Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 · 2018-06-06 · 1 M. Dantus TADEM 2017 Pulsos...

30
1 M. Dantus TADEM 2017 Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 Marcos Dantus Department of Chemistry and Physics Michigan State University East Lansing, MI 48824 [email protected] Conflicto de Interés: El Dr. Dantus es inventor de mas de 19 patentes relacionados a tecnología en esta tutorial. Las opiniones en esta platica sol las del instructor y no tienen como meta influenciar decisiones comerciales. 1 M. Dantus Temas a Tratar 2 Parte I. Porque pulsos ultracortos? Parte II. Parte III. Aplicaciones Transformación de pulsos Bibliografía Adicional Mi Visión: Los pulsos ultracortos son mas que un tipo de rayo laser. Primero, ellos nos dan la habilidad de alcanzar cualquier longitud de onda (desde radio hasta rayos gama) y cualquier escala de tiempo (de segundos a zepto-segundos). Segundo, con un manipulador de pulsos programable son la base de comunicación ultrarrápida, y esta fuente de energía se vuelve controlable por inteligencia artificial .

Transcript of Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 · 2018-06-06 · 1 M. Dantus TADEM 2017 Pulsos...

Page 1: Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 · 2018-06-06 · 1 M. Dantus TADEM 2017 Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 Marcos Dantus Department of Chemistry and

1

M. Dantus

TADEM 2017

Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00

Marcos Dantus

Department of Chemistry and Physics Michigan State University East Lansing, MI 48824

[email protected]

Conflicto de Interés: El Dr. Dantus es inventor de mas de 19 patentes relacionados a tecnología en esta tutorial. Las opiniones en esta platica sol las del instructor y no tienen como meta influenciar decisiones comerciales.

1

M. Dantus

Temas a Tratar

2

Parte I. Porque pulsos ultracortos?

Parte II.

Parte III. Aplicaciones Transformación

de pulsos

Bibliografía Adicional

Mi Visión: Los pulsos ultracortos son mas que un tipo de rayo laser. Primero, ellos nos dan la habilidad de alcanzar cualquier longitud de onda (desde radio hasta

rayos gama) y cualquier escala de tiempo (de segundos a zepto-segundos). Segundo, con un manipulador de pulsos programable son la base de comunicación

ultrarrápida, y esta fuente de energía se vuelve controlable por inteligencia artificial .

Page 2: Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 · 2018-06-06 · 1 M. Dantus TADEM 2017 Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 Marcos Dantus Department of Chemistry and

2

M. Dantus

Motivación

Que les gustaría aprender? Pensemos en posibles aplicaciones …

3

M. Dantus 4

Parte I. Porque pulsos ultracortos?

Part II. How to shape a pulse

Further Reading List

Part III. Applications

1. Porque femtosegundos?

2. Transformación de pulses usando un manipulador (shaper)

Temas a Tratar

Page 3: Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 · 2018-06-06 · 1 M. Dantus TADEM 2017 Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 Marcos Dantus Department of Chemistry and

3

M. Dantus

La Femtoquímica

Dantus, Rosker, Zewail JCP 87, 2395 (1987)

Femtosecond clocking of the chemical bond

Dantus, Kim, Williamson, Zewail, JPC 98, 2782 (1994)

Tracking structural changes with fs resolution

Ultrafast Electron Diffraction

1999 Chemistry Nobel Prize

M. Dantus

Porque ?

Cronología Óptica no-lineal

Ablación sin derritir Femtoquímica

Femtobiología

Femtofísica

Attociencia

Comunicación

Microscopia multiphotónica

Generación de altas harmónicas

Filamentación

Litografía multiphotónica

Mecanizado

Intensidad pico

Cortado de materiales

Procedimientos Quirúrgicos

Metrología

Difracción ultra rápida

Ultrarapido!

Page 4: Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 · 2018-06-06 · 1 M. Dantus TADEM 2017 Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 Marcos Dantus Department of Chemistry and

4

M. Dantus

Describamos un pulso ultracorto

The electric field E(t) is a real value which is measurable by classical means. Therefore, its direct Fourier Transform, E(ω), is defined as

(1) (2)

(3)

E(ω)= E(t)eiω t dt

−∞

+∞

∫ , which satisfies the relation ).()( * ωω −=EE

Since it is enough to know the spectrum at positive frequencies (ω≥0) to calculate the field in the time domain, it is useful to introduce the mathematical construct

E(ω ) ≡

E(ω ), ω ≥ 00, ω < 0

⎧⎨⎩

∫∞+

∞−

−≡ ωωπ

ω deEtE ti)(21)(and its inverse Fourier Transform (complex function) (4)

7

E(t) E(ω )E(−ω )

El campo electromagnético se puede definir en función de tiempo o frecuencia

M. Dantus

Describamos a un pulso ultracorto

With a spectrometer one can measure the spectral power I(ω). But to fully describe a pulse we also need to know the spectral phase φ(ω).

To measure the spectral phase one can use (FROG, SPIDER, MIIPS). All these methods use a nonlinear optical signal, typically SHG. All of them are based on the fact that a nonlinear response depends on the temporal shape of the electric field, i.e., on the spectrum and the spectral phase.

