Prof.johnson July16 APSS2010

10

Transcript of Prof.johnson July16 APSS2010

5/13/2018 Prof.johnson July16 APSS2010 - slidepdf.com

http://slidepdf.com/reader/full/profjohnson-july16-apss2010 1/9

5/13/2018 Prof.johnson July16 APSS2010 - slidepdf.com

http://slidepdf.com/reader/full/profjohnson-july16-apss2010 2/9

5/13/2018 Prof.johnson July16 APSS2010 - slidepdf.com

http://slidepdf.com/reader/full/profjohnson-july16-apss2010 3/9

USC ViterbiSchool of Engineering

Example 2DOF System

Unforced Case — free responses 

Review SDOF: modal free responses of is

where the ai & bi , or c i & " i , depend on and

k 1!=!4 

k 2!=!2 

2

1

 ˙q i  +" i 

2q i  = 0

 q i (t ) =a i sin" i t +b i cos" i t = c i sin(" i t +# i )

 q i (0) !!!!!!! q i (0)

For example, with initial conditions:

q 1 (0) =1=   a 

1sin0+   b 

1cos0 =c 

1sin(" 

1)

q 1  (0) = 0 =a 1# 1cos0 $b 1# 1sin0 = c 1# 1cos(" 1)

q 2(0) = 0 =   a 2 sin0+   b 2 cos0 = c 2 sin(" 2)

q 2(0) =1=a 2# 

2cos0 $b 2# 

2sin0 = c 2# 

2cos(" 

2)

then: a1=0, b1=1, c 1=1, " 1=–! /2 and a 2=1/2, b 2=0, c 2=1/2, " 2=0.

q 1 (t ) = cost 

q 2(t ) = 0.5sin2t 

More generally, the responses in the original coordinates are:

u(t ) = "i a i sin# 

i t +b 

i cos# 

i t [ ]

$ = c i "i sin(# 

i t +% 

i )

$

 

= ai sin" 

i t +bi cos" 

i t [ ]i 

# = ci sin(" 

i t +$ i )

#

USC ViterbiSchool of Engineering

Example 2DOF System

Example Free Responses 

Displaced in shape of: 2nd mode1st mode combination

USC ViterbiSchool of Engineering

c 2!=!0.1

Example 2DOF System

Unforced Case with Damping  

Let’s add damping. (What is damping???)

k 1!=!4 

k 2!=!2 

2

1

k 1!=!4 k 2!=!1m 1!=

!2 m 2

!=

!1

c 1!=!0.2

c 2!=!0.1

c 1!=!0.2

 Already know  " =

1   1

2 #1

% & 

( ) . Let u ="q   and premultiply by  " T  

M ˙u+Cu+Ku =0

 

C =

c 1+c 

2"c 

2

"c 2

c 2

$ % 

' ( =

  0.3 "0.1

"0.1   0.1

$ % 

' ( 

1   2

1 "1

$ % 

' ( 

2 0

0 1

$ % 

' ( 

1   1

2 "1

$ % 

' ( 

˙q 1

˙q 2

) * + 

, - . +

1   2

1 "1

$ % 

' ( 

0.3 "0.1

"0.1   0.1

$ % 

' ( 

1   1

2 "1

$ % 

' ( q 

1

q 2

) * + 

, - . +

1   2

1 "1

$ % 

' ( 

6 "2

"2   2

$ % 

' ( 

1   1

2 "1

$ % 

' ( q 

1

q 2

) * + 

, - . 

=

6 0

0 3

$ % 

' ( 

˙q 1

˙q 2

) * + 

, - . +

0.3 0

0 0.6

$ % 

' ( q 

1

q 2

) * + 

, - . +

6 0

0 12

$ % 

' ( q 

1

q 2

) * + 

, - . =

0

0

) * + 

, - . 

