  more  geared  towards  the  validation  of  total   column   satellite   measurements.   For   instance   it   foregoes   any   column   profile  information   and   the   network   itself   is   extensively   validated   using   in   situ   aircraft  measurements  (Wunch  et  al.  2010),  which  results   in  a  factor  1.0672  bias  correction  of  the  final  TCCON  XCO  data.      TCCON  CO  spectra  are  taken  with  0.02  cm-­‐1  spectral  resolution  using  the  4208.7-­‐4257.3  cm-­‐1  and  4262.0-­‐4318.8  cm-­‐1  microwindow.  The  spectra  are  analysed  by  the  Gfit  nonlinear  least-­‐squares  fitting  algorithm  using  the  HITRAN2012  line  list.  Instead  of  using  optimal  estimation  as  done  in  NDACC,  Gfit  scales  an  a-­‐priori  profile  to  generate  the  best  spectral  fit  after  which  the   scaled   profile   is   integrated.   The   thus   retrieved   total   column   abundances   are   then  divided   by   the   column   of   dry   air   (using   O2   retrieved   from   the   same   spectra   as   proxy)   to  obtain  the  total-­‐column  CO  dry-­‐air  molefraction  (XCO):    XCO=0.2095  column  CO/column  O2    The  TCCON  XCO  measurement  precision  varies   from  site  to  site  but   it   is  generally  <1%  (1-­‐sigma)   for   single  measurements   taken  under   good   conditions   (clear  or  partly   cloudy   skies  (up  to  5%  fractional  variation  in  solar  intensity),  and  solar  zenith  angles  <82  degrees).  Unlike  NDACC,   both   retrieval  methodology   and   error   characterization   is   uniform   throughout   the  network.      Detailed  information  on  the  network  can  be  found  in  Wunch  at  al.  (2011)  and  data  can  be  obtained    from  http://tccon.ornl.gov/      

Page 22: QA4ECV D3.8 v1.0 web · 2!/22!!!! ! & ! Work(package& WP3!(QA!of!independent!reference!data!andin(situ!protocols)& Deliverable& Deliverable!3.8!–!Draft!version1.0! Title& Historical

    22  /  22        

 Figure  5:  Historical  CO  time  series    from  TCCON  as  a  function  of  latitude.  

A  comparison  study  between  selected  NDACC  and  TCCON  sites  was  part  of  the  EU  FP7  NORS  project,  see  Petri  (2014).  The  general  conclusion  is  that  both  NDACC  and  TCCON  agree  well,  but   not   perfectly   (correlation   plots   for   Reunion,   Bremen,   Izana   and   Jungfraujoch   are  available).  The  seasonal  cycle  of  the  relative  difference  is  in-­‐phase  with  the  seasonal  cycle  of  the   total   columns   itself,   indicating   that   the   NDACC   profile   retrieval   is   more   sensitive   to  concentration  changes  than  the  TCCON  retrieval.    2.4  References    

Petri,  C.,  et  al.,  NORS  Carbon  monoxide  mid-­‐  and  near   infra-­‐   red  data  assessment,  EU  FP7  NORS  project  deliverable,  2014.    Schneider,   M.,   P.   Demoulin,   R.   Sussmann,   and   J.   Notholt,   Fourier   Transform   Infrared  Spectrometry,  Chapter  6   in  Monitoring  Atmospheric  Water  Vapour,  Ground-­‐Based  Remote  Sensing   and   In-­‐situ   Methods,   ISSI   Scientific   Report   Series,   Vol.   No.   10   (Editor   Niklaus  Kämpfer),  Springer,  DOI  10.1007/978-­‐1-­‐4614-­‐3909-­‐7,  2012,  ISBN  978-­‐1-­‐4614-­‐3908-­‐0,  2013.      Rodgers,  C.  D.,  Inverse  methods  for  atmospheric  sounding,  Series  on  Oceanic  and  planetary  physics  –  vol.  2,  World  Scientific,  2000.      Wunch,  D.,  Toon,  G.  C.,  Wennberg,  P.  O.,  Wofsy,  S.  C.,  Stephens,  B.  B.,  Fischer,  M.  L.,  Uchino,  O.,  Abshire,  J.  B.,  Bernath,  P.,  Biraud,  S.  C.,  Blavier,  J.-­‐F.  L.,  Boone,  C.,  Bowman,  K.  P.,  Browell,  E.  V.,  Campos,  T.,  Connor,  B.  J.,  Daube,  B.  C.,  Deutscher,  N.  M.,  Diao,  M.,  Elkins,  J.  W.,  Gerbig,  C.,   Gottlieb,   E.,   Griffith,   D.   W.   T.,   Hurst,   D.   F.,   Jiménez,   R.,   Keppel-­‐Aleks,   G.,   Kort,   E.   A.,  Macatangay,   R.,   Machida,   T.,   Matsueda,   H.,   Moore,   F.,   Morino,   I.,   Park,   S.,   Robinson,   J.,  Roehl,  C.  M.,  Sawa,  Y.,  Sherlock,  V.,  Sweeney,  C.,  Tanaka,  T.,  and  Zondlo,  M.  A.:  Calibration  of   the   Total   Carbon   Column  Observing  Network   using   aircraft   profile   data,   Atmos.  Meas.  Tech.,  3,  1351-­‐1362,  doi:10.5194/amt-­‐3-­‐1351-­‐2010,  2010.    Wunch,  D.,  G.  C.  Toon,  J.-­‐F.  L.  Blavier,  R.  A.  Washenfelder,  J.  Notholt,  B.  J.  Connor,  D.  W.  T.  Griffith,   V.   Sherlock,   and   P.   O.   Wennberg   (2011),   The   total   carbon   column   observing  network,  Philosophical  Transactions  of  the  Royal  Society  -­‐  Series  A:  Mathematical,  Physical  and  Engineering  Sciences,  369(1943),  2087-­‐2112,  doi:10.1098/rsta.2010.0240,  2011.