Prof.ramaswamy July17 APSS2010

download Prof.ramaswamy July17 APSS2010

of 9

Transcript of Prof.ramaswamy July17 APSS2010

  • 8/20/2019 Prof.ramaswamy July17 APSS2010

    1/20

    Structural Control and Condition Assessment

     Ananth Ramaswamy

    Professor, Indian Institute of ScienceBangalore, India

    3rd Asia Pacific Summer School on Smart StructuresTechnologies, University of Tokyo, Japan15thJuly-04th August 2010.

    Research Interests A. Material and Structural Behavior:

    Steel fiber reinforced

    prestressed concrete beamsand RC beam column joints.

    Performance of non metallicrebars for RC.

    Material characterization ofself compacting concrete(SCC) with admixtures (fly ash,silica fume) & related fracturestudies.

    Creep and shrinkage in normaland heavy density concrete

    Repair of structural concreteusing GFRP / CFRP / SCC withfibers - Concrete beam andcolumn repair againstmechanical & extreme thermalloads

    Field application of repair

    B. Vibration control and

    condition assessment ofstructures Studies on thermal

    distortion and vibrationcontrol in laminatecomposites having piezomaterial as layers.

    Studies on vibrationcontrol of seismicallyexcited buildings, bridgesand the possibility ofadaptive vibration controlfor repair.

    Thermal Distortion and VibrationControl in Laminate Composites havingPiezo Layers

    Composite laminates used in space applications are often exposed to:

    i) thermal gradients that cause distortions

    ii) unacceptable levels of vibrations (jitter).

    Use of piezo layers as patches (sensing andactuation) to control these deformations hasbeen explored.

    Piezo Electric Material – ConstitutiveEquations:

    .3,2,1,6,..2,1,

    )(

    )(

    ,,

    ,,

    lk and q pwhere

    effect  Direct T P E e D

    effect ConverseT  E eQ

     E 

    k l

    kl p

    kpk 

     E 

     pk 

    kpq

    T  E 

     pq p

      

     

     

       

    σ, ε, Ek , Dk ,  Δ T represent the stress, strain, electricfield, electric displacement and raise in temperature,respectively.

    Q, є, e, λ and P represent the elastic moduli,dielectric tensor, piezo electric coefficient, thermalstress coefficient and pyroelectric coefficient. The

    superscripts indicate quantities held constant whilequantifying the variable .

    Piezoelectric Shell Laminate andcurvilinear coordinate system.

    Piezo Electric Material – ConstitutiveEquations:

    Laminate having layers with different

    orientation

    Laminate with arbitrarily located Piezo Layers

    Piezo electric sheet

     Analogy between mechanical andelectrical quantities

  • 8/20/2019 Prof.ramaswamy July17 APSS2010

    2/20

    Implicit Layering

    Explicit Layering

    Layering Procedures in FEM

    0)....(0

      dt doneWork  E P E K t 

     

    Using Hamilton’s Principle

    Where:

      v

    k  p

     plkl

    k  pkp

    k  p pq

    q   dvT P E T  E  E e E Q E  H  E P }2{2

    1),(..         

    dvwwvvuu E K  llllllv

    )(2

    1..        

     pv

    wvu

    v

    wsvsuswbvbub

    qdsdvqvPvPuP

    dswT vT uT dvwf vf uf donework 

    2

    1

    ''

    ][][ ,,,,,,

        

    In a finite element framework :

    *][][][

    }{]][[}{}{*}{

    ][]][[][*][

    }]{[*}{}*]{[}]{[}]{[

    1

    1

    K  M C 

    F K K F F F 

    K K K K K 

    K F d K d cd  M 

    dd dd 

    d d dd 

    d d dd 

    ad dd dd 

    ssss

    ssss

    a

       

     

         

        

     

     Adopting a constant gain negative velocity feedbackcontrol: )(][)(   t Gt  sca     

     

    *}{}*]{[}]]{[]][][[[}]{[ 1 F d K d K K GK C d  M  d cd dd  sssa         

    Extra Damping

    Optimization Problem:

    0

    )(   dt  RQy y J  aT 

    a

    T    Minimize

    *}{}*]{[}]]{[]][][[[}]{[ 1 F d K d K K GK C d  M  d cd dd  sssa         

    Subject to:

    System Performance

     based on measurement

    y=Cod weight Q

    Control force

    applied (φa)

    weight R 

    Extra Damping

    MATLAB /

    SIMULINK Feedback

    control Algorithm

    }]{ˆ[}]{[}]{[ ad    Bu B X  A X     

     

    ][][]'[][

    ][]0[][

    11

    dd dd dd    C  M K  M 

     I  A

      1][

    ]0[][

    dd  M  B  

      ][][

    ]0[]ˆ[ 1

    ad dd   K  M 

     B 

    Using the state-space formulation x={d, d’}

    Where:

    State matrix Disturbance matrix Control matrix

    The measurement equation (output matrix): {y}=[Co]{X}

    Using the feedback law: }]{[][][}]{[}{1  X S  B R X G   T ca

     

    Where [S] satisfies the Riccatti equation:

    0]][[][][]ˆ[]][ˆ][[]][[][][ 001   C QC S  B R BS  AS S  A   T T T 

    }]{[}]){][ˆ[]([ d c   u B X G B A X   

    The closed loop system dynamics is given by:

    Graphite Epoxy

    Laminate with Surface

    Bonded Piezo Patches,

    FE Model, Properties.

    Simply Supported PlateBansal, A. and Ramaswamy, A. (2002) “FE Analysis of Piezo-laminate Composites under

    thermal loads”, Journal of Intelligent Material Systems and Structures, v.13, No.5, 291-301

  • 8/20/2019 Prof.ramaswamy July17 APSS2010

    3/20

    Deformation under Thermal

    Gradient of 100oC, deformation

    under active compensation,

    sensor voltage.

    Thermal Distortion

    - uncontrolled

    Thermal distortion-

    under applied voltage

    Plexi-glass beam with surface

    bonded PVDF, properties.uncontrolled

    Controlled

    Sensor Potential

     Vibration control of seismicallyexcited structures

    Ground motion induced vibrations in building andbridge structures can result in both excessivestructural deformation that results in member /structural failure and occupant discomfort due to highfloor accelerations.

    Conventional ductility based designs, accompanied byplastic hinge development and mechanismoccurrence methods may result in maintenancedifficulties.

    Structural control methods offer a via media that canlead to resolving the above concerns.

    Passive and Hybrid Vibration control ofBuildings

    Parameters considered include-models for building(cantilever, plane frame, torsionally coupled building), loads (Seismic, Wind), control strategy, materialnonlinearity, limits on number of sensors andactuating devices, functional constraints insensor/actuator.

    Multi-objective ‘Pareto optimization’ 

    Supervisor model for adaptive control when materialnonlinearity included.

    Feed forward 

    (open loop) 

    control

    Feed‐back 

    (Closed loop) 

    control

    • Choice of controldevices and

    sensors•Idealization ofStructure (BuildingModel)

    •Choice of controlalgorithm

    Control devices

    Passive Control Base Isolation with

    elastomeric bearings Sliding bearings Friction bracing systems  Visco-elastic dampers. Orifice dampers Liquid column dampers Tuned Mass dampers

    (TMD)

     Active Control  Active Mass driver (AMD)

    Semi-active Control

    ER / MR dampers Hybrid Control

    (Combination of passiveand active/semi-activecontrol) TMD +AMD or MR/ER

    dampers

  • 8/20/2019 Prof.ramaswamy July17 APSS2010

    4/20

    Passive System – Base Isolation

    Viscous Fluid DampersVisco‐elastic dampers

    X‐braced friction damperPassive systems ‐ Can be 

    introduced  at basement 

    level, as a bracing system 

    between columns and 

    floors. 

    Tuned Mass Dampers

    Hybrid Mass Dampers

    Structural Model Idealizations

    Cantilever Building

    Shear Building Model•Rigid floors•Inextensible columns•Symmetric buildings•Response is predominantly in one‐direction•Same ground excitation on all points of  building

    Torsionally Coupled Building Model

    •Principal  axis along x and y•Centre of  mass and resistance  are not 

    coincident,  do not lie along same vertical line 

    and result in variable  eccentricities  on each 

    floor. 

    •All floors have different  radii of  gyration and 

    have differing ratio of  torsional to lateral 

    stiffness ratio

    •Response is predominantly in one‐direction•Same ground excitation on all points of  

    building

    Structural Model Idealizations Fuzzy Logic Control SystemsFLC design

    • Establishes a nonlinear map between I/O data.

    • Sensitivity to system parameter uncertainties and noisy data is less.

    • Easy to establish control rules (if one knows the system well).

  • 8/20/2019 Prof.ramaswamy July17 APSS2010

    5/20

    I/O parameters Design of the input output scaling parameters

    I/O Membership Functions Choice of membership function

    Parameters that define membership function

    Number of membership function

    Fuzzy Rule Base It is always left to the experts to define the rule base

    Number of rules

    Fuzzy Logic Control Systems:Problems

    Defining these parameters are a real challenge in FLC design and arealways left to experts.One can use evolutionary search methods to search for optimal parametersto a FLC.

    [System]

     Name='fuz_arb'

    Type='mamdani'

    Version=2.0

     NumInputs=2

     NumOutputs=1

     NumRules=25

    AndMethod='min'

    OrMethod='max'

    ImpMethod='min'

    AggMethod='max'

    DefuzzMethod='centroid'

    [Input1]

     Name='Velocity'

    Range=[-1 1]

     NumMFs=5

    MF1='NL':'zmf',[-1 -0.7]

    MF2='NS':'gbellmf',[0.35 2.2811088413887 -0.5]

    MF3='ZE':'gbellmf',[0.15 2.2811088413887 0]

    MF4='PS':'gbellmf',[0.35 2.2811088413887 0.5]

    MF5='PL':'smf',[0.7 1]

    [Input2]

     Name='Accleretion'

    Range=[-1 1]

     NumMFs=5

    MF1='NL':'zmf',[-0.8 -0.5]

    MF2='NS':'gbellmf',[0.15 6.25 -0.5]

    MF3='ZE':'gbellmf',[0.35 6.25 0]

    MF4='PS':'gbellmf',[0.15 6.25 0.5]

    MF5='PL':'smf',[0.5 0.8]

    [Output1]

     Name='Control'

    Range=[-1 1]

     NumMFs=7

    MF1='NL':'gbellmf',[0.2667 2.2811088413887 -1]

    MF2='NE':'gbellmf',[0.0667 2.2811088413887 -0.666666666666667]

    MF3='NS':'gbellmf',[0.2667 2.2811088413887 -0.333333333333333]

    MF4='ZE':'gbellmf',[0.0667 2.2811088413887 0]

    MF5='PS':'gbellmf',[0.2667 2.2811088413887 0.333333333333333]

    MF6='PO':'gbellmf',[0.0667 2.2811088413887 0.666666666666667]

    MF7='PL':'gbellmf',[0.2667 2.2811088413887 1]

    [Rules]

    1 1, 1 (1) : 1

    1 2, 1 (1) : 1

    1 3, 1 (1) : 1

    1 4, 2 (1) : 1

    1 5, 3 (1) : 1

    2 1, 1 (1) : 1

    2 2, 1 (1) : 1

    2 3, 1 (1) : 1

    2 4, 2 (1) : 1

    2 5, 3 (1) : 1

    3 1, 1 (1) : 1

    3 2, 3 (1) : 1

    3 3, 4 (1) : 1

    3 4, 5 (1) : 1

    3 5, 5 (1) : 1

    4 1, 7 (1) : 1

    4 2, 7 (1) : 1

    4 3, 7 (1) : 1

    4 4, 6 (1) : 1

    4 5, 5 (1) : 1

    5 1, 7 (1) : 1

    5 2, 7 (1) : 1

    5 3, 7 (1) : 1

    5 4, 6 (1) : 1

    5 5, 5 (1) : 1

    ACCELERATION

    V

    E

    L

    O

    C

    I

    T

    Y

    NL NE ZE PO PL

    NL  NL NE NS NS ZE

    NE  NE NS ZE ZE ZE

    ZE  NS ZE ZE ZE PS

    PO ZE ZE ZE PS PO

    PL ZE PS PS PO PL

    Build-FLC

    ACCELERATION

    V

    E

    L

    O

    C

    I

    T

    Y

    NL NE ZE PO PL

    NL  NL NE NS NS ZE

    NE  NE NS ZE ZE ZE

    ZE  NS ZE ZE ZE PS

    PO ZE ZE ZE PS PO

    PL ZE PS PS PO PL

    Fuzzy Logic: Rule Base & MFs

    Fuzzy Rule Base

    I/O Membership

    Functions

    J6 and J7 were objectives optimized in a multi-

    objective Genetic algorithm framework with

    constraints imposed on the actuator stroke,actuator acceleration

    Simulink model for a three storey single bay structure with an active

    mass driver at the top

  • 8/20/2019 Prof.ramaswamy July17 APSS2010

    6/20

    Implementation Issues

    Integration time step = 0.0005s

    Sampling time = 0.001s

     ADC & DAC 12 to 16 bits, Saturation of sensor +/- 3volts.

    Sensor noise RMS 0.01v(.03% of span)-Gaussian rectangular pulse process of widthequal to sampling time of ADC.

    Time delay = 1 sampling time

    Quantization errors

    = (Twice span of ADC/DAC)/2no. Of bits

    Sample & hold Circuit ADC zeroth order(constant) DAC 1st Order (linear)

     A trade-off between the

    maximum inter-story drift and

    the maximum floor acceleration

    represents the “Pareto” optimal

    Solution.

    Ahlawat, A.S. and Ramaswamy, A. (2001)"Multi-objective

    Optimal Structural Vibration Control Using Fuzzy Logic

    Control System", Journal of Structural Engineering, ASCE,

    127(11), pp.1330-1337

    Each-Floor M=3.6x105kgK=650MN/m

    C=6.2MN-s/m

    GA optimized FLC for TMD, AMD and HMD example for a

    10 storey shear building

    Ahlawat, A.S. and Ramaswamy, A. (2002) “Multi-Objective Optimal Design

    of FLC Driven Hybrid Mass Damper for Seismically Excited Structures”,

    Earthquake Engineering and Structural Dynamics, 31(5), 1459-1479, May Implementation Issues

    Integration time step = 0.0005s

    Sampling time = 0.001s

     ADC & DAC 12 to 16 bits,

    Saturation of sensor +/- 3volts.

    Sensor noise RMS 0.01v(.03% of span)-Gaussian rectangular pulse process of widthequal to sampling time of ADC.

    Time delay = 1 sampling time

    Quantization errors

    = (Twice span of ADC/DAC)/2no. Of bits

    Sample & hold Circuit ADC zeroth order(constant) DAC 1st Order (linear)

    SIMULINK Model for Building with Fuzzy Logic Control

    0.4 0.5 0.6 0.7 0.8 0.9 10.5

    0.55

    0.6

    0.65

    0.7

    0.75

    0.8

    0.85

    0.9

    0.95

    1

    J1

             J 3

    Hadi and Arfiadi (1998)PRESENT STUDY:Optimal TMD

    Optimal AMDOptimal HMD

    Pareto Optimal Performance (J1- Inter-story drift) vs.

    (J3-absolute acceleration) for 10 story shear building

    model

    A

  • 8/20/2019 Prof.ramaswamy July17 APSS2010

    7/20

    Time History & PSD for inter-story drift for Kobe

    EQ Excitation at Point “A”

    Hybrid Control System for SeismicallyExcited Torsionally Coupled Building

    8-story building, 15m and 24m, mass mi=3.456X10

    5 kg,

    mass moment of inertia Ii=2.37104X103 Kg-m2,

    stiffness in x-direction k xi=3.404X105 kN/m, in y-

    direction k yi=4.503X105 kN/m, torsional stiffness

    k i=3.84X107 kN/rad, eccentricity ex=0.24 m and

    eccentricity ey=0.15 m

    damping ratios 2% for the first three modes

    mass of the HMD system = 1.0% of the total mass ofthe building (Fur et al. 1996)

    Torsionally Coupled Model

    HMD SystemTMD System

    Peak Inter-story Drift (J1) Vsrotation (J

    2

    ) and Acceleration (J3) (TMDSystem)

    0.4 0.5 0.6 0.7 0.8 0.9 10.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    J1

             J         2

             /         J

             3

     Fur et. al 96 J

    3

     Fur et. al 96 J

    2

     present study J

    3

     present study J

    2

     

    0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    J1

              J 2

               /          J

     3

     Fur et. al (1996)AMD1 J

    AMD1 J2 

    AMD2 J3 

    AMD2 J2 

    AMD3 J3 

    AMD3 J2 

    present study J3 

    present study J2 

    Peak Inter-story Drift (J1) Vs

    rotation (J2) and Acceleration(J3) (HMD System)

    Ahlawat, A.S. and Ramaswamy, A. (2003) “Multi-objective Optimal Absorber

    System for TorsionallyCoupled Seismically Excited Structures”, Engineering

    Structures: Journal of Earthquake Engineering, Wind and Ocean Engineering,

    25(7), 941-950.

    Ahlawat, A.S. and Ramaswamy, A. (2002)“Multi-objective Optimal FLC Driven

    Hybrid Mass Damper for TorsionallyCoupled Seismically Excited Structures”,

    Journal of Earthquake Engineering and Structural Dynamics, 31(12), 2121-2139

     Adaptive control System Architecture

     ANFIS System and Optimal FLC

    Parameter computation

    Performance in Seismically excited nonlinear Plane

    frame building with Optimal FLC for linear; Nonlinear

    & adaptive nonlinear 

    Performance in Seismically excited nonlinear

    Torsionally coupled building with Optimal FLC for

    linear; Nonlinear & adaptive nonlinear 

    An multi-objective optimal design of a FLC driven active and hybrid control system, offering a

    set of Pareto-optimal designs, is developed Adaptive Control has potential to be deployed in

    pre or post seismic event retrofit / rehabilitation-useful if online system identification is

     feasible.

  • 8/20/2019 Prof.ramaswamy July17 APSS2010

    8/20

    Remarks

    GA-FLC and PSO based control systemsare seen to be effective. However, theireffective implementation requires thatthe control scheme be placed on a chip,so as to reduce process times.

     Adaptive trained supervisor based ANNsystems can detect changes in thesystem and alter the parameters of theFLC to offer improved control.

    Base isolation is an effective means to isolating structures

    from ground motions

    But base isolation show severe displacement under nearsource excitation

    One means to protect is to combine base isolation withdamping mechanism

    Semi-active devices are effective in damping as theyprovide better control than active devices with lesserenergy input

    We combine base isolation with semi-active MR damperto protect building against near source ground motions

    Motivation

    MR Damper: Bouc-Wen Model

    0f    c x z 

    1n n z x z z x z A x  

    0 0 0( ) ; ( )c a c c cab bu u c u c c u  

    ( )c cu u v 

    Damper Force:

    Evolutionary variable:

    Voltage dependency:

    Filter to input voltage:

    Input voltage to output force is a nonlinear relation

    Nonlinear input/output map is needed for prediction of voltage oncerequired control force is known

    MR Damper: Simulation Results

    Time Displacement (m)

    Velocity (m/s)

    0 0.25 0.5 0.75 1-2500

    -2000

    -1000

    0

    1000

    2000

    5

    -1.5 -1 -0.5 0 0.5 1 1.52500

    2000

    1000

    0

    500

    2000

    -25 -20 -15 -10 -5 0 5 10 15 20 25-2500

    -2000

    -1000

    0

    1000

    2000

    2500

       F  o  r  c  e   (   N   )

       F  o  r  c  e   (   N   )

       F  o  r  c  e   (   N   )

    Fuzzy Logic Control SystemsFLC design

    • Establishes a nonlinear map between I/O data.

    • Sensitivity to system parameter uncertainties and noisy data is less.

    • Easy to establish control rules (if one knows the system well).

    I/O parameters Design of the input output scaling parameters

    I/O Membership Functions Choice of membership function

    Parameters that define membership function

    Number of membership function

    Fuzzy Rule Base It is always left to the experts to define the rule base

    Number of rules

    Fuzzy Logic Control Systems:Problems

    Defining these parameters are a real challenge in FLC design and arealways left to experts.One can use evolutionary search methods to search for optimal parametersto a FLC.

  • 8/20/2019 Prof.ramaswamy July17 APSS2010

    9/20

    Genetic Fuzzy Logic Control SystemsGAFLC design

    • GA can be used to design the knowledge base of FLC

    • Adaptively redesigns fuzzy rules, MF parameters, I/O scaling.

    Genetic

    Algorithm

    I/O parameters Design of the input output scaling parameters

    I/O Membership Functions

    Choice of membership function

    Parameters that define the membership function

    Number of membership function

    Fuzzy Rule Base

    It is always left to the experts to define the rule base

    GAFLC Systems

    Present GA changes all the above except the number ofMFs and number of rules

    GAFLC Systems: Rule basedesign

     NL

     NL

    PL

    PS

    ZE NS

    PL

    PS

    ZE

     NS

     NL

    PLPSZE NS

    Velocity

    A c  c  e l    e r  a  t   i    on

    Consequent Line

    CS

    C    A   

     NE

    PO

    A geometric approach to the FLC design has been taken:

    1. The angle of the Consequent line

    (CA)

    2. Spreading of the output MF’s (CS)

    How it works:1. CA can take any value between 0-

    180o(Consequent line rotates about

    ZE-ZE position).

    2. Position of the consequent (output)

    changes each time CA takes a new

    value.

    3. CS changes the spread of the

    consequents. With fixed CA, CS

    increases or decreases the zone foreach of the consequent (NL, NS etc.)

    Rule base: How it works

    Can take into account the symmetry in structural dynamic behavior 

    Symmetry provides robustness to the FLC design.

    How it works:

    4. Every consequent is given a weight

     based on its distance from the

    origin.

    5. Distance of Consequent defines the

    rule base for a particular

    antecedent pair.

    Adjacent figure show rule base for

    CA=135, CS=1

    Properties:

    ZE

    GAFLC Systems: MF design

    Generalized bell shaped MF is

    used:

    1. Width ‘a’ is changed to create

    non uniform MF width2. Slope at 0.5 MF grade-’b’ is

    changed to get different MF

    type.

    Properties:

    1. Always symmetric about the

    origin.

    2. Generalized bell shaped MF

    can take any shape based on

    slope ‘b’ and width ‘a’.

    -1

    -0.5

    0

    0.5

    1

    -1

    -0.5

    0

    0.5

    1

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    Velocity

     Accleretion

       C  o  n   t  r  o   l

    -1

    -0.5

    0

    0.5

    1

    -1

    -0.50

    0.51

    -0.5

    0

    0.5

    Velocity Accleretion

       C  o  n   t  r  o   l

    GAFLC Systems: Sample RuleBase Maps

    Chichi Earthquake Elcentro Earthquake

    One can see the adaptive nature of the rules

  • 8/20/2019 Prof.ramaswamy July17 APSS2010

    10/20

    -1 -0.5 0 0.5 1

    0

    0.2

    0.4

    0.6

    0.8

    1

    Velocity

       D  e  g  r  e  e  o   f  m  e  m   b  e  r  s   h   i  p   N NS Z P S P

    -1 -0.5 0 0.5 1

    0

    0.2

    0.4

    0.6

    0.8

    1

     Accleretion

       D  e  g  r  e  e  o   f  m  e  m   b  e  r  s   h   i  p   N NS Z PS P

    -1 -0.5 0 0.5 1

    0

    0.2

    0.4

    0.6

    0.8

    1

    Control

       D  e  g  r  e  e  o   f  m  e  m   b  e  r  s   h   i  p

    N N NS Z PS PO P

    -1 -0.5 0 0.5 1

    0

    0.2

    0.4

    0.6

    0.8

    1

    Velocity

       D  e  g  r  e  e  o   f  m  e  m   b  e  r  s   h   i  p

    N NS Z PS P

    -1 -0.5 0 0.5 1

    0

    0.2

    0.4

    0.6

    0.8

    1

    Control

       D  e  g  r  e  e  o   f  m  e  m   b  e  r  s   h   i  p

    N N NS Z PS PO P

    -1 -0.5 0 0.5 1

    0

    0.2

    0.4

    0.6

    0.8

    1

    Accleretion

       D  e  g  r  e  e  o   f  m  e  m   b  e  r  s   h   i  p

    N NS Z PS P

    Chichi Earthquake

    Elcentro Earthquake

    GAFLC Systems: SampleMembership Functions

    One can see the adaptive nature of the MFs

     Adaptive rule base FLC used with hybrid base isolated structure

    Ali, Sk. Faruque and Ramaswamy, A. (2008) “GA optimized FLC driven semi-active control for Phase II smart

    nonlinear base isolated benchmark building”, Journal of Structural Control and Health Monitoring, 15, 797-820

    The objective was to minimize bearing level

    displacements while also limiting magnitude of

    floor accelerations and base shear 

    The ARB-FLC results in an improved

    performance and is stable.

    The clipped optimal control used in the

    benchmark took longer to stabilize.

    A variable rule base FLC is shown to be

     better than a fixed rule base FLC system.

  • 8/20/2019 Prof.ramaswamy July17 APSS2010

    11/20

    Nonlinear Force – Displacement relationship with

    MR dampers used.

    Problem Definition

     Vibration control of a two-span,prestressed concrete box-girder bridge on91/5 over crossing located in OrangeCounty of southern California forms thebenchmark problem-Phase I (Agrawal et

    al 2005, 2009)

    Sensors and Actuators Location

    Nine Actuators andsix accelerometers

    are used

     ANFIS-Why?

     ANFIS changes the position of the MFs w.r.t the input inan optimal way

    •No standard method exists for designing the Fuzzy Rulebase. It is based on the experience of the designer.•Fuzzy logic Membership Functions (MFs ) are fixed typeand it does not change with the change in the inputparameter. Thus, tuning of the MFs  is not done tominimize the error.Consequently, FLC acting alone doesn’t provide an optimalcontrol.

    How does ANFIS work ?

     Adaptive Nodes

    Fixed Nodes

    NE = Negative

    PO = Positive

    N = Neural Network 

     ANFIS Optimal Position of MFs

    Takagi & Sugeno TypeInference Scheme

    3 bell shaped MFs for Acceleration and Velocity

    Optimal Positions ofthe MFs aredetermined using ANFIS

    Solution Technique: ANFIS FLC

     A Hybrid Control Approach is undertaken using bothFLC and ANFIS to control the vibration of theHighway Bridge.

    Two separate ANFIS model are trained and testedwith a set of near and far field earthquakeexcitations.

     ANFIS is trained with velocity and acceleration dataas input from east and west abutment ends of thethe bridge and corresponding control as output fromLQG results to obtain the optimal set of weights.

     Acceleration and Velocity data from the central bentcolumn are given as input to the FLC in addition.

  • 8/20/2019 Prof.ramaswamy July17 APSS2010

    12/20

    Solution Technique: ANFIS FLC

    8 hydraulic actuators placed longitudinallybetween the abutment and deck are drivenby ANFIS trained with longitudinal dataobtained from LQG model.

    From the remaining eight transverseactuators, four (two on each side) are drivenby FLC and the rest by ANFIS.

    Simulink: ANFIS FLC Control

    MR Damper

    MR Damper parameters (Tan & Agrawal,

    2005) Max Force =1000kN

    Bouc-Wen Model

    where x(dot) is the relative velocity at the

    damper location; z is the evolutionaryvariable, and γ, β , n , A are parameters

    controlling the linearity in the unloadingand the smoothness of the transitionfrom the pre–yield to the post-yieldregion

    Variable input current experimental

    curves (xmr = 10mm, ω = 0.5Hz)

    Variable excitation amplitude test

    curves (imr = 0A, ω = 0.5Hz)

    Optimal DynamicInversion

    Schematic of a two-stage

    dynamic inversion controller

    Primary Controller: LQG controller algorithmbased on the reduced order benchmark bridgemodel

     I q

     I qQ

    a

    0

    0 R = 10-5I N×N and N=number of controllers

    g  X K t  f ^

    )(  

    )(^^

    u D X C  y Lu B X  A   mr r m

    r mr 

    r  X   

    K g is feedback gain matrix and Xr is the Kalmanestimate of the system. K g is selected tominimize the cost J1, based on the state

    feedback law above. The Kalman filter optimalestimator is given by:

    L is the observer gain matrix of the stationary Kalman Filter

    ODI (Secondary Stage): The

    controller is designed with a goal to

    minimize the error between the

    required force determined by the

     primary controller and the control

    force to be supplied by the MR

    damper in a L2 normed sense:

    The controller is designed such that the followingstable error dynamics is satisfied.

    0))()(())()((2

    )}()({))()((

    0

    t  f t uPt  f t uk 

    t  f t uPt  f t u

    ek e

    e

    e

    To obtain a unique solution, we minimize the costfunction formulated as follows:

    Subject to the constraint:

    Where:

    The problem of controlsingularity may arise if xi, x˙i andzi go to zero simultaneously andhence li goes to zero. So with a

    user defined tolerance, thevoltage is set to zero under theseconditions.

    Optimal Dynamic Inversion

    Ali, Sk. Faruque and Ramaswamy, A. (2009) “Optimal Dynamic Inversion based Semi active Control of

    Benchmark Bridge using MR Dampers”, Journal of Structural Control and Health Monitoring, DOI:

    10.1002/stc.325, 16, 564-585.

  • 8/20/2019 Prof.ramaswamy July17 APSS2010

    13/20

    Simulink: ODI Control

     ANFYS-FLC Control Performance Functions: Peak Values

    Performance

    Index

    N. Palm

    SpringCh ich i El Ce ntro No rth ri dg e Tu rke y Ko be

    J1

    (Base Shear)0.8343 0.7878 0.8101 0.7862 0.8619 0.8020

    J2(Base M oment)

    0.7556 0.9296 0.7394 0.9284 0.9432 0.7208

    J3

    (Midspan Disp)0.8114 0.7541 0.8221 0.7746 0.7243 0.7043

    J4

    (Midspan Accl)0.9383 0.8639 0.8473 0.8669 0.8128 0.9040

    J5

    (Bearing Deform)0.8499 0.7423 0.6828 0.7756 0.8962 0.5860

    J6

    (Ductility)0.7556 0.6633 0.7394 0.6730 0.4204 0.7208

    J7

    (DissipEnergy)0.0000 0.5303 0.0000 0.5750 0.3425 0.0000

    J8

    (Plastic Connec.)0.0000 0.6667 0.0000 1.0000 0.3333 0.0000

     ANFYS-FLC Control Performance Functions: Normed Values

    Performance

    Index

    N. Palm

    SpringChi chi El Cent ro Nor th ri dg e Tur key Kobe

    J9

    (Base Shear)0.7474 0.8088 0.6567 0.7634 0.8746 0.7123

    J10

    (Base Moment)0.6773 0.7524 0.6301 0.7812 0.5406 0.6808

    J11

    (Midspan Disp)0.7018 0.7081 0.6455 0.7405 0.5582 0.6978

    J12

    (Midspan Accl)0.8407 0.7554 0.6746 0.7458 0.7946 0.7568

    J13

    (Bearing Deform)0.7621 0.7468 0.5091 0.7669 0.9784 0.5428

    J14

    (Ductility)0.6773 0.4782 0.6301 0.7144 0.1858 0.6808

     ANFYS-FLC Control Performance Functions: Control Parameters

    Performance

    Index

    N. Palm

    SpringChi chi El Cen tr o Nor thr id ge Tu rke y Kob e

    J15

    (Peak Force)0.0076 0.0219 0.0048 0.0221 0.0135 0.0069

    J16

    (Peak Dev.

    Stroke)

    0.9374 0.8144 0.7196 0.8095 0.9161 0.6620

    J17

    (Peak Power)0.0290 0.1058 0.0226 0.1265 0.0572 0.0244

    J18

    (Total Power)0.0067 0.0145 0.0034 0.0173 0.0118 0.0044

    J19

    (No. of Devices)1 6.00 00 16 .00 00 1 6.0 000 1 6.0 000 1 6. 00 00 1 6. 00 00

    J20

    (Sensors)6.0000 6.0000 6.0000 6.0000 6.0000 6.0000

    J21

    (Comp Resource)2 2.00 00 22 .00 00 2 2.0 000 2 2.0 000 2 2. 00 00 2 2. 00 00

    ANFYS-FLC Control Performance Functions: Comparison ANFIS v/s LQG

    ANFIS

    LQG

    Performance

    Index

    J1

    (Base Shear)

    J2

    (Base Moment)

    J3

    (Midspan Disp)

    J4

    (Midspan Accl)J5

    (Bearing Deform)

    J6

    (Ductility)

    J7

    (DissipEnergy)

    J8

    (Plastic Connec.)

    0.8137 0.8693 0.8619 0.9502

    0.8362 0.8565 0.9432 0.9782

    0.7651 0.7865 0.8221 0.8669

    0.8722 0.8488 0.9383 0.8986

    0.7555 0.7611 0.8962 0.9370

    0.6621 0.7123 0.7556 0.8516

    0.2413 0.2447 0.5750 0.6244

    0.3333 0.3333 1.0000 1.0000

    Average Maximum

    NORMED VALUES

    PEAK VALUES

    Average Maximum

    J9

    (Base Shear)

    J10

    (Base M oment)

    J11

    (Midspan Disp)

    J12

    (Midspan Accl)

    J13

    (Bearing Deform)

    J14

    (Ductility)

    0.7605 0.8006 0.8746 0.8937

    0.6771 0.7160 0.7812 0.8780

    0.6753 0.7142 0.7405 0.8047

    0.7613 0.7645 0.8407 0.7976

    0.7177 0.5942 0.9784 0.8211

    0.5611 0.6277 0.7144 0.8274

    Performance

    Index

    J15

    (Peak Force)

    J16

    (Peak Dev.

    Stroke)

    J17(Peak Power)

    J18

    (Total Power)

    J19

    (No. of Devices)

    J20

    (Sensors)

    J21

    (Comp Resource)

    Performance

    Index

    0.0128 0.0142 0.0221 0.0230

    0.8098 0.7254 0.9374 0.9019

    0.0609 0.0657 0.1265 0.1105

    0.0097 0.0109 0.0173 0.0150

    16.0000 16.0000

    6.0000 12.0000

    22.0000 28.0000

    Average Maximum

    ANFYS-FLC Control Performance Functions: Comparison ANFIS v/s LQG

    CONTROL PARAMETER VALUES

    ANFIS

    LQG

  • 8/20/2019 Prof.ramaswamy July17 APSS2010

    14/20

    ODI Control Performance Functions ANFYS-FLC Control and ODI

    Results: Base Shear

    Northridge EQ

    Northridge EQ

     ANFYS-FLC Control and ODI

    Results: Bearing Deformation

    Northridge EQ

     ANFYS-FLC Control and ODI

    Results: Curvature at Columns

    Northridge EQ

     ANFYS-FLC Control and ODI

    Results: Mid Span Acceleration Remarks

     A comparison of the ANFIS based FLC control and theOptimal Dynamic Inversion (ODI) based control onthe Highway Bridge Benchmark problem indicatesthat almost all the performance parameters obtained

    using the ODI based control scheme is generallybetter than the ANFYS based FLC control across allearthquakes.

    From a real time implementation point of view, ODIis simple to implement as it provides a closed formexpression for the control input. Moreover, the ODIbased approach is a stable algorithm and itsconvergence has also been proved.

  • 8/20/2019 Prof.ramaswamy July17 APSS2010

    15/20

    First order filter used to

    account for difference

     between applied and

    commanded current

    The Bouc-Wen parameters (α, γ,

    β, Co, K o, and A) are obtained by

    minimizing the error between the

    measured and predicted value of

    the force.

    Integral Back-stepping

    Method

    Optimized values of the model parameters at 1Hz frequency

    Integral Back-stepping MethodAli, Sk. Faruqueand Ramaswamy, A. (2009)“Testing and Modeling of MR Damper and its

    Application to SDOF Systems using Integral

    Back-stepping Technique”, Journal of

    Dynamic Systems, Measurement and Control,

    ASME, March, Vol. 131 / 021009-1to11.

    (1)

    (2)

    Replacing u(t) from (1) in (2)

    and writing the closed loop

    system dynamics (neglecting

    the external force term) one

    gets in state space form:

    (3)

    Equation (3) can be written in the

    following form:

    (4)

    (5)

    Integral Back-stepping Method

    Equation (4) is a second order

    strict feedback form of the system

    given by equation (3). To

    implement integral back –steppingdefine a variable idum so as to

    satisfy:

    This results in simplifications of

    the form:

    Treating ic to be the real current driver

    and by selecting the Lyaponouv candidate

    function as:

    Choosing icdes with k d =1

    Integral Back-stepping Method

    If simultaneousl y it will lead

    to an instability. So if all three are very small switch off

     based on a small tolerance.

  • 8/20/2019 Prof.ramaswamy July17 APSS2010

    16/20

    ic is a state variable and tracking of i des is desirable.Defining an error variable e and related error dynamics as:

    ides,x is the derivative of ides with respect to state x

    Selecting a second Lyapunov as

    The system becomes asymptotically stable

    when

    Integral Back-stepping Method

    Model based control algorithms (two-stage

    optimal dynamic inversion and integrator back

    stepping) developed for MR damper based

    control are efficient and offer improvements in

     performance over FLC based control.

    Integral Back-stepping Method

    Integral Back-stepping Method Integral Back-stepping Method

    Studies on hybrid (MR damper + base isolation)

    vibration control using Shake Table

    MR damper

    Voltage-2.5

    Amplitude: 10 mm

    Frequency: 0.25 Hz

    •Experiments on hybrid base isolated

     building model using MR damper and

    sliding bearing have shown the efficacy

    of genetic algorithm based fuzzy logic

    control in mitigating the structural

    responses under near and far field

    excitations . FLC based algorithms

    account for structural nonlinearities

    effectively.

    •Acceleration in addition to velocity

    feedback results in improved control

     performance

    Simulink Model

    Simple base isolation-based control

    FLC rule base

    Ali, Sk. Faruqueand Ramaswamy, A. (2009)

    "Hybrid Structural Control using Magneto-

    rheological Dampers for Base Isolated

    Structures", IOP Smart Materials and Structures,

    doi 10.1088/0964-1726/18/5/055011

  • 8/20/2019 Prof.ramaswamy July17 APSS2010

    17/20

    Hybrid base isolation based control

    Both clipped optimal and optimal FLCs decrease the isolator displacement (J1) but at the cost of an increase in

    superstructure acceleration (J6). The dynamic inversion and the integrator back-stepping based controllers provide

    a tradeoff between the isolator displacement and superstructure acceleration responses, offering the engineer a

    suite of options for selecting a design.

    •Basic mechanical properties of the composite material are at variance with the predictions

     based on the law of mixtures.

    •Significant enhancement in energy absorption capacity but improvement in ductility limitedto the stage prior to the initiation of yielding in the longitudinal rebars.

    •Further, introduction of fibers in concrete results in a reduction in crack width and spacing

    Effect of fibers on mechanical properties of plain, reinforced and

    prestressed concrete

    (3)

    (2)

    (1)

    Fiber

    Matrix

    Thomas, J., and Ramaswamy, A. (2006) “Width and

    Spacing of Flexural Cracks in PartiallyPrestressed

    T-Beams with Steel Fibers in Partial / Full Depth”,

    ACI Structural Journal, 103(4), 568-576.

    Thomas, J., and Ramaswamy, A. (2006) “Load deflection

     performance of partiallyprestressed concrete T-

     beams with steel fibers in partial and full depth”,

    Structural Concrete Journal of FIB, 7(No. 2), 65-75.

    Thomas, J., and Ramaswamy, A. (2006) “Shear Strength

    of PartiallyPrestressed Concrete T-Beams with

    Steel Fibers in Partial/Full Depth”, ACI Structural

    Journal, 103(3), 427-435.

    Effect of fibers in PSC beams- flexure and shear response

    Flexure beamsUltimate

    moment,

    Mu

    shear span to depth ratio (a/d)(a/d)2(a/d)1

    Deep

     beams Shear beams

    Arch action controlBeam action controls

    After Kani (1967)

    Fiber addition shifts the failure mode from

     brittle to ductile failure and is found to be aneffective substitute for stirrups in

     prestressed concrete sections

    Thomas, J. and Ramaswamy, A. (2006) “Shear-flexure

    analysis of prestressed concrete T-beams containing

    steel fibers over partial or full depth” Structural

    Engineering International, Journal of the International

    Association of Bridge and Structural Engineers

    (IABSE), vol. 16(1), 66-73.

     

    F65FOCWO

    CF65FFCWFCF65FOCWFCF65FFCWOC

    C L

    C L

    F65FOCWOC

    F65FFCWFC

    F65FOCWFC

    F65FFCWOC

    FE modeling PSC beams – influence of bond slip between rebar and

    concrete ANSYS based FE modelincluding steel fiber effects

    and nonlinear phenomenon

    (bond-slip of longitudinal

    reinforcements, post-

    cracking tensile stiffness of

    the concrete, stress transfer

    across cracked concrete and

    load sustenance through the

     bridging of steel fibers at

    crack interface with

     progressive fiber pullout)shows good prediction of

    load-displacement response.

    1

    1

    3

    2

    2

    3

    Hydrostatic axis

    1 = 2 = 3Deviatoric axis

    Fiber reinforced

    concrete

    Plain concrete

    Thomas, J. and Ramaswamy, A (2006) “Finite Element Analysis

    of Shear Critical Prestressed SFRC Beams”, Computers and

    Concrete, Techno-Press, 3(1), 65-77.

     

    110mm

    FRPribbon of 15 mm width and 0.67 mm thick

    10 mm

    10 mm

    2 mm

    30 mm

    FRP strand of 2 mm diameter

    Sand coating applied to improve the bond

    10 mm

    (a) GFRPbar with FRPstrand helicallywound in opposite direction (G10St)

    (b) GFRPbar with FRP ribbonshelicallywoundin opposite direction (G10Ri)

    (c) GFRPbar with sand coating (G10Sa)

    Surface treatments made for GFRP rebars to improve the bond

    Hybrid steel core- FRP

    shield bar

    Stress strain curve of hybrid

    rebar & GFRP rebar

    Non-metallic rebars in reinforced

    concrete beams-DST project

     

    0

    200

    400

    600

    800

    1000

    1200

    0 0.01 0.02 0.03 0.04 0.05

    Strain

       S   t  r  e  s  s   (   M   P

      a   )

    Steel 6mmdia

    Steel 8&16mm dia

    GFRP Epoxy

    GFRP Polyester GFRP strip

           2       2       0 

    150    2    5

    5.5

    Details of GFRP stirrup

    Load-displacement response in

    steel and hybrid reinforced beams

    •Hybrid rebars consisting of

    a GFRP sheathing and steel

    core used to overcome the

     problem of steel corrosion

    and also augment the

    stiffness of the FRP rebar

    showed promise.

    Saikia, B., Thomas, J., Ramaswamy A. and Rao,

    K.S.N. (2005)-“Performance of Hybrid Rebars as

    Longitudinal Reinforcement in Normal Strength

    Concrete”, Materials and Structures: A RILEM

    Journal, vol. 38 (No.284), pp. 857-864

  • 8/20/2019 Prof.ramaswamy July17 APSS2010

    18/20

      P/2

    d

    250

    420

    520

    20

    Ld 

    4E

    L2

     b b

     bd bslip b

     

    )xx()xd(

    iu

    u b

    slip b

    ci  

     

    s1 

    s2 

    s3 

    cc 

    ct 

    As1 

    As2 

    As3 

    xu 

    ds3 ds2 

    ds1  Fs1 

    Fs2 

    Fs3 

    Cc 

    Tc 

    (a) (b) (c)

     b

    xct 

    D

    dcc dct 

    sisisi   Af F   •GFRP rebar concrete interface behavior resulting in

    rebar slip/pullout controls the overall response and

    failure mode of the beams. A block type rotation

    failure was observed for GFRP reinforced beams,

    while flexural failure was observed in geometrically

    similar control beams reinforced with steel rebars.

    •The relatively low elastic modulus of GFRP rebars, of

    the same order as concrete, resulted in large crack

    widths and deflections.

    0

    100

    200

    300

    400

    500

    0 20 40 60 80 100

    Mid-span deflection (mm)

       L  o  a   d

       (   k   N   )

    FS1SOC_expt

    F G1 SO C_ ex pt F G1 SO C_ Eq . ( 15 )F G1 GO C_ ex pt F G1 GO C_ Eq . ( 15 )F G1 SF PC _e xp t F G1 SF PC _E q. ( 15 )F G1 GF P C_ ex p t F G1 G FP C_ E q. ( 15 )

     0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 2 0

     

    0

    100

    200

    300

    0 2 4 6 8 10

    Crack width (mm)

       L  o  a   d

       (   k   N   )

    FS1SOC_expt

    F G1 SO C_ ex pt F G1 SO C_ Eq . (1 3)F G1 GO C_ ex pt F G1 GO C_ Eq . ( 13 )F G1 SF PC _e xp t F G 1S FP C_ Eq . ( 13 )F G1 GF PC _e xp t F G 1G FP C_ Eq . ( 13 )

     0 1 0 1 0 1 0 1 0 1 2

     

    3

    ctc

    usi

    u

    si

    5.0

    FRP

    FRP

    Adxd

    xDf 

    E

    2.0w

     

     barsof number 

     bdD2Act

     

      

     

      

      

      

      

    3

    g3

    cr c

    3

    maxL

    L8

    L

    a4

    L

    a3

    IE48

    PL

     

      

     

    g

    cr 

    I

    I1

    Non-Metallic Rebars in Reinforc ed Concrete Beams-DST project

    Saikia, B., Kumar, P., Thomas, J., Rao,

    K.S.N., and Ramaswamy A. (2007) “Serviceability

    Performance in Flexure of Beams with GFRP

    Rebars”, Construction and Building materials, 21,

    1709-1719

    Details of creep test setup- cylinder specimen in loaded condition in

    frame placed in walk-in humidity and temperature control chamber

    Studies on creep and shrinkage in normal and heavy density concrete (BRNS project)

    •Short term tests (various load levels at different ages of curing, relative humi dity and

    temperature).

    •Prediction of creep and shrinkage test results, and long term forecast of creep and

    shrinkage levels.

    •Micro-scale studies (SEM, indenting) of concrete properties•Hygro-thermo-chemo mechanical modeling of creep and shrinkage process

    Creep in normal density concrete at

    different ages of loading a) 45MPa

    concrete at 60% relative humidity b)

    35MPa concrete at 50% relative

    humidity, c) 25MPa heavy density

    concrete at 70% relative humidity-

    long term prediction using B3 model

    together with short term test data.c)

    b)a)

    The creep coefficient computed for normal concrete using the test data is 1.5 (for loading

    at 28 days) but the corresponding value for heavy density concrete is nearly 2.5.Shrinkage in H25 Concrete – 70%RH

    Shrinkage in M45 Concrete – 60%RH Shrinkage in M35 Concrete – 50%RH

    Shrinkage in normal density concrete a)

    45MPa concrete at 60% relative humidity b)

    35MPa concrete at 50% relative humidity,

    c) 25MPa heavy density concrete at 70%

    relative humidity-long term prediction using

    B3 model together with short term test data

    Shrinkage strains for normal concrete is

    about 0.0003 while for heavy density

    concrete it is nearly 0.0025

    H25-1year – Needle like structure showing

    un-hydrated ettringite (higher

    magnification) M45-1Year – Flower like structure showinghydrated mono-sulphate hydrate

    M45-1YEAR –EDAX ANALYSIS Micro indenting M45 concrete

    SEM and micro/nano-indenting to

    estimate creep

    The micro-structural examination of the different concretes, indicates that heavy

    density concrete has a slower hydration process than seen in normal concrete.

    Hemalatha, T., Ramaswamy, A., and Chandra Kishen J.M.,

    (under Review, February, 2010), Phase Identification of Self

    Compacting Concrete Using SEM and XRD, Journal of

    Materials in Civil Engineering, MTENG-491.

    Fly ash and silica fume addition results in gain

    in compressive strength of concrete but at a

    slower rate. The pore structure is denser in

    these mixes.

  • 8/20/2019 Prof.ramaswamy July17 APSS2010

    19/20

    Different repair schemes using FRP wraps

    FRP fabric used; application procedure on RC

    beams employed

    Repair of beams and beam column joint using Self-

    compacting concrete with fiber cocktails

    Repair of RC beams with GFRP/CFRP fabric wraps and HPFRC-CSIR Project

     

    •In comparison to FRP wraps,

    cement based repair has been

    found to offer enhanced ductility inthe restored section through the

    mobilization of the tensile

    reinforcement in the primary

    structure and the concrete in

    compression because of having the

    advantage of effective bonding

    with the primary concrete.

    Additionally inaccessible regions

    can be repaired through effectively

    modifying the concrete flow

     properties.

    Ramaswamy, A, and MuttasimAdam Ahmedi (2008) “New materials

    in structural concrete repair”, Journal of Structural Engineering, SERC,

    Chennai, India, v.35 (4), pp. 26-36, April-June

    Studies on beam column joints with seismic detailing-

    possible decongestion of reinforcement in the joint

    using staggered stirrups and fibers (IGCAR project)

    •Tests on exterior beam-column joints having seismic

    detailing-lab scale tests. Effect of staggered ties with

    addition of fibers studied.

    •Prototype structure too large to test in lab(1mx1m

    section).→ Size effect studies carried out on plain and

    fiber reinforced concrete and RC to obtain material

     properties for model validated on lab scale tests.

    With 1% fiber content by volume of concrete, the fibers

     permitted ties to be spaced at 100mm (instead of 50mm)

    without loss of strength and stiffness. At 150mm spacing ofties (maximum permitted by IS13920), longitudinal steel in

    the joint (beam) yielded resulting in larger deformations.

    Studies on beam-column

     joints-cyclic loads with repair

    •Load deflection response of beam

    column Joint under cyclic loading-

     before and after repair.

    •Load is shared by rebars within the

     beam and within the repair material

    leading to a stiffer stronger joint.

    Ramaswamy, A., Adam, M.A. and RatnaKumar, J.

    (Under Review, November 2008) “Fiberreinforced self compacting concrete based repair

    of structural concrete elements”, Construction &

    Building Materials.

    •Load Test of Un-disturbed arch for

    assessing elastic rebound. Two gradually

    loaded trucks placed back to back with axles

    on the crown were used for the test. This

    indicated full rebound. Some cracks seen on

    masonry. Therefore it was feasible to repair.

    Jaiprasad, R., Srinivasamurthy, B.R., Ramaswamy, A., Jaigopal, S. (2006) “Rehabilitation on 140 Years Old Brick Masonry Arch Bridge Across

    VrishabhavathiValley in Bangalore, Karnataka-Case Study" printed in Indian Roads Congress (IRC) Journal Volume 67 Part 1, 121-126

    FE Analysis of bridge under 70R (IRC)

    loading-displacements and stresses in

    interior concrete liner, exterior concrete

    liner and RC deck and supporting elements

    were examined to ensure no cracking

    (minimal tensile stresses) is possible under

    design loads.

  • 8/20/2019 Prof.ramaswamy July17 APSS2010

    20/20

    Based on load test and FE analysis a scheme of

    rehabilitation is identified under 70R-IRC

    loading.

    Removal of overburden soil replaced by concrete

    liner on intrados and extrados of arch and a

    framing system rising from arch and deck of RC

    assessed. The existing masonry arch encased in

     between the concrete liners. The soil is removedin stages and replaced by new system. Carriage

    way widened from 6m to 8m to include one side

     pathway

    Cost of new bridge Rupees 63 Lakhs

    Cost of repair to old bridge Rupees35 Lakhs

    Thank you