"TM" ˙q+"TC"q+"TK"q =0

 

"  

˙q 1 +

0.05q 1 +

1q 1 = 0

˙q 2+0.20q 

2+ 4q 

2= 0

 ˙q i  +2" i # i 

˙q i  +# i q i  = 0

 

" 1 

=  1, # 1=0.025 =2.5%

" 2 =

2, # 2 =

0.050 =5.0%

USC ViterbiSchool of Engineering

c 2!=!0.1

Example 2DOF System

Unforced Case with Damping — free response  

So modal damped free responses are

where the ai & bi , or c i & " i , depend on and , and.

k 1!=!4 

k 2!=!2 

2

1

k 1!=!4 k 2!=!1m 1!=

!2 m 2

!=

!1

c 1!=!0.2

c 2!=!0.1

c 1!=!0.2

 q i (t ) =a i e "# i $ i t sin$ i 

dt +b i e "# i $ i t cos$ i 

dt = c i e "# i $ i t sin($ i 

dt +% i )

 q i (0) !!!!!!! q i (0)

More generally, the responses in the original coordinates are:

u(t ) = e "# i $ i t %

i a i sin$ 

dt +b 

i cos$ 

dt [ ]

& = c i %i e "# i $ i t sin($ 

dt +

&

= e "# i $ i t  a

i sin$ 

dt +b

i cos$ 

dt [ ]

& = ci e "# i $ i t sin($ 

dt +' 

&

 " i d=" i [1#$  i 

2]1/2

USC ViterbiSchool of Engineering

General MDOF Systems

Equation of motion: M˙

u+C˙

u+Ku =Ef

First use the undamped, unforced equation to find natural

frequencies and mode shapes:(M" 

2#K)$ =0 or (" 

2I#M

#1K)$ =0

The mode shapes have the properties that

"i TM" j  =M i # ij  =

M i , i = j 

0, i $ j 

% & ' 

"i TK" j  =K i # ij  =

K i , i = j 

0, i $ j 

% & ' 

The fact that !i TM! j = 0 and !i 

TK! j = 0 for i  !  j means the

mode shapes are orthogonal . Note also that K i /M i = ! i 2.

Note: some systems have (M! 2 – K) be less than rank (n – 1), whichimplies there are multiple modes at one or more frequencies.

Note: some systems (e.g., satellites) may have ! = 0 be a solution;

this implies one or more rigid body modes in which the wholestructure moves or rotates, possibly without internal deformation.

USC ViterbiSchool of Engineering

General MDOF Systems

Forced Harmonic Response

Forced response of a linear system is the sum of the freeresponse from any non-zero initial conditions and theeffects of the external forcing.

Let us assume the initial conditions are zero and consider a harmonic excitation.

M ˙u +Cu+Ku =Ef =Ef0sin" t 

Then the response is also harmonic. This is most easily

demonstrated using a SDOF example …

5/13/2018 Prof.johnson July16 APSS2010 - slidepdf.com

http://slidepdf.com/reader/full/profjohnson-july16-apss2010 4/9

5/13/2018 Prof.johnson July16 APSS2010 - slidepdf.com

http://slidepdf.com/reader/full/profjohnson-july16-apss2010 5/9

USC ViterbiSchool of Engineering

Damping Models

In the previous damped 2DOF example, we used specific

damping coefficients in the model: c 1 = 0.2, c 2 = 0.1.

k 1!=!4 

k 2!=!2 

2

1c 2!=!0.1

c 1!=!0.2 

2 0

0 1

# $ 

& ' 

˙u 1

˙u 2

( ) * 

+ , - +

  0.3 .0.1

.0.1   0.1

# $ 

& ' u 1

u 2

( ) * 

+ , - +

4 +2 .2

.2   2

# $ 

& ' u 1

u 2

( ) * 

+ , - =

0

0

( ) * 

+ , - 

" TC" =

1   2

1 #1

% & 

( ) 

0.4 #0.2

#0.2   0.2

% & 

( ) 1   1

2 #1

% & 

( ) =

  0.4 #0.2

#0.2   1

% & 

( ) 

"  

˙q 1 +

1

15q 1 #

1

30q 2 +

1q 1 

= 0

˙q 2+  

1

3q 2#

1

15q 1+ 4q 

2= 0

 

" 1 

=  1, # 1=2.5%

" 2=2, # 

2=5.0%

We found that the damping #TC# diagonalized.

However, a different choice (c 1 = 0.2, c 2 = 0.2) may not:

0.2 

c 2!=!0.1

k 1!=!4 k 2!=!1m 1!=!2 m 2!=!1

c 1!=!0.2 0.2 

This is what is called a non-proportionally 

damped or non-classically damped system.

The equations

are still coupled!

We will see later how to solve systems like this.(! 1=1.00037, ! 2=1.99926, & 1=3.3313%, & 2=8.3368%)

USC ViterbiSchool of Engineering

Damping Models

Special Cases of Proportional Damping: Modal Damping  

We often do not know the damping coefficients (while mass

and stiffness can be computed or easily measured, dampingis much harder to quantify).

Damping ratios & i  in individual modes are easier to estimate(e.g., excite the structure in a particular mode, and estimate &  from the decay e –&! t ; repeat for other modes).

So, one way to construct the full damping matrix C is byassuming a modal decomposition

" TC" =

! 02# i $ i M i 

0 !

' ' ' 

* * * 

C =" # T! 0

2$ i % i M i 

0 !

( ( ( 

+ + + " #1 =M"

! 02$ i % i 

0 !

( ( ( 

+ + + " #1

USC ViterbiSchool of Engineering

Damping Models

Special Cases of Proportional Damping: Modal Damping  

So, the equation of motion is: M ˙u+M"!

2# i $ i 

!

& ' ' 

) * * " +1u+Ku =0

Decouple method 1: let u = #q and premultiply by #T:

" TM" ˙q+" TM"!

2# i $ i 

!

& ' ' 

) * * " +1"q+" TK"q =0

!

M i 

!

& ' ' 

) * * ˙q+

!

M i 

!

& ' ' 

) * * 

!

2# i $ i 

!

& ' ' 

) * * q+

!

K i 

!

& ' ' 

) * * q =0

!

M i 

!

& ' ' 

) * * ˙q+

!

M i 

!

& ' ' 

) * * 

!

2# i $ i 

!

& ' ' 

) * * q+

!

K i 

!

& ' ' 

) * * q =0

˙q+

!

2# i $ i 

!

& ' 

) * 

* ˙q+

!

$ i 

2

!

& ' 

) * 

* q=

0

˙q i  +2# i $ i q i  +$ i 2q i  =0, i =1,...,n 

USC ViterbiSchool of Engineering

Damping Models

Special Cases of Proportional Damping: Modal Damping  

So, the equation of motion is: M ˙u+M"!

2# i $ i 

!

& ' ' 

) * * " +1u+Ku

Decouple method 2: let u = #q and premultiply by # –1M –1:

" #1M#1M" ˙q+" #1M#1M"!

2$ i % i 

!

' ( ( 

* + + " #1"q+" #1M#1K"q =

" #1" ˙q+" #1"!

2$ i % i 

!

' ( ( 

* + + " #1"q+" #1M#1K"q =0

 

Let " =#$1M

$1K#

  %  M#" =K#  %  #T

M#" =#TK#

  %   ! M i 

!

' ( 

* + 

+ " =

!

K i 

!

' ( 

* + 

%  " =

!

K i  M i 

!

' ( ( 

* + + =

!

, i 2

' ( ( 

˙q+

!

2" i # i 

!

% & & 

( ) ) q+

!

# i 2

!

% & & 

( ) ) q =0

˙q i  +2" i # i q i  +# i 2q i  = 0, i =1,...,n 

USC ViterbiSchool of Engineering

Damping Models

Special Cases of Proportional Damping: Rayleigh Damping  

Rayleigh damping (1877) is given by C = ' M + ( K.Since both M and K diagonalize with #, it is easy to see

that #TC# = ' #TM# + ( #TK# is diagonal.

The result: 2& i ! i = ' + (! i 2 or  & i = (' /! i + (! i )/2.

Since there are only two parameters, ' and ( , we can

choose the damping of two modes; all other modal

damping ratios are given by the above equation.

If we know (or choose) & r and & s then' = 2! r ! s(& r ! s – & s! r ) / (! s

2 – ! r 2)

( = 2(& s! s – & r ! r ) / (! s2 – ! r 

2)& i = (' /! i + (! i )/2

USC ViterbiSchool of Engineering

Damping Models

Conditions for Proportional Damping  

It can be shown that the system is classically damped if either of the following are true:• C = M F(M –1K) + K G(K –1M)

• C = F(KM –1)!M + G(MK –1) K for some matrix functions F(") and G(").

Note: should add references here. 

5/13/2018 Prof.johnson July16 APSS2010 - slidepdf.com

http://slidepdf.com/reader/full/profjohnson-july16-apss2010 6/9

USC ViterbiSchool of Engineering

Laplace and Fourier Transforms

Time history p(t ) is related to its

Laplace transform P (s) and Fourier Transform P ( j ! ) as

P (s ) = p (t )e "st dt "#

#

 $ 

 

p (t ) =1

2" 

P (s )e st ds 

#$

$

 % 

 P ( j " ) = p (t )e # j " t dt 

#$

$

 % 

 

p (t ) =1

2" P ( j # )e  j # t d # 

$%

%

 & 

Laplace transform P (s) may also be denoted L{ p(t )}

and Fourier Transform P ( j ! ) by F { p(t )}.

Note: L p (t ){ } = p (t )e "st dt "#

#

 $  = pe "st "#

#+ p (t )se "st dt 

"#

#

 $  = s L p (t ){ }

(assuming p(t )$0 as t $#)integration by parts

Similarly: F  p (t ){ } = j " F  p (t ){ }

USC ViterbiSchool of Engineering

Transfer Functions

SDOF  

Consider single degree of freedom system m u +c u +ku =f 

 

ms 2U (s )+csU (s )+kU (s ) =F (s )

(ms 2+cs +k )U (s ) =F (s )

 

U (s )

F (s )=

1

ms 2+cs +k 

Laplace transform both sides:

Or, rearranging:

U ( j " )

F ( j " )=

1

m ( j " )2+cj "

=

1

k #m " 2+cj

Could do similar using Fourier transform:

If f (t ) = F 0 sin! t , then

u (t ) = F 0

1

k "m # 2+cj # 

sin(# t +$ )

 

"  = angle1

k #m $ 2+cj $ 

& ' 

) * = tan

#1 c 

m $ 2 #k 

These are calledtransfer function

USC ViterbiSchool of Engineering

Transfer Functions

SDOF Example 

For example:

k !=!8 

2c !=!0.2

 2˙u +0.2u +8u =f 

10−1

100

101

10−2

10−1

100

Frequency [rads/sec]

   M  a  g  n   i   t  u   d  e

10−1

100

101

−150

−100

−50

0

Frequency [rads/sec]

   P   h  a  s  e   [   d

  e  g  r  e  e  s   ]

10−1

100

101

−2

0

2

Frequency [rads/sec]

   R  e  a   l   P  a  r   t

10−1

100

101

−3

−2

−1

0

Frequency [rads/sec]

   I  m  a  g   i  n  a  r  y   P  a  r   t

 

U (s )

F (s )=

1/2

s 2+0.1s + 4 Graph with s = j ! :

USC ViterbiSchool of Engineering

Transfer Functions

SDOF Example — Poles 

For example:

k !=!8 

2c !=!0.2

 2˙u +0.2u +8u =f 

 

U (s )

F (s )=

1/2

s 2+0.1s + 4

Roots of the denominator polynomial are called the poles 

of the system:

s poles ="0.1± 0.12 " 4

2= "0.05 ± j  3.9975 # "0.05 ±1.9994

R

Im

USC ViterbiSchool of Engineering

Transfer Functions

SDOF Example — Poles and Zeros 

Some TFs have a numerator that is also a polynomial in s.For example, the transfer function from ground accelerationto the absolute acceleration of a SDOF system:

k !=!8 

2c !=!0.2

 2˙u +0.2u +8u = "2˙v g

 

L ˙v (t ){ }

L ˙v g(t ){ }=

L ˙u + ˙v g{ }L ˙v g(t ){ }

=

L "0.1u " 4u { }

L ˙v g(t ){ }

= ("0.1s " 4)L u { }

L ˙v g(t ){ }=

0.1s + 4

s 2+0.1s + 4

Roots of the numerator polynomial are

called the zeros of the system:

s root =

"40

Re

Im

USC ViterbiSchool of Engineering

Transfer Functions

MDOF  

For a MDOF system, must be careful to handle matricescorrectly in determining the transfer function:

M ˙u+Cu+Ku =Ef

 

Ms 2+Cs +K[ ]U(s ) =EF(s )

U(s ) = Ms 2+Cs +K[ ]

"1

EF(s )

Now, the transfer function [Ms2 + Cs + K] –1E is a matrix,

each element of which is a scalar transfer function.

5/13/2018 Prof.johnson July16 APSS2010 - slidepdf.com

http://slidepdf.com/reader/full/profjohnson-july16-apss2010 7/9

5/13/2018 Prof.johnson July16 APSS2010 - slidepdf.com

http://slidepdf.com/reader/full/profjohnson-july16-apss2010 8/9

USC ViterbiSchool of Engineering

State-Space Formulation

Unforced Response — Mode Shapes 

If the damping term does not decouple, then the state-

space approach must be used and

must be solved directly to get the complex eigenvalues and

complex eigenvectors. Once the the eigenvalues ) i ,) i * are

found, then ! i = |) i | and & i = –Re{) i }/(2! i ).

If some eigenvalues are purely real, then no oscillator 

mode corresponds to that eigenvalue.

(" 2I+ " M

#1C +M

#1K)$

d=0

USC ViterbiSchool of Engineering

k 3!=!a  

1c 3!=!c  

k 2!=!a  

1c 2!=!c  

State-Space Formulation

Visualization of Non-Proportional Damping  

Let’s look at an example of a

3DOF structure with classicaldamping (-c = 0). The natural

frequencies & damping are:! 1 = 1 , & 1 = 3.14%;! 2 = 2.80, & 2 = 8.80%;

! 3 = 4.05, & 3 = 12.72%.

A non-classically dampedversion with additional

damping in the first floor (-c = 15c ) has natural

frequencies & damping:! 1 = 1.15, & 1 = 23.6%;! 2 = 2.71, & 2 = 85.9%;

! 3 = 3.64, & 3 = 15.7%.

k 1!=!a  

1

c 1!=!c !+!-c  

c !=!0.01a 

a !=!199.3233(so first natural

frequency is 1!Hz)

"0.328   0.737 "0.591

"0.591   0.328   0.737

"0.737 "0.591 "0.328

  0.065± 2.06 j  "1.142!12.9 j    1.913±1

  0.117± 3.71 j  "0.508!   5.8 j  "2.385!1

  0.146± 4.63 j    0.916±10.4 j    1.061±  

% % % % % % % 

"0.233! 0.19 j  "0.545! 3.99 j    0.003± 0

"0.557! 0.08 j  "0.977! 0.93 j    0.537! 0

"0.737 "0.591 "0.328

"0.966±1.97 j  "26.85± 63.2 j    3.749! 0

  0.409± 4.04 j    6.213± 22.1 j  "3.575!1

  1.260± 5.17 j    8.655±   5.2 j    1.174± 7

% % % % % % % 

USC ViterbiSchool of Engineering

State-Space Formulation

Visualization of Non-Proportional Damping  

ProportionallyDamped:

Non-Proportionally

Damped:

USC ViterbiSchool of Engineering

State-Space Formulation

Unforced Free Response 

The unforced free response of the state-space system

could be found through modal decomposition, but there is aneasier way. To compute the response at time t , break the time

up into r smaller steps. Given the definition of a derivative:

˙" =A"

 "(1

r t ) # "(0

r t )+ " 1

r t # "(0)+A"(0) 1

r t = [I+A t 

r ]"(0)

The same can be used to approximate ( after each t /r .

