Porphyry Introduction-1ACHF SEG10Lombok

113
Chuquicamata, Chile Porphyry Ore Deposits: Their geology and genesis Anthony Harris, CODES University of Tasmania

description

Materi Porphyry

Transcript of Porphyry Introduction-1ACHF SEG10Lombok

Page 1: Porphyry Introduction-1ACHF SEG10Lombok

Chuquicamata, ChileChuquicamata, Chile

Porphyry Ore Deposits:Their geology and genesisPorphyry Ore Deposits:Their geology and genesis

Anthony Harris, CODES University of Tasmania

Page 2: Porphyry Introduction-1ACHF SEG10Lombok

Porphyry Deposits - Characteristics

Large tonnage and low grade bulk mineable deposits

Large volumes of hydrothermal alteration

Stockwork and breccia-hosted ore

Related to porphyritic intrusions

Supergene enrichment

Cadia Hill Cu-Au porphyry, NSW

Page 3: Porphyry Introduction-1ACHF SEG10Lombok

Fracture controlled sulfide mineralisation localized inand around porphyritic intrusions

Porphyry Deposits - Characteristics

Page 4: Porphyry Introduction-1ACHF SEG10Lombok

Bingham, USA

Porphyry Deposits - Characteristics

Page 5: Porphyry Introduction-1ACHF SEG10Lombok

Striking relationship between Cu-bearing hydrothermal veins and igneous rocks that display porphyritic texture

A variety of textures preserve aqueous phase separation (and bubble formation) and volatile streaming in the melt

Porphyritic rocksPorphyritic rocks

Decompression volatile exsolution + rapid crystallization of residual melt

Bingham, USA

Page 6: Porphyry Introduction-1ACHF SEG10Lombok

from Shinohara and Hedenquist, 1997

Deposit Genesis

Page 7: Porphyry Introduction-1ACHF SEG10Lombok

Cu Mo (*10)

Au (*10,000)

Calc-alkalic

Alkalic

High-K calc-alkalic

Increasing SiO2

content of magmas

• Increasing magnetite contents in early-formed veins and alteration assemblages

• Decreasing depth of emplacement

isla

nd a

rc s

ettin

gs

Continental arc settings

Craton

Classification by Metal Content

Modified from Kesler (1973) and Thompson (1994)

Page 8: Porphyry Introduction-1ACHF SEG10Lombok

Giant porphyry copper deposits

El Teniente, Chile (82 Mt of contained Cu)

Page 9: Porphyry Introduction-1ACHF SEG10Lombok

Giant porphyry copper deposits

0

10

20

30

40

50

60

70

80

90

Con

tain

ed

cop

per

meta

l (M

t)

Behemothian

Super-giant

Oyu

Tolg

oi

Akto

gay-A

iderly

El Te

nie

nte

Rio

Bla

nco

Gra

sb

erg

Los P

ela

mb

res

Cerro

Colo

rad

o

La G

ran

ja

Reko D

iq

Cu-Mo deposits

Ch

uq

uic

am

ata

Colla

hu

asi

Bin

gh

am

Escon

did

a

Rad

om

iro To

mic

El S

alv

ad

or

Cu-Au deposits

Bu

tte

Can

an

ea

Lon

e S

tar

More

nci - M

etc

alf

Peb

ble

East

Resolu

tion

Pim

a

Cu

ajo

ne

Peb

ble

West

Cu-Au-Mo deposits

Page 10: Porphyry Introduction-1ACHF SEG10Lombok

Where in the world? The largest porphyry Cu-Mo deposits / districts

Porphyry Cu-Mo

Northern ChileNorthern Chile

Aktogay-AiderlyAktogay-Aiderly

Southern PeruSouthern PeruLa GranjaLa Granja

ButteButte

SW Arizona /Sonora

SW Arizona /Sonora

Central ChileCentral Chile

Map source: http://www.gebco.net

Page 11: Porphyry Introduction-1ACHF SEG10Lombok

Giant gold-rich porphyry deposits

Bingham, USA (1800 t of contained Au)

Page 12: Porphyry Introduction-1ACHF SEG10Lombok

0

400

800

1200

1600

2000

2400

2800

Gra

sb

erg

Bin

gh

am

Oyu

Tolg

oi

Peb

ble

East

Cad

ia d

istric

t

Peb

ble

West

Kal'm

akyr

Daln

eye

FS

E/L

ep

an

to

Cerro

Casale

Pan

gu

na

Ok Te

di

Reko D

iq

Batu

Hija

u

Min

as C

on

ga

Tam

pakan

Escon

did

a

El Te

nie

nte

Galo

re C

reek

Alu

mb

rera

Frie

da R

iver

Atla

s

Sar C

hesh

meh

Ch

uq

uic

am

ata

Sip

ilay

Gold

(to

nn

es)

Giant gold-rich porphyry deposits

Cu-Mo deposits

Cu-Au deposits

Cu-Au-Mo deposits

Page 13: Porphyry Introduction-1ACHF SEG10Lombok

BatuHijauBatuHijau

Porphyry Cu-Au

Oyu TolgoiOyu Tolgoi

CerroColoradoCerroColorado

Bajo de laAlumbreraBajo de laAlumbrera

Minas CongaMinas Conga

Reko Diq

Reko Diq

CadiaCadia

AlmalykAlmalyk

PangunaPanguna

PhilippinesPhilippines

PNG – Irian JayaPNG – Irian Jaya

GaloreCreekGaloreCreek DalneyeDalneye

Cerro CasaleCerro Casale

Map source: http://www.gebco.net

Locations of giant Au-rich porphyry deposits

Page 14: Porphyry Introduction-1ACHF SEG10Lombok

alkalic

sub-alkalic

40 50 60 70

4

8

12

16

SiO2 (wt%)

Na 2

O +

K2O

(w

t%)

High-K calc-alkalic

Cu-Au(-Mo)

Silica-undersaturated alkalic

Cu-Au

Silica-saturated alkalic

Cu-Au

Modified from Lang et al., 1995

• Porphyry Cu-Au-Mo deposit classification

Alkalic or Subalkalic?

Arizona calc-alkalic

Cu-Mo

Cu-Au

SW Pacificcalc-alkalic

Free gold in quartz-bornite vein, Ridgeway, NSW

Classification can be difficult due to K- and Na-metasomatism

Page 15: Porphyry Introduction-1ACHF SEG10Lombok

Modified from Blevin, 2003

Magma Chemistry

Cu - Au

Sn ± W

Mo

WW - Mo

Cu - Mo

Sn

Increasingfractionation

Increasingoxidation

Rb/Sr

Fe2O3 /FeO

101

100

10-1

10-110-210-3 102101100 103

Metal endowment ofintrusion-related deposits controlled by the magma’s:• oxidation state• compositional

evolution (e.g., SiO2)

Anhydrite phenocryst with apatite inclusions, North Parkes, NSW

Page 16: Porphyry Introduction-1ACHF SEG10Lombok

Epochs of porphyry deposit formation

Calc-alkalic

High-K calc-alkalicAlkalic

Magmatic affinity Tectonic Setting

0 100 200 300 400 500Age (Ma)Age (Ma)

0 100 200 300 400 5000

10

20

Continental arcIsland arcCollision zoneArc of unknown type

Data source: Kirkham & Dunne, 1999

Page 17: Porphyry Introduction-1ACHF SEG10Lombok

Coppins GapPorphyry Mo

~2800 Ma

CadiaPorphyry Cu-Au ( Mo)

~440 Ma

BinghamPorphyry Cu-Au-Mo

~37 Ma

GrasbergPorphyry Cu-Mo-Au

~2.5 Ma

Page 18: Porphyry Introduction-1ACHF SEG10Lombok

Geodynamic Settings

Cadia (440 Ma)2,979 Mt @ 0.45 g/t Au, 0.26 % Cu

Cadia (440 Ma)2,979 Mt @ 0.45 g/t Au, 0.26 % Cu

Lihir (0.9 – 0.4 Ma)~44 Moz AuLihir (0.9 – 0.4 Ma)~44 Moz Au

Emperor (3.9 Ma)~12 Moz AuEmperor (3.9 Ma)~12 Moz Au

Panguna (3.5 Ma)~6.5 Mt Cu & 28 Moz AuPanguna (3.5 Ma)~6.5 Mt Cu & 28 Moz Au

Ok Tedi (1.2 – 1.1 Ma) ~5.5 Mt Cu & 23 Moz Au

Ok Tedi (1.2 – 1.1 Ma) ~5.5 Mt Cu & 23 Moz Au

Porgera (6.0 Ma)~23 Moz AuPorgera (6.0 Ma)~23 Moz Au

Grasberg (3 Ma)~28 Mt Cu & 90 Moz Au

Grasberg (3 Ma)~28 Mt Cu & 90 Moz Au

Wafi (10 Ma)501Mt @ 0.95% Cu, 0.64 g/tAu

Wafi (10 Ma)501Mt @ 0.95% Cu, 0.64 g/tAu

Page 19: Porphyry Introduction-1ACHF SEG10Lombok

• Porphyry deposits emplaced in

narrow time interval

• Similar magma suites

• General relationship to subduction environment

Relationship to tectonic change

Porphyry Provinces

Island arc

Andean arc

Accreted arc Post orogenic belt

Behind-belt magmatic centres (shoshonitic)

Page 20: Porphyry Introduction-1ACHF SEG10Lombok

Tectonic SettingTectonic Setting

Island Arc Subduction Continental Arc Collision

www.geol.lsu.edu

Porphyry copper deposits are the product of magma genesis at convergent plate margins

Melting of lower crust by upwelling lithospheric and asthenosphic mantle is the source of primitive and oxidized, metal- and volatile-rich magmas, but

Page 21: Porphyry Introduction-1ACHF SEG10Lombok

Tectonic SettingTectonic Setting

Deposits also occur in post-collision settings

Lower crust melts as it is pushed into the lithospheric mantle forming primitive and oxidized, metal- and volatile-rich magmas

Page 22: Porphyry Introduction-1ACHF SEG10Lombok

Porphyry ore deposits are generally emplaced at depths of 2-4 km below the Earth’s surface

Geologic SettingGeologic Setting

Kelvin porphyry Cu prospect, Arizona

Deposits emanate from wet, evolved magmas

Page 23: Porphyry Introduction-1ACHF SEG10Lombok

Geologic SettingGeologic Setting

Porphyry ore deposits have long been recognized to form beneath or within

andesitic stratovolcanic successions

Page 24: Porphyry Introduction-1ACHF SEG10Lombok

Geologic SettingGeologic Setting

Conceptual model developed in part from geologic observations of the Bajo de la Alumbrera host rocks

New assessment of these rocks reveals- the dominance of extensive basin-fill deposits - volumetrically minor lavas, and- peperites throughout

Nested dome complexes were the surficial expression of the silicic volcanism coeval with at least the earliest porphyritic intrusions

Alumbrera, Argentina

Page 25: Porphyry Introduction-1ACHF SEG10Lombok

USGS/Cascades Volcano Observatory

Mount St. Helens, USA

Page 26: Porphyry Introduction-1ACHF SEG10Lombok

Geologic SettingGeologic Setting

Volcano-sedimentary basins are increasingly being recognized as the geological setting for porphyry systems

Given the complex array of environments where porphyry deposits can form requires more diverse exploration models

Models will need to account for geologically-controlled variation in near-surface hydrothermal features

Hydrological models will be influenced by host rock architecture

Page 27: Porphyry Introduction-1ACHF SEG10Lombok

Lowell and Guilbert, 1970

Veins

Veins? ? ?

?? ? ?

?

VeinsPeripheralcp-gal-siAu-Ag

Peripheralcp-gal-siAu-Ag

Low pyriteshell

py 2%

Low gradecore

low total sulfide

cp-py-mb

Oreshell

py 1%cp 1-3%

mb 0.03%

Mag >py Mag >

py, cp

Mag + py

Pyriteshell

py 10%cp 0.1 -3 %

mb tr

Veinlets Veinlets

Veinlets >disseminated

Veinlets >disseminated

Veinlets >disseminated

Disseminated

Disseminated+

Microveinlets

Deposit FormDeposit Form

Page 28: Porphyry Introduction-1ACHF SEG10Lombok

Propylitic Zone

Phyllic ZonePotassic Zone

FOV 3.5 km

EAST WEST

Bajo de la Alumbrera, Argentina

Deposit Form

Page 29: Porphyry Introduction-1ACHF SEG10Lombok

Antapaccay, PeruFar South East, Philippines North Parkes, NSW

Intrusive Geology

Page 30: Porphyry Introduction-1ACHF SEG10Lombok

-66°

36’1

5

P2

EP3

LP3

LA

-27°20’

LP3

100 m

N

Post-Mineralization

Porphyry

Northwest Porphyry

LEGEND

P2 Porphyry

Northeast Porphyry

Andesite volcanic and

volcaniclastic rocks

Early P3 Porphyry

Late P3 Porphyry

Quartz Eye Porphyry

Alluvium

Los Amarillos Porphyry

and igneous breccia

P2

EP3

LP3

LA

from Proffett, 2003

Intrusion Geometries

Page 31: Porphyry Introduction-1ACHF SEG10Lombok

3-D geology block model Dinkidi Stock (Wolfe, 2001)

Page 32: Porphyry Introduction-1ACHF SEG10Lombok

Blind intrusions

Blind intrusions

QMPQMP

Biotite-altered trachyandesiteBiotite-altered trachyandesite

E27 open pit, North Parkes, NSW

Page 33: Porphyry Introduction-1ACHF SEG10Lombok

Granodiorite PQM PQM

Rio Blanco, Chile

Multi-phase intrusions

Page 34: Porphyry Introduction-1ACHF SEG10Lombok

Multi-phase intrusions

Biotite quartz monzonite intruded by quartz monzonite porphyry, NorthParkes, NSW

Page 35: Porphyry Introduction-1ACHF SEG10Lombok

Multi-phase intrusions • Multiple pipes, dykes or sills

typically comprise mineralised intrusive complexes

• Only one or two intrusive phases create significant mineralisation

• A number of factors may affect an intrusion’s capacity to exsolve abundant volatiles and metals, including:

• depth of emplacement • volