Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

105
Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA

Transcript of Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Page 1: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Programmable Logic Devices and Architectures:

A Nano-Course

R. Katz

Grunt Engineer

NASA

Page 2: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

What We Will Cover

• Various programmable logic types

• Device architectures

• Device performance

• Packaging

• Reliability

• Some radiation considerations

• Lessons learned

Page 3: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

What You Will Not Learn

You will not learn much. This course is only a brief introduction to key concepts and issues, not a comprehensive and in-depth tutorial.

Because of time limitations, sections have been either scaled back or eliminated.

Page 4: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

References

References are available for most slides

• Original work– available on http://rk.gsfc.nasa.gov

• Manufacturers’ data sheets, application notes

• Papers and reports– Many from MAPLD 1998, 1999, 2000

• Standard logic design textbooks

Page 5: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Lessons Learned (1)

Barto's Law: Every circuit is considered guilty until proven innocent.

Page 6: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Lessons Learned (2)

Launched: March 4, 1999Failed: March 4, 1999

Page 7: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Applications Some Application Types

• Existing SSI/MSI Integration• Obsolete/"Non-Space-Qualified" Component

Replacement• Bus Controllers/Interfaces• Memory Controller/Scrubber• High-Performance DSP• Processors• Systems on Chip• Many Other Digital Circuits

Page 8: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

SSI/MSI Logic Integration

Page 9: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Non-Space Qual Microcontroller

Page 10: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Complex System-on-Chip

SSTL CoreESA Core

Debug

CAN Network >100Mbps

170MbyteMicrodrive

TX

TCSP1M*64 SRAM

CAN BUS LVDS

RX2RX1RX0

Linear Regulator

POR

+3.3V

EDACDECDED

ROM LUTBootstrap

AMBA AHB

CANInterface

AMBA AHB

LEON Sparc V8 CORDICCoprocessor

AMBA AHB

AMBA AHB

HDLC TXController

AMBA AHB

HDLC RXController

FIFO

AMBA AHB

HDLC RXController

FIFO

AMBA AHB

HDLC RXController

FIFO

System Bus

CF+ I/FTrue IDE

FIFO

Parallel PortInterface

UART

AMBA AHB

PIO

FIFO

AMBA AHB

+2.5V +3.3V

CLK CLK CLK CLK

Page 11: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Programmable Elements Overview• Antifuse

– ONO and Metal-to-Metal (M2M)– Construction– Resistance

• SRAM– Structure– Quantity

• EEPROM/Flash• Ferroelectric Memory• Summary of Properties

Page 12: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Antifuse Technology

ONO Antifuse (Actel)Poly/ONO/N++Heavy As doped Poly/N++Thickness controlled by CVD nitridePrograms ~ 18VTypical Toxono ~ 85 ÅHardened Toxono ~ 95 ÅR = 200 - 500 ohms

thermal oxide

CVD nitride

thermal oxide

FOX

N++

PolysiliconONO

Metal-to-Metal Antifuse (Actel, UTMC, Quicklogic)‘Pancake’ Stack Between Metal LayersUsed in 3.3V Operation in Sea Of Gates FPGAOther devices (as shown later)Program at ~ 10VTypical thickness ~ 500 - 1000 Å

R = 20 - 100 ohms

Metal - 3 Top Electrode

Amorphous Silicon

Dielectric (optional)

Metal - 2 Bottom Electrode

Page 13: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Antifuse Cross-Sections

Amorphous Silicon(Vialink)

ONO(Act 1)

Page 14: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

M2M = Metal-to-metal

M2M Antifuse inMulti-layer Metal Process

SX, SX-A, and SX-S Vialink

Page 15: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Programmed Antifuse Resistance Distributions

The resistance of programmed antifuses is stable with temperature,varying less than 15 percent per 100°C.

Page 16: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

SRAM Switch Technology

Read or Write

Data

Configuration Memory Cell

Routing Connections

Page 17: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.
Page 18: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Summary of Current Technology

Type Re-programmable Volatile Technology Radiation Hardness

Fuse No No Bipolar Hard

EPROM Yes No UVCMOS Moderate

EEPROM YES, ICP No EECMOS Moderate

SRAM YES, ICP Yes CMOS Soft

Antifuse No No CMOS+ Hard

FRAM Yes, ICP No Perovskite Hard1

Ferroelectric Crystal

1Get Bennedetto paper to verify.

Page 19: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

FPGA Architecture• Assembly of Fundamental Blocks

– Hierarchical

– Integration of Different Building Blocks• Logic (Combinational and Sequential)

• Dedicated Arithmetic Logic

• Clocks

• Input/Ouput

• Delay Locked Loop

• RAM

• Routing (Interconnections) – Channeled Architecture

– Sea-of-Module Architecture

Page 20: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Channel Architecture

Page 21: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Channeled Routing Structure

ProgrammedAntifuse

HorizontalTrack

Vertical Track

Modules

UnprogrammedAntifuse

Modules

Horizontal Control

Page 22: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Act 3 Architecture Detail

Page 23: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Sea-of-Modules Structure

• Some programmable elements require silicon resources– SRAM flip-flops– ONO antifuse

• Metal-to-metal antifuses are built above the logic– No routing channels– Higher density– Faster

Page 24: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

UT4090 Architecture

RAM Blocks

Logic Array

RAM Blocks

Page 25: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Virtex Architecture Overview

IOB = I/O BlockDLL = Delay-locked loopBRAM = Block RAM (4,096 bits ea.)CLB = Configurable Logic Block

Page 26: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Two Slice Virtex CLB

Page 27: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Logic Modules

• Actel (Act 1,2,3, SX)– Basics

– Flip-flop Construction

• UTMC/Quicklogic (i.e., UT4090)– RAM blocks

• Xilinx (i.e., CQR40xxXL, Virtex)– LUTs/RAM

– Carry Logic/Chain

• Mission Research Corp. (MRC) - Orion• Atmel - AT6010

Page 28: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Act 2 Logic Module: C-Mod

8-Input Combinational function

766 possible combinationalmacros1

1”Antifuse Field Programmable Gate Arrays,” J. Greene, E. Hamdy, and S. Beal,Proceedings of the IEEE, Vol. 91, No. 7, July 1993, pp. 1042-1056

Page 29: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Act 2 Flip-flop Implementation

Hard-wired Flip-flop

Feedback goes throughantifuses (R) and routing

segments (C)

Routed or “C-C Flip-flop”

Page 30: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

SX-S R-Cell Implementation

Page 31: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

UT4090 Logic Module

• Antifuse Configuration Memory

• Mux-based

• Multiple Outputs

• Wide logic functions

Page 32: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

UT4090 RAM Module

• Dual-port

• 1152 bits per cell

• Four configurations– 64 X 18– 128 X 9– 256 X 4– 512 X 2

Page 33: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

XC4000 Series CLBSimplified CLB - Carry Logic Not Shown

RAM LUTsfor Logic orsmall SRAM Two Flip-flops

Page 34: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

XQR4000XL Carry Path

General interconnect

Placement is important for performance.

Page 35: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Carry Logic Operation

Effective Carry Logic for a Typical Addition - XQR4000XL

Page 36: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

MRC Orion Logic Module

Page 37: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

AT60xx Logic Module

Page 38: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Memory Architecture

• Radiation-hardened PROM

• Configuration memory

• EEPROM

Page 39: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Rad-Hard PROM Architecture

No latches in this architecture

Page 40: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Configuration PROM Example

Page 41: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

W28C64 EEPROMSimplified Block Diagram

RowAddressLatches

ColumnAddressLatches

A6-12

A0-5

RowAddressDecoder

ColumnAddressDecoder

EdgeDetect &Latches

ControlLatch

ControlLogic

CE*

WE*

OE*

64 BytePage

Buffer

Timer

CLK

E2

MemoryArray

I/O Buffer/Data Polling

I/O0-7

Latch Enable

PE RSTB VW

Page 42: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Input/Output ModulesA Brief Overview

• Basic Input/Output (I/O) Module

• Some Features– Slew Rate Control– Different I/O Standards– Input Delays– Banks

• Deterministic Powerup

• Cold Sparing

Page 43: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Act 1

• Many families have slew rate control to limit signal reflections and ground bounce.

• Different families drive their outputs to different levels.

Page 44: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Different I/O Standards Virtex 2.5V Example

I/O Standard Input Ref Output Board 5V Voltage Source Termination Tolerant (VREF) Voltage Voltage (VCCO) (VTT)

LVTTL 2–24 mA N/A 3.3 N/A YesLVCMOS2 N/A 2.5 N/A YesPCI, 5 V N/A 3.3 N/A YesPCI, 3.3 V N/A 3.3 N/A NoGTL 0.8 N/A 1.2 NoGTL+ 1.0 N/A 1.5 NoHSTL Class I 0.75 1.5 0.75 NoHSTL Class III 0.9 1.5 1.5 NoHSTL Class IV 0.9 1.5 1.5 NoSSTL3 Class I &II 1.5 3.3 1.5 NoSSTL2 Class I & II 1.25 2.5 1.25 NoCTT 1.5 3.3 1.5 NoAGP 1.32 3.3 N/A No

Page 45: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Virtex 2.5V

Page 46: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Deterministic Power-upSX-S Example

PRE

CLR

VCCI

RTSX-S

Input Driven low or external POR Signal

Pull-down enabled

Pull-up enabled

• Pull-ups /downs are selectable on an individual I/O basis

• Pull-up follows VCCI

• Pull-downs and pull-ups are dis- abled 50 ns after VCCA reaches 2.5V and therefore do not draw current during regular operation.

• Once VCCA is powered-up, 50ns is required for a valid signal to propagate to the outputs before the pull-ups /downs are disabled

VCCA

Page 47: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Cold Sparing - SX-S

RTSX-S

VCCI

GND

0 VoltsRTSX-S

VCCI

GND

3.3/5 Volts

Active Bus or Backplane

Powered-downBoard

Powered-upBoard

I/O w/ ” Hot-Swap”Enabled does not

sink current

Page 48: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Packaging and Mechanical Aspects

• Package Types– Dual In-line Package (DIPs)

– Flatpacks

– Pin Grid Arrays (PGAs)

– Ceramic Quad Flat Packs (CQFP)

– Plastic Quad Flat Pack (PQFP)

• Plastic Package Qualification• Lead/Ball Pitch• Mass Characteristics• Shielding

Page 49: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Flat PackNorthrop-Grumman 256k EEPROM

Page 50: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Shielded Packages - Rad-Pak™

• This package, with tie bar, 24 grams• Shielding thickness may vary between lots• Shield is 10-90/copper-tungsten• Density of shield is ~ 18 g/cm3 (need to verify)• EEPROMs and other devices also packaged similarly

Page 51: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Spot Shielding Qualification Board - Maximum Thickness

Page 52: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

PGA Packages (cont'd)

Page 53: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

PQFP Package

Page 54: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Nominal Lead/Ball Pitch

CQ84 0.025"

CQ132 0.025"

CQ172 0.025"

CQ196 0.025"

CQ208 0.50 mm

PQ208 0.50 mm

CQ256 0.05 mm

CG560 1.27 mm

Note: Pin spacing for PGAs is typically 0.1"

Page 55: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Mass CharacteristicsApproximate values (in grams)

CQ84 2.2

CQ132 5.8

CQ172 8.8

CQ196 11.1

CQ208 8.8CQ208 18.5PQ208 5.2 CB228 17.6CQ256 13.0CQ256 20.21With heat sink. Over the years, there has been a lot of variation as to which parts have heat sinks. Check each package.

PG84 8.0

PG133 11.0

PG176 19.0

PG207 24.5

PG257 27.3

1

1

BG560 11.5CG560 11.5

Page 56: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Reliability

• Introduction to Reliability

• Historical Perspective

• Current Devices

• Trends

Page 57: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

The Bathtub Curve

Time

Failurerate,

Constant

Useful life Wear outInfant

Mortality

Page 58: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Introduction to Reliability

• Failure in time (FIT)Failures per 109 hours

( ~ 104 hours/year )

• Acceleration Factors– Temperature– Voltage

Page 59: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Introduction to Reliability (cont'd)

Most failure mechanisms can be modeled using the Arrhenius equation.

ttf - time to failure (hours)

C - constant (hours)

EA - activation energy (eV)

k - Boltzman's constant (8.616 x 10-5eV/°K)

T - temperature (ºK)

ttf = C • eEA/kT

Page 60: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Integrated Circuit ReliabilityHistorical Perspective

Application Reliability

• Apollo Guidance Computer < 10 FITs• Commercial (1971) 500 Hours• Military (1971) 2,000 Hours• High Reliability (1971) 10,000 Hours• SSI/MSI/PROM 38510 (1976) 44-344 FITs• MSI/LSI CICD Hi-Rel (1987) 43 FITs

Page 61: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Actel FPGAs

Technology FITS # Failures Device-Hours (m)

2.0/1.2 33 2 9.4 x 107

1.0 9.0 6 6.1 x 108

0.8 10.9 1 1.9 x 108

0.6 4.9 0 1.9 x 108

0.45 12.6 0 7.3 x 107

0.35 19.3 0 4.8 x 107

RTSX 0.6 33.7 0 2.7 x 107

0.25 88.9 0 1.0 x 107

0.22 78.6 0 1.2 x 107

Page 62: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Xilinx FPGAs

• XC40xxXL– Static: 9 FIT, 60% UCL– Dynamic: 29 FIT, 60% UCL

• XCVxxx– Static: 34 FIT, 60% UCL– Dynamic: 443 FIT, 60% UCL

Page 63: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

UTMC and Quicklogic• FPGA

– < 10 FITS (planned)– Quicklogic reports 12 FIT, 60% UCL

• UT22VP10UTER Technology, 0 failures, 0.3 [double check]

• Antifuse PROM– 64K: 19 FIT, 60% UCL– 256K: 76 FIT, 60% UCL

Page 64: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Actel FIT Rate Trends

Page 65: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Thermal

• Thermal Analysis Basics

• Summary of Package Characteristics

• Package Considerations– Cavity Up/Down– Heat Sinks

Page 66: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Thermal Performance• Package modeled as a resistance

• Junction temperature the critical parameter– Often derated to ~ 100 ºC

• tJ = P • J-C

tJ = Junction temperature in ºC

P = Power in watts

J-C = thermal resistance, junction to case, in ºC/watt

Page 67: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Thermal Performance - DevicesJ-C for Flight Devices in ºC/watt

Ceramic Pin Grid ArrayPG84 6.0PG133 4.8PG176 4.6PG207 3.51

PG257 2.81

Notes:1These packages are cavity down.2With embedded heat spreader3Estimated4Typical

Ceramic Quad Flat PackCQ84 7.8CQ132 7.2CQ172 6.8CQ196 6.4CQ208 6.3CQ256 6.2

OtherPQ208 8.0/3.82

PQ240 2.84

HQ240 1.54

CG560 0.83

Page 68: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Die Up or Down?

Page 69: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

CQFP256 w/ Heat Sink

Page 70: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Speed/Performance

• Basic Delay Model and Components

• Sample Delays– Examples from different families

• Hard-wired Structures– Routing– Arithmetic Logic

Page 71: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Antifuse Delay Model

Tau = Resistance * Capacitance

Page 72: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Note: These numbers are approximate and work on better numbers is in progress. UTMC, for PAL and PROM, has about 8 to 10 fF.

Page 73: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.
Page 74: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Hardwired StructuresActel Routing

Model Direct Connect Fast Connect

(ns) (ns)

RT54SX-1 0.2 1.1

RT54SXS-1 0.1 0.4

Virtex Carry Chain

TBYP (CIN to COUT) 200 ps, max

Page 75: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Power Consumption

• Power Basics

• Quiescent (Static) Current

• Dynamic Current– Per logic module– Clock tree

Page 76: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Power - Basics

• Power = Voltage * current = V i

• Voltage is constant

• Current = Static + Dynamic

• Static current: leakage, pullup resistors, DC loads

• Dynamic Power = kv2fk: constant often referred to as CEQ

f: frequency

Page 77: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.
Page 78: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Device (Array) Quiescent Current1

Device Voltage Typical Spec Level Type (V) ICC (mA) ICCMAX(mA)

A500K050 2.5 < 1 102

Orion-4K 5.0RT1020 5.0 < 1 20RT1280A 5.0 < 1 20RT14100A 5.0 < 1 20RT54SX32 3.3 < 1 25RT54SX32S 2.5 < 1 25UT4090 3.3 5XQR40xxXL 3.3 20XQV100 2.5 50XQV300 2.5 75XQV600 2.5 100XQV1000 2.5 100AT6010

1No DC Loads2Commercial Specification

XQV600 Lot Data (mA)1

lot # min mean max

1157448 4.72 6.41 8.131152401 6.26 8.37 11.401139803 3.75 5.57 12.85

1commercial or industrial worst-case, checking

Page 79: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

PROM Device Current1

Device Voltage Standby Dynamic @F (MHz) Type (V) ICC (mA) ICCMAX(mA)

UT28F64 5.0 0.5 100 28.62

UT28F256 5.0 < 2 125 28.62

197A8073 5.0 2.0 200 22.2

1Specification levels2Derates @ 2.5 mA/MHz3BAE Systems (formerly Lockmart) 32kx8 PROM

Page 80: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Representative Dynamic Power Numbers

A1280/A1280XL Power (mW)

F(MHz) Module Input Output Clock Total

1 11 13 21 27 72 2 23 25 42 54 144 5 57 63 105 136 360 10 113 125 210 272 720 20 227 250 419 544 1,440 30 340 375 629 815 2,159 40 453 500 839 1,087 2,879

Page 81: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Preliminary

Page 82: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

A Brief Introduction to Radiation and Programmable Devices

Page 83: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Types of Radiation Effects• Total Dose• Single Event Effects (SEE)

– Single Event Upset (SEU)• Multiple Bit Upset (MBU)

– Single Event Latchup (SEL)

– Single Event Transient (SET)

– Antifuse and Rupture

– Loss of Functionality

– Snap back

• Protons• Miscellaneous

Page 84: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Total Dose

Page 85: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Recombination, Transport, and Trapping of Carries

Page 86: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

A1425A/MEC TID TESTD/C 9819 - UCJ014X

6 kRads (Si) / DayNASA/GSFC

August 14, 1998

krads (Si)

0 5 10 15 20 25

I CC (

mA

)

0

5

10

15

S/N LAN202S/N LAN203S/N LAN204S/N LAN205

Typical TID Run

Page 87: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

TID Run - RunawayQL3025-2 ESPQ208R TID TEST

D/C 9913CA18.6 krad (Si) / Day

NASA/GSFCApril 14, 1999

krad (Si)

0 5 10 15 20 25 30 35 40

De

lta I C

C (

mA

)

0

200

400

600

800

1000

S/N WONE001 ICC5.0V

S/N WONE001 ICC3.3V

Power Supply Limit = 800 mA

Notes:

1. DUT in Pb-Al box per 1019.52. Experimental Device

Page 88: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

TID Capability vs. Feature SizeSubmicron FPGA TID Tolerance

0.35 m to 0.6 m

kRads (Si)

10 20 30 40 50 60 70 80 90 100

I CC (

mA

)

0

10

20

30

40

50

RT54SX16 Proto, 0.6 m, 3.3V, MECA54SX16 Proto, 0.35 m, 3.3V, CSMA42MX09, 0.45 m, 5.0V, CSMQL3025, 0.35 m, 3.3V, TSMC

QL3025

A54SX16

RT54SX16

A42MX09

XQR4000XL Proto, 0.35 m, 3.3V, 60 kRads (Si)

RH54SX16 Proto, 0.6 m, 3.3V, > 200 kRads (Si)

Page 89: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Process Mods - 0.25 mA54SX32A (Prototype) TID TEST

D/C 9924P04 Wafer 12 and 20

NASA/GSFCSeptember 24, 1999

krads (Si)

0 50 100 150 200 250

De

lta I

CC

(mA

)

0

20

40

60

80

100

120

Wafer 12Wafer 20

Notes

1. Bias levels are 5.0VDC, 2.5VDC2. Parts are in Pb/Al box per 1019.53. Dose rates between 15.7 and 16.6 rad(Si)/min

Page 90: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Single Event Upset(SEU)

Page 91: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

From Aerospace

Page 92: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Cross Section versus LET Curve

From Aerospace

Page 93: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Act 2 SEU Flip-Flop Data

Page 94: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

XQR4036XL SEU Cross Section

From Lum

Page 95: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Single Event Latchup(SEL)

Page 96: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Latchup Basics

From Harris

Page 97: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

SEL - QL3025 0.35 m

BNL 02/98S/N QL1 Run T2VBIAS = 5.0V, 3.3VTitanium @ 0 DegLET = 18.8 MeV-cm2/mg

Page 98: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Antifuse and Rupture

Page 99: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

ONO Antifuse

Technology Development Vehicle

Comparison of Rupture Currents

Amorphous SiliconAntifuse Rupture

Page 100: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Mag = 5X Mag = 20X Mag = 100X

ONO Antifuse Breakdown - FA

Page 101: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Protons

Page 102: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

ICC Damage During Proton TestingASIC and Antifuse FPGA

Note: Different scales for each run.

Page 103: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

RH1280 Proton Upsets

From Lockheed-Martin/Actel

Page 104: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

Summaryand

Some “Words of Wisdom”

Page 105: Programmable Logic Devices and Architectures: A Nano-Course R. Katz Grunt Engineer NASA.

FRAM Memory Functionality Loss During Heavy Ion Test

Strip chart of FM1608 (research fab) current during heavy ion irradiation. The device lost functionality during the test while the current decreased from it's normal dynamic levels of approximately 6.3 mA to it's quiescent value, near zero. The device recovered functionally and operated normally throughout the latter part of the test. This effect was seen at least three times during the limited testing of this device.