"(2r t ) # [I+A t 

r ]"(1

r $t ) = [I+A t 

r ]2"(0)

  !

"(r 

r t ) # [I+A t 

r ]"(r %1

r $t ) = [I+A t 

r ]r "(0)

To eliminate the approximation, let r $#.

"(t ) = [I+ (At ) + 1

2!(At )

2+

1

3!(At )

3+!]"(0)

"(t ) =e At "(0)

USC ViterbiSchool of Engineering

State-Space Formulation

Unforced Free Response — Notes about eAt  

eAt is a matrix; its elements are not the exponential of theelements of At . The computation of eAt can be computedthrough the power series formulation, though that is not

computationally efficient.

An efficient computation uses the fact that the eigenvectors of 

a power of a matrix are the same as those of the matrix itself.

If A+ = +., where + is the eigenmatrix and . is a diagonalmatrix of eigenvalues, then it can be shown that An+ = +.n.

Thus, e At 

= I+ (At ) + 1

2!(At )

2+

1

3!(At )

3+!

="#1" +"#1$"t +1

2!"#1$"2

t 2+

1

3!"#1$3"t 

3+!

="#1[I+ ($t ) + 1

2!($t )

2+

1

3!($t )

3+!]"

= "#1

"

e % i t 

"

( ( ( 

+ + + 

"

USC ViterbiSchool of Engineering

State-Space Formulation

Impulse Response 

The state impulse response matrix is given by

H" =AH" +B# (t ), H" (0$) = 0

Hy =CyH" +Dy# (t )

Integrating from t = 0 – to t = 0+, will give the initial conditions

that make a free response equal to the impulse response.

H"(0

+

) #H"(0#) =AH"

avg(0

+

#0#)+B

0 0

H" (0+

) =B

For t > 0, the impulse response is just an unforced free

response (which was solved several slides ago), so

H"(t ) =e 

At H

"(0

+

)

H" (t ) =e At B

5/13/2018 Prof.johnson July16 APSS2010 - slidepdf.com

http://slidepdf.com/reader/full/profjohnson-july16-apss2010 9/9

USC ViterbiSchool of Engineering

State-Space Formulation

Forced Response 

The forced response is, then, the combination of the initial

condition free response and the effects of the force

"(t ) =e At "(0)+ e 

A(t #$  )Bf($ )d $ 

0

 % 

Add Example!USC ViterbiSchool of Engineering

Discrete-Time State-Space System

We’ve already seen the free response of the unforced state-

space system . So, ((t  + -t ) = eA-t ((t ).

The effect of the forced response of in [t , t  + -t ]

is the superposition of the free response with the impulse

response of f during the time step.

˙" =A"

Defining ((k ) = ((k -t ), then the discrete-time state space form

"(k +1) = Ad"(k )+B

df(k )

y(k ) =Cy"(k )+Dyf(k )

 ˙" =A" +Bf

 "(t +

#t )=e 

A#t 

"(t )+ e 

A(t +#t $%  )

t +#t 

 & Bf

(% 

)d % 

In the interval [t , t  + -t ), if f($ ) is constant (a zero-order hold )

"(t +#t ) =e A#t 

"(t ) + e A(#t $%  )

0

#t 

 &  d % 

( ) 

+ , Bf(t )

Ad

Bd

Ad Bd

0 I

# $ 

& ' =e 

A

0

# $ 

Note: one can also assume a first-o

(linear) hold on f to determine Bd.

USC ViterbiSchool of Engineering

Distributed Parameter Systems

Euler-Bernoulli Beam Example

Continuous systems (e.g., beams, plates, shells, or more

complex structures) also have modes of vibration (generallyinfinitely many). Let’s look at an Euler-Bernoulli beam;

transverse displacement v ( x ,t ) must satisfy the partialdifferential equation of motion where (")/ = 0/0 x :

(EI  " " v  " " ) + # A ˙v =f (x ,t )

v (x ,t )

EI , * A

Substitute v ( x ,t ) = V ( x )T (t ) into

the unforced, undamped system.

(EI  " " V  " " ) T + # AV T = 0

 

(EI  " " V  " " )

# AV = $

˙T 

LHS is a function of  x , the RHS of t , so both must be constant.

=" 2

 ˙T +" 

2T = 0

  " " " " V  # $ 4V =0

Assuming EI and *  A are constant, let ) 4 = [*  A! 2/EI ]1/2 so:

V (x ) =c 1sinh" x +c 

2cosh" x +c 

3sin" x +c 

4cos" x 

 T (t ) = c sin(" t +# )

USC ViterbiSchool of Engineering

Distributed Parameter Systems

Euler-Bernoulli Beam Example — exact simply-supported  

The coefficients c i depend on the boundary conditions:

•  V = 0 and V / = 0 at a fixed (cantilevered) end

•  V = 0 and V // = 0 at a simply supported end

•  V // = 0 and V  /// = 0 at a free end

1. Simply supported at both ends: c 2 = c 4 = 0 

c 1sinh" L +   c 

3sin" L = 0

" 2c 1sinh" L # " 

2c 3 sin" L = 0

 $  sinh" L sin" L

" 2sinh" L #" 

2sin" L

= 0

The non-trivial solution is ) i L = i ! where n = 1, 2, …; the

resulting eigenfunctions are V i ( x ) = C sin i !  x /L and thenatural frequencies are ! i = (i ! /L)2 [*  A/EI ]1/2. 

! 3!=!9! 1

! 2!=!4! 1! 1

USC ViterbiSchool of Engineering

Distributed Parameter Systems

Euler-Bernoulli Beam Example — exact cantilevered  

cos" L cosh" L +1= 0

which has solutions ) L = 1.8751, 4.6941, 7.8548, 10.996, …;

larger solutions are approximately ! (1"+ 2n)/2. 

! 3!=!17.55! 1

! 2!=!6.27! 1

! 1

2. Cantilevered at x = 0 and free at x = L: c 4 = –c 2, c 3 = –c 1 Using the remaining equations leads to 

" 1=

3.516

L2

EI 

# A 

" 2=

22.03

L2

EI 

# A 

" 3=

61.70

L2

EI 

# A

 V i (x ) =C  cosh" 

i x # cos" 

i x #

cosh" i L+cos" i L

sinh" i L+sin" i Lsinh" 

i x # sin" 

i x [ ]{ }

USC ViterbiSchool of Engineering

Distributed Parameter Systems

Euler-Bernoulli Beam Example — assumed modes method  

Sometimes solving for the exact mode shapes from thepartial differential equations of motion is difficult.

An alternate approach is to assume a set of mode shapes

V i ( x ) that satisfy the boundary conditions. Then, Lagrange’s

equations can be used to determine the equations of motion.

For example, for an Euler-Bernoulli beam:

V =1

2EI ( " " v  )2dx 

0

L

 #  =

1

2v i 

2(t ) EI  " " V i 

2(x )dx 

0

L

 # i 

$

T =1

2% Av 

2dx 

0

L

 #  =

1

2v i 

2(t ) % AV 

2(x )dx 

0

L

 # i 

$

 

f i (t ) = f (x ,t )V i (x )d0

L

 " 

 

v (x ,t ) = V i (x )v 

i (t 

"

Which leads to: M˙v +Kv = f

 

k ij  = EI  " " V i   

(x ) " " V  j (x )dx 0

L

 #  

m ij  = " AV i (x )V  j (x )dx 0

L

 #