Spectral power and phase measurements

(5) )()( )()()( ωϕωϕ ωωω ii eIeAE ∝≡

∫∫∞+

∞−

−∞+

∞−

− ∝≡ ωωωωπ

ωωϕωωϕ deeIdeeAtE tiitii )()( )()(21)( (6)

which affects the temporal shape of the pulse as follows

8

El campo electromagnético se define por su espectro y su fase espectral

Page 5: Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 · 2018-06-06 · 1 M. Dantus TADEM 2017 Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 Marcos Dantus Department of Chemistry and

5

M. Dantus

Linear phase modulation = delay in time

What if we expand the phase in a Taylor series near the laser carrier frequency ω0?

(10) ...)(!2

)()( 20

2010 +−+−+= ωω

ϕωωϕϕωϕ

Then, φ0 is the spectral phase of the harmonic at ω0, and φ1 is responsible for delaying the pulse envelope in time by 𝝉 = φ1.

9

‘Envelope’ Delay τωωωϕ )()( 0−=

Una fase espectral lineal avanza o atrasa el pulso según su pendiente

M. Dantus

Dispersion Cromática (chirp)

A broad band pulse experiences broadening because of a frequency dependent index of refraction.

k(ω)=ω n(ω)/c and k(ω)x =φ(ω)

( ) ( ) ( ) ( )2 31 10 0 0 02 6k k k k Lϕ ω ω ω ω ω ω ω⎡ ⎤ʹ ʹʹ ʹʹʹ= + − + − + −⎣ ⎦

The first term corresponds to a time delay: k′(ω) = dk(ω)/dω = φ1(ω)/L = dφ(ω)/dω/L

The second term corresponds to SOD or GVD: k″(ω) = d2k(ω)/dω2 = φ2(ω)/L = d2φ(ω)/dω2/L

The third term corresponds to TOD: k′′′(ω) = d3k(ω)/dω3 = φ3(ω)/L = d3φ(ω)/dω3/L

Predicting TOD at any frequency based on a known GVD (ωk′′′ ≈ 1.4 k′′)

AIP Advances 1, 032166 (2011) 10

La transmisión de un pulso por un material le transforma su fase espectral

Page 6: Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 · 2018-06-06 · 1 M. Dantus TADEM 2017 Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 Marcos Dantus Department of Chemistry and

6

M. Dantus

Dispersión de Segundo Y Tercer Orden

Having realized that a linear phase corresponds to a time delay we can now conceptually realize what nonlinear phases cause to the pulse.

Example 1: quadratic phase (SOD or GDD)

( ) ( ) 0,2 2

20

2 >−= ϕωωϕ

ωϕ

Example 2: cubic phase (TOD)

( ) ( ) 0,6 3

30

3 >−= ϕωωϕ

ωϕ

ω ω0

𝝉>0 𝝉<0

𝝉=0

Negative slope

Positive slope

Higher freqs. are delayed

Lower freqs. are advanced

ωϕ

ωτdd

=)(

ω ω0 𝝉=0

𝝉>0

𝝉>0 Higher freq. are delayed

Lower freq. are delayed

Positive slope

Positive slope

11

t t

La fase espectral se puede descomponer en pequeños trazos lineales

M. Dantus

Chirped pulses

Dispersion Induced Linear Chirp = Quadratic Phase

Quadratic phase (SOD or GDD)

( ) ( ) 0,2 2

20

2 >−= ϕωωϕ

ωϕ

2

222ln41 ⎟⎟⎠

⎞⎜⎜⎝

⎛+=

inin

out

τϕ

ττ

ω ω0

For large dispersion, when 22 inτϕ ≥

τ outτ in

≈ 3 φ2τ in2

For example: 22 f5000,f50 ssin == ϕτ

3 φ2τ in2 = 3

500050×50

= 310050

= 3×2

actual 281.7fs

τ out ≈ 50×6 = 300 fs

12

For Gaussian pulses

t

Page 7: Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 · 2018-06-06 · 1 M. Dantus TADEM 2017 Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 Marcos Dantus Department of Chemistry and

7

M. Dantus

13

Part I. What is spectral pulse shaping?

Part II.

Further Reading List

Part III. Applications Transformación

de pulsos

Temas a Tratar

M. Dantus

Transformación de Pulsos

Input Field: ∫∞+

∞−

−≡ ωωπ

ω deEtE ti)(21)(

Output Field: ,)()(21)( ∫

∞+

∞−

−= ωωωπ

ω deEMtE tiout

)()(

)()( )(

ω

ωϕ

ωω ωϕ

T

eTM i≡

- phase mask, - transmission mask.

Where:

Phase and amplitude shaping function

14

fase espectral amplitud espectral

Page 8: Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 · 2018-06-06 · 1 M. Dantus TADEM 2017 Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 Marcos Dantus Department of Chemistry and

8

M. Dantus

LAB2-A virtual femtosecond laser lab An add-on to LabView allowing to simulate a variety of experiments in ultrafast optics. B.Schmidt, M.Hacker, G.Stobrawa, T.Feurer http://www.lab2.de

Freeware vCHIRP software from VENTEON (full version is available on request) Dispersion and pulse compression calculations for designing your ultrafast experiment. http://www.venteon.com/software.php

Freeware femtoPulse Master software from Biophotonic Solutions Inc. (full version is available on request) Simulation of pulse shape and corresponding nonlinear signal outputs, including SHG, MIIPS and MIIPS2 traces, FROG and X-FROG, autocorrelation. http://www.biophotonicsolutions.com/FPM.php

Programas para simular la transformación de pulsos cortos 1.

2.

3.

15

M. Dantus

femtoPulse Master

Pulse Spectrum (zero outside)

Pulse Phase (zero outside)

Phase-mask (Selected frame – Polynomial)

Transmission-mask (Selected frame – Binary)

Simulation Program Layout

SHG Spectrum

Selected P-mask is applied only to activated spectral bands; elsewhere, ϕ(ω)=0.

E(t) I(t)

16

Page 9: Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 · 2018-06-06 · 1 M. Dantus TADEM 2017 Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 Marcos Dantus Department of Chemistry and

9

M. Dantus

Input Parameters for calculations

Measurements Program Layout

Two Preset configurations

17

femtoPulse Master

M. Dantus

Vamos al laboratorio

Voy a necesitar su ayuda …

Page 10: Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 · 2018-06-06 · 1 M. Dantus TADEM 2017 Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 Marcos Dantus Department of Chemistry and

10

M. Dantus

is transmission mask

is phase mask

Fourier Synthesis A dispersive element angularly separates the wavelengths, and each component is focused at the Fourier plane. The mask changes the optical path length (phase shaping) or attenuates (amplitude shaping) individual frequency components. Recombine with identical optics.

,)()(21)( ∫

∞+

∞−

−= ωωωπ

ω deEMtE tiout

)()(

)()( )(

ω

ωϕ

ωω ωϕ

T

eTM i≡

Anatomía de un Manipulador de Pulsos 4-f

19

M. Dantus

20

Liquid Crystal on Silicon Spatial Light Modulators

Phase modulation as usual Amplitude modulation by diffraction

Page 11: Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 · 2018-06-06 · 1 M. Dantus TADEM 2017 Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 Marcos Dantus Department of Chemistry and

11

M. Dantus

21

Part I. What is spectral pulse shaping?

Part II. How to shape a pulse

Further Reading List

Part III. Applications

1. Pulse characterization 2. Nonlinear microscopy 3. Molecular sensing 4. Other

Temas a Tratar

M. Dantus

Compresión de pulsos (229 fs a 10.8 fs) Example, 229fs pulses from Yb:KYW oscillator pump a PCF fiber

Supercontinuum Compressed to 10.8 fs

SHG (experiment) SHG (theory) Fundamental (~1020nm)

S. A. Boppart’s Research Group, Opt. Letters 36, 2315 (2011) 10.8fs; Opt. Lett. 37, 2172 (2012) 6.4fs.

Before/After Before/After Spectrum & Phase Before/After

22

Page 12: Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 · 2018-06-06 · 1 M. Dantus TADEM 2017 Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 Marcos Dantus Department of Chemistry and

12

M. Dantus

Manipulación de pulsos para controlar la materia

Control of chemical reactions Science 282, 919 (1998)

Selective vibrational excitation Opt. Express 16, 592 (2008)

Raw Data!

General perspective: Dantus Chem. Reviews 104, 1813-1860 (2004)

23

!ν1 = 752cm−1

!ν12 = 1,000cm−1

M. Dantus

Creación de pulsos múltiples

From the Zanni Research Group, Methods 52, 12–22 (2010)

2D Spectroscopy in the mid-IR (visible and UV) made simpler using a pulse shaper.

24

Page 13: Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 · 2018-06-06 · 1 M. Dantus TADEM 2017 Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 Marcos Dantus Department of Chemistry and

13

M. Dantus

Porque es necesario empezar con pulsos “TL”

With

Without Bad Very Bad

MII Theory Experimental data

JOSA B 23, 750 (2006)

With

Without

25

M. Dantus

Compresión de pulsos

JOSA B 25, A140 (2008)

26

Page 14: Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 · 2018-06-06 · 1 M. Dantus TADEM 2017 Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 Marcos Dantus Department of Chemistry and

14

M. Dantus

Compresión a base de un algoritmo evolutivo

Appl. Phys. B. 65, 779 (1997)

Optics Letters 22, 1793 (1997)

27

M. Dantus

28

The shaped pulse )()()( ωωω inout EME ⋅=

The desired pulses )()()( 221

221 ττ ++−= tEtEtE ininout

The corresponding pulse in the frequency domain upon FT

[ ] )()cos()()exp()exp()( 22221 ωωωωωω τττ

ininout EEiiE ⋅=⋅+−=

The required amplitude function: [ ]2)(cos)( τωωω refM −=

Negative amplitude is realized by a sign change:

[ ] [ ]{ }22 )(cossgn)(cos)( ττ ωωωωω refrefM −−=

The change of signs (second part of expression) is accomplished by changing the phase to 0 and π:

Where

Transmission: ( )22cos τω Phase: { }2sgn cos ( )ref

τω ω⎡ ⎤−⎣ ⎦

ω ref = 0 or =ω 0

Creación de pulsos múltiples

Page 15: Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 · 2018-06-06 · 1 M. Dantus TADEM 2017 Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 Marcos Dantus Department of Chemistry and

15

M. Dantus

29 See for example: Opt. Exp. 19, 11638 (2011)

Transmission: ( )22cos τω

Phase: sgn cos (ω −ω ref ) τ

2⎡⎣ ⎤⎦{ }+ τ

2

ω ref = 0 in these casesNote amplitude changes at the same rate of the fundamental frequency.

Creación de pulsos múltiples

30

Temporal dephasing from individual nanoparticles

( ) ( ) i tS S e dtωω τ= ∫

Fourier Transform:

( )S τ

J. Phys. Chem. Lett. 6, 1638 (2015)

Page 16: Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 · 2018-06-06 · 1 M. Dantus TADEM 2017 Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 Marcos Dantus Department of Chemistry and

16

M. Dantus

Spectral Phase

Cross Correlation “sonogram”

Pulse in Time

Note carrier frequency is changing linearly

31

Compresión de pulsos

M. Dantus

MIIPS-sonogram

Ref. T-slit

Scanning T-slit Cross correlation Measured

1.  Define a position for the reference T-slit 2.  Pick a position for the scanning T-slit 3.  Perform a cross correlation by finding the slope that corresponds to the time Δt 4.  Repeat measurements for each scanning T-slit 5.  The resulting measurement gives

Actual MIIPS-s data

32

dϕ dω

dϕ dω

Page 17: Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 · 2018-06-06 · 1 M. Dantus TADEM 2017 Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 Marcos Dantus Department of Chemistry and

17

M. Dantus

MIIPS-sonogram

Experimental Implementation Actual data using two Ref. T-slits

Pestov et al., Opt. Letters 35, 1422-1424 (2010)

33

M. Dantus

MIIPS-sonogram

Experimental Implementation After measuring phase distortions the pulse shaper can subtract them

for highly efficient Pulse Compression

Pestov et al., Opt. Letters 35, 1422-1424 (2010)

34

Page 18: Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 · 2018-06-06 · 1 M. Dantus TADEM 2017 Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 Marcos Dantus Department of Chemistry and

18

M. Dantus

MIIPS-sonogram

GVD of water, measurement Data from BBDM with interferences

Precision ± 3.5 fs Accuracy ± 7 fs

Pestov et al., Opt. Letters 35, 1422-1424 (2010)

Gires-Tournois Interferences These sharp features in the phase require 2nd, 3rd, 4th, and higher order terms to be described in a Taylor expansion.

35

M. Dantus

36

Que es MIIPS?

SHG Frequency

Chi

rp

Chi

rp

TL pulses Chirped pulses TOD pulses

SHG Frequency SHG Frequency

Contour maps of the SHG spectrum as a function of chirp. In these cases, the chirp introduced is a reference phase. The SHG intensity is maximum when the local chirp is minimum.

Chi

rp

Page 19: Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 · 2018-06-06 · 1 M. Dantus TADEM 2017 Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 Marcos Dantus Department of Chemistry and

19

M. Dantus

+ = φ=0 φ=0

φ=0

λ=800 nm

λ=800 nm

λ=790 nm

λ=810 nm

λ=400 nm

Implications for simple SHG

φ=0 +

φ=0 φ=0

4

+ = φ=0 φ=π

φ=0

λ=800 nm

λ=800 nm

λ=790 nm

λ=810 nm

λ=400 nm

Implications for simple SHG

φ=0 +

φ=0 φ=π

0

(TL)

(shaped)

1.55 eV 3.10 eV

Second Harmonic Generation (SHG)

Multiphoton Intrapulse Interference

37

M. Dantus

Multiphoton Intrapulse Interference Phase Scan (MIIPS)

Dots satisfy equation

( ) ( ) 0?local localf ω φ ωʹ́ ʹ́− =

Optics Express 16, 592 (2008) JOSA B 25, A140 (2008)

Theory Experiment

5 fs pulse with 500 fs3 TOD

38

Page 20: Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 · 2018-06-06 · 1 M. Dantus TADEM 2017 Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 Marcos Dantus Department of Chemistry and

20

M. Dantus

Compensated 4.3 fs pulse

JOSA B 25, A140 (2008)

Multiphoton Intrapulse Interference Phase Scan (MIIPS)

39

M. Dantus

The maximum SHG wavelength Varies linearly with δ

φ(ω) = α sin (γ ω +δ)

δ

λSHG

For TL pulses MIIPS yields parallel features separated by π

The pulse correlates itself

J. Phys. Chem. 108, 53 (2004) Frequency Doubled Spectrum

Multiphoton Intrapulse Interference Phase Scan (MIIPS)

40

Page 21: Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 · 2018-06-06 · 1 M. Dantus TADEM 2017 Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 Marcos Dantus Department of Chemistry and

21

M. Dantus

Measures

Corrects

Done!

Multiphoton Intrapulse Interference Phase Scan (MIIPS)

Laser Focus World 43, 101, 2007 JOSA B 23, 750 (2006) OE Magazine 3, 15 (2003)

MIIPS and its applications are protected by US Patents 7,105,811; 7,439,497; 7,450,618; 7,567,596; 7,583,710; 7,609,731 others pending JOSA B 25, A140 (2008)

41

M. Dantus

SHG-FROG MIIPS

M. Dantus, V. V. Lozovoy, I. Pastirk, “Measurement and Repair: The Femtosecond Wheatsone Bridge,” OE Magazine 9, 15 (2003)

Multiphoton Intrapulse Interference Phase Scan (MIIPS)

42

Page 22: Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 · 2018-06-06 · 1 M. Dantus TADEM 2017 Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 Marcos Dantus Department of Chemistry and

22

M. Dantus

Comparison of Reproducibility of MIIPS with FROG and SPIDER

Early comparisons

Gallmann et al., Appl. Phys. B 70, S67-S75 (2000)

Xu et al., JOSA B 23, 750 (2006)

Method Weighted error (rad)

MIIPS 0.013 (0.0028) Measures φ''(ω)

FROG* 0.122 Iteratively guesses E(ω)φ(ω) to match FROG trace

SPIDER* 0.044 Measures φ'(ω)

M. Dantus, V. V. Lozovoy, I. Pastirk “Measurement and repair. The femtosecond

Wheatstone bridge.” OE magazine 2003, 3(9), 15-17

Multiphoton Intrapulse Interference Phase Scan (MIIPS)

IEEE Photonics Journal, 1, 163 (2010). 43

M. Dantus

Sub 1fs2 GVD Measurements Accuracy and Precision

Coello et al., Applied Optics 46, 8394 (2007)

Multiphoton Intrapulse Interference Phase Scan (MIIPS)

Dispersion of water

44

Page 23: Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 · 2018-06-06 · 1 M. Dantus TADEM 2017 Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 Marcos Dantus Department of Chemistry and

23

M. Dantus

Compression of Ultrafast Fiber Lasers

Pulsedura+on: ~5ps 480fsPulsepeakpower:~400MW 3.8GW

T. Eidam et. al., Opt. Expr., Vol. 19 No. 1, 255-260 (2011)

Factorof10improvementbyMIIPStechnology

Highest peak power from ultra-short pulse fiber laser

Correction beyond linear chirp

45

M. Dantus

Correction of high-order dispersion from high NA microscope objectives

Multiphoton microscopy with short pulses

JOSA B 23, 750 (2006) Optics Commun. 241, 1841 (2008) J. Biomed. Optics 14(1), 014002 (2009)

46

Page 24: Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 · 2018-06-06 · 1 M. Dantus TADEM 2017 Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 Marcos Dantus Department of Chemistry and

24

M. Dantus

High-order dispersion in two-photon microscopy TL 2nd order 3rd order 4th order 5th order Prisms only

Mouse Kidney

Tendon

Foot pad bone

BioOptics World 2009

47

M. Dantus

48

Page 25: Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 · 2018-06-06 · 1 M. Dantus TADEM 2017 Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 Marcos Dantus Department of Chemistry and

25

Label-free chemical imaging of cancer Collaboration with UIUC Prof. Dr. S. Boppart and Biophotonic Solutions

Nature Photonics (2016)

Figure S3.2. Epi-detected CARS-3050 cm-1 imaging of unstained rat mammary tumor from a 15-week-old carcinogen-injected rat. Water-rich regions and an area of protein granules are revealed. One water-rich area (delineated by blue solid line) indicates a region of dense collagen (see Fig. S3.5), while another marked area (delineated by green broken line) reveals several FAD-rich microparticles (see Fig. S3.4).

Figure S3.3. Epi-detected CARS-2850 cm-1 imaging of unstained rat mammary tumor from a 15-week-old carcinogen-injected rat. The unconfirmed nerve and blood cells resemble those reported nerve (Fig. 2A in Ref. 12) and blood cells (Fig. 11f in Ref. 13). A marked lipid-poor area (delineated by solid line) indicates a region of dense collagen (see Fig. S3.5), while another marked area (delineated by broken line) reveals several FAD-rich microparticles (see Fig. S3.4).

Figure S3.4. Epi-detected i2PF imaging of unstained rat mammary tumor from a 15-week-old carcinogen-injected rat. The image reveals a region of thin elastin fibers, 2 interstitial cells among adipocytes (see Fig. 3.3 for positive contrast of adipocytes), 5 cells on adipocyte boundaries, 5 free cells in various stromal regions, 2 tumor cells on a tumor boundary (confirmed by bright-field imaging), and several FAD-rich microparticles inside the corresponding solid tumor. A marked area of no obvious structure (delineated by red solid line) indicates a region of dense collagen (see Fig. S3.5). A natural question arises whether the visible elongated features are of the same origin, which can be answered by the dual-modal i2PF/i3PF image analysis (see Fig. S3.10).

Figure S3.5. Epi-detected SHG imaging of unstained rat mammary tumor from a 15-week-old carcinogen-injected rat. One marked area (delineated by red solid line) indicates a region of dense collagen, while another area forms a collagen fiber tube. A natural question arises why collagen forms a tube structure, which can be answered by the dual-modal SHG/i3PF image analysis (see Fig. S3.11). Another question arises why collagen forms a large-scale strand-like structure, which can be answered by the tri-modality CARS-2850 cm-1/SHG/THG image analysis (see Fig. S3.14).

Figure S3.6. Epi-detected i3PF imaging of unstained rat mammary tumor from a 15-week-old carcinogen-injected rat. Lipid microparticles and adipocytes in CARS imaging (see Fig. S3.3) also show up. One marked area (delineated by broken yellow line) reveals several FAD-rich microparticles (see Fig. S3.4). Other areas with scattered fluorescent microparticles (delineated by solid orange lines) are described in the THG image (see Fig. S3.7). A natural question arises why most of the fluorescent microparticles are distributed in tubular formations rather than the random formations of the marked areas (yellow rectangles), which can be answered by the dual-modal i3PF/CARS-2850 cm-1 image analysis (see Fig. S3.9).

Figure S3.14. Epi-detected tri-mode SHG/THG/CARS-2850cm-1 imaging of unstained rat mammary tumor from a 15-week-old carcinogen-injected rat. Collagen attains the large-scale strand-like structure in Fig. S3.5 to enclose and protect the confirmed nerve.

M. Dantus

The material removal rate is increased by 56 times The maximum aspect ratio is increased by 3 times

Jiang L., Liu P.J., Yan X.L., Leng N., Xu C.C., Xiao H., Lu Y.F., Optics Letters, 2012, 37(14).

Drilling of Microchannels by fs Pulse EDC

Prof. Lan Jian

50

Page 26: Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 · 2018-06-06 · 1 M. Dantus TADEM 2017 Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 Marcos Dantus Department of Chemistry and

26

M. Dantus

51

Accanto N, Piatkowski L, Renger J, and van Hulst NF. “Capturing the Optical Phase Response of Nanoantennas by Coherent Second-Harmonic Microscopy. Nano Lett. 14, 4078 (2014)

Capturing the Optical Phase Response of Nanoantennas

M. Dantus

52

Part I. What is spectral pulse shaping?

Part II. How to shape a pulse

Further Reading List

Part III. Applications

Temas a Tratar

Page 27: Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 · 2018-06-06 · 1 M. Dantus TADEM 2017 Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 Marcos Dantus Department of Chemistry and

27

M. Dantus

Further Recommended Reading Selected Papers on Shaper Based Pulse Characterization and Compression T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B-Lasers Opt. 65, 779 (1997). B. W. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses," J. Opt. Soc. Am. B-Opt. Phys. 23, 750 (2006). B. von Vacano, T. Buckup, and M. Motzkus, "In situ broadband pulse compression for multiphoton microscopy using a shaper-assisted collinear SPIDER," Optics Letters 31, 1154-1156 (2006) Y. Coello, V. V. Lozovoy, T. C. Gunaratne, B. Xu, I. Borukhovich, C. -h. Tseng, T. Weinacht, and M. Dantus, "Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses," J. Opt. Soc. Am. B 25, A140-A150 (2008) A. Galler and T. Feurer, "Pulse shaper assisted short laser pulse characterization," Appl. Phys. B-Lasers Opt. 90, 427 (2008). D. Pestov, V. V. Lozovoy, and M. Dantus, "Single-beam shaper based pulse characterization and compression using MIIPS sonogram," Opt. Letters 35, 1422-1424 (2010) P. Schlup, R. A. Bartels, Impact of measurement noise in tomographic ultrafast retrieval of transverse light E-Fields (TURTLE) ultrashort polarization characterization, IEEE Photonics Journal, 1, 163 (2010) T. Wu, J. Tang, B. Hajj, and M. Cui, “Phase resolved interferometric spectral modulation (PRISM) for ultrafast pulse measurement and compression,” Opt. Express 19, 12961-12968 (2011) M. Miranda et al. “Characterization of broadband few-cycle laser pulses with the d-scan technique,” Opt Express 20, 18732-18743 (2012) V. Loriot, G. Gitzinger, and N. Forget, “Self-referenced characterization of femtosecond laser pulses by chirp scan,” Optics Express 21, 24879-24893 (2013) D. E. Wikcox and J. P. Ogilvie, “Comparison of pulse compression methods using only a pulse shaper,” J. Opt. Soc. Am. B 31, 1544-1554 (2014) V.V. Lozovoy, G. Rasskazov, D. Pestov, and M. Dantus, “Quantifying noise in ultrafast laser sources and its effect on nonlinear applications,” Optics Express 23, 12037-12044 (2015).

53

M. Dantus

Further Recommended Reading

Recent Papers on Pulse Shaping Techniques E. Frumker and Y. Silberberg, "Phase and amplitude pulse shaping with two-dimensional phase-only spatial light modulators," Journal of the Optical Society of America B 24, 2940-2947 (2007). J. W. Wilson, P. Schlup, and R. A. Bartels, "Ultrafast phase and amplitude pulse shaping with a single, one-dimensional, high-resolution phase mask," Opt. Express 15, 8979-8987 (2007). D. Pestov, V. V. Lozovoy, and M. Dantus, "Multiple Independent Comb Shaping (MICS): Phase-only generation of optical pulse sequences," Opt. Express 17, 14351 (2009). J. Extermann, S.M. Weber, D. Kiselev, L. Bonacina, S. Lani, F. Jutzi, W. Noell, N.F. de Rooij, and J.-P. Wolf, “Spectral phase, amplitude, and spatial modulation from ultraviolet to infrared with a reflective MEMS pulse shaper,” Opt. Express 19, 7580 (2011). F. Ferdous, et al, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs”, Nature Photonics 5, 770 (2011). D.S. Moore, S.D. McGrane, M.T. Greenfield, R.J. Scharff, R.E. Chalmers, “Use of the Gerchberg–Saxton algorithm in optimal coherent anti-Stokes Raman spectroscopy,” Anal. Bioanal. Chem. 402, 423 (2012). D. Pestov, A. Ryabtsev, G. Rasskazov, V.V. Lozovoy, and M. Dantus, “Real-time single-shot measurement and correction of pulse phase and amplitude for ultrafast lasers,” Opt. Eng. 53, 051511 (2014) A. Konar, V.V. Lozovoy, and M. Dantus, “Solvent Environment Revealed by Positively Chirped Pulses,” J. Phys. Chem. Lett. 5, 924–928 (2014) G. Rasskazov, A. Ryabtsev, V.V. Lozovoy and M. Dantus, “Laser-induced dispersion control,” Optics Letters 39 (2014) M. Dantus and K. Monro, “Ultrafast Temporal Shaping Is Coming of Age,” Biophotonics 21, 24-28 (2014) I. Saytashev, B. Xu, M.T. Bremer, and M. Dantus, “Simultaneous Selective Two-Photon Microscopy Using MHz Rate Pulse Shaping and Quadrature Detection of the Time-Multiplexed Signal,” Ultrafast Phenomena XIX, K. Yamanouchi et al., Eds. (Springer Proceedings in Physics 162, 2015) V.V. Lozovoy, G. Rasskazov, A. Ryabtsev, and M. Dantus, “Phase-only synthesis of ultrafast stretched square pulses,” Optics Express 23, 27105-27112 (2015).

54

Page 28: Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 · 2018-06-06 · 1 M. Dantus TADEM 2017 Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 Marcos Dantus Department of Chemistry and

28

M. Dantus

Further Recommended Reading

Other interesting references Y.Nabekawa, et al., “Multi-terawatt laser system generating 12-fs pulses at 100 Hz repetition rate,” Appl. Phys. B 101, 523 (2010). D. Brinks et al., “Visualizing and controlling vibrational wave packets of single molecules”, Nature, 466, 905 (2010). O. Katz, E. Small, Y. Bromberg and Y. Silberberg, “Controlling ultrashort pulses in scattering media,” Nat. Photonics 5, 372 (2011). J. Kohler, M. Wollenhaupt, T. Bayer, C. Sarpe, T. Baumert, “Zeptosecond precision pulse shaping,” Optics Express 19, 11638 (2011). H. Frostig, O. Katz, A. Natan, and Y. Silberberg, “Single-pulse stimulated Raman scattering spectroscopy,” Opt. Lett. 36, 1248 (2011). H. Tu, Y. Liu, D. Turchinovich, and S. A. Boppart, "Compression of fiber supercontinuum pulses to the Fourier-limit in a high-numerical-aperture focus," Opt. Lett. 36, 2315 (2011). S. Berweger, J.M. Atkin, X.J.G. Xu, R.L. Olrnon, M.B. Raschke, “Femtosecond Nanofocusing with Full Optical Waveform Control”, Nano Lett. 11, 4309 (2011). P. Wrzesinski, et al., “Binary phase shaping for selective single-beam CARS spectroscopy and imaging of gas-phase molecules”, J. Raman Spec. 42, 393-398 (2011) P. Wrzesinski, et al., “Group-velocity-dispersion measurements of atmospheric and combustion-related gases using an ultrabroadband-laser source ”, Optics Express 19, 5163-5170 (2011) M. Bremer, P. Wrzesinski, N. Butcher, V. V. Lozovoy and M. Dantus, “Highly Selective Standoff Detection and Imaging of Trace Chemicals in a Complex Background using Single-Beam Coherent Anti-Stokes Raman Scattering”, Applied Physics Letters 99, 101109 (2011) P. Devi, V. V. Lozovoy and M. Dantus, “Measurement of Group Velocity Dispersion of Solvents Using 2-cycle Femtosecond Pulses: Experiment and Theory”, AIP Advances 1, 032166 (2011)

55

M. Dantus

Further Recommended Reading

Other interesting references H.J. Wu, Y. Nichyama, T. Narushima, K. Imura, and H. Okamoto, “Sub-20-fs Time-Resolved Measurements in an Apertured Near-Field Optical Microscope Combined with a Pulse-Shaping Technique,” Appl. Phys. Express 5, 062002 (2012). L. Jiang, P. Liu, X. Yan, Ni Leng, Ch. Xu, H. Xiao, and Y. Lu, “High-throughput rearsurface drilling of microchannels in glass based on electron dynamics control using femtosecond pulse trains”, Optics Letters 37, 2781 (2012). A. Gamouras, R. Mathew, and K.C. Hall, “Optically engineered ultrafast pulses for controlled rotations of exciton qubits in semiconductor quantum dots”, J. Appl. Phys. 112, 014313 (2012) A. Konar, J. Shah, V. V. Lozovoy and M. Dantus, “Optical Response of Fluorescent Molecules Studied by Synthetic Femtosecond Laser Pulses”, Journal of Physical Chemistry Letters 3, 1329–1335 (2012) A.P. Rudhall, et al., “Exploring the ultrashort pulse laser parameter space for membrane permeabilisation in mammalian cells”, Scientific Reports 2, 858 (2012) A. Konar, V. V. Lozovoy and M. Dantus, “Solvation Stokes-Shift Dynamics Studied by Chirped Femtosecond Laser Pulses”, Journal of Physical Chemistry Letters 3, 2458–2464 (2012) M. T. Bremer and M. Dantus, “Standoff explosives trace detection and imaging by selective stimulated Raman scattering”, Appl. Phys. Lett. 103, 061119 (2013) N. Accanto, J. B. Nieder, L. Piatkowski, M. Castro-Lopez, F. Pastorelli, D. Brinks, N. F. van Hulst, “Phase control of femtosecond pulses on the nanoscale using second harmonic nanoparicles,” Light Sci. Appl. 3, e143 (2014). A. Konar, V.V. Lozovoy, and M. Dantus, “Solvent Environment Revealed by Positively Chirped Pulses,” Ultrafast Phenomena XIX, K. Yamanouchi et al., Eds. (Springer Proceedings in Physics 162, 2015) R. Mittal, R. Glenn, I. Saytashev, V. V. Lozovoy and M. Dantus, “Femtosecond Nanoplasmonic Dephasing of Individual Silver Nanoparticles and Small Clusters,” J. Phys. Chem. Lett. 6, 1638–1644 (2015). N. Accanto, L. Piatkowski, I. M. Hancu, J. Renger, N. E. van Hulst, “Resonant plasmonic nanoparticles for multicolor second harmonic imaging,” Appl. Phys. Lett. 108, 083115 (2016).

56

Page 29: Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 · 2018-06-06 · 1 M. Dantus TADEM 2017 Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 Marcos Dantus Department of Chemistry and

29

M. Dantus

Further Recommended Reading

Reviews/Books on Pulse Shaping A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000). D. Goswami, "Optical pulse shaping approaches to coherent control," Phys. Rep.-Rev. Sec. Phys. Lett. 374, 385-481 (2003). V. V. Lozovoy and M. Dantus, "Coherent control in femtochemistry," ChemPhysChem 6, 1970-2000 (2005). Y. Coello, V. V. Lozovoy, T. C. Gunaratne, B. W. Xu, I. Borukhovich, C. H. Tseng, T. Weinacht, and M. Dantus, "Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses," Journal of the Optical Society of America B-Optical Physics 25, A140-A150 (2008). A. M. Weiner, Ultrafast Optics, Wiley Series in Pure and Applied Optics (John Wiley & Sons, Inc., Hoboken, NJ, 2009).

57

M. Dantus

Acknowledgements

Authors: I am very grateful to present members of my research group who helped me compile these lectures. Dr. Dmitry Pestov, Marshall Bremer, Xin Zhu, Dr. Vadim V. Lozovoy. I am also grateful to all the group members that obtained the results presented here. Their articles are cited next to each figure.

Marcos Dantus

Collaborators: I take special joy in collaborating with a number of research groups and companies. I want to specially acknowledge the following collaborations. Professors Sunney Xie (Harvard), Stephen Boppart (UIUC) Dr. Jim Gord (Air Force Research Lab, CARS) Dr. Sukesh Roy (Spectral Engines LLC, CARS, Machining) Dr. Dmitry Pestov, Dr. Bingwei Xu (Biophotonic Solutions Inc)

Funding: I am especially grateful for funding from the following agencies, which have made these advances possible: NSF, DOE, ARO, AFOSR, NIH, DHS, and the Michigan Economic Development Corporation.

58

Page 30: Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 · 2018-06-06 · 1 M. Dantus TADEM 2017 Pulsos Ultracortos Jueves 22, 2017; 9:00 - 11:00 Marcos Dantus Department of Chemistry and

30

M. Dantus

Gracias

Si tienes alguna pregunta o interés de llevar a cabo tus estudios de doctorado o alguna colaboración, comunícate conmigo.

[email protected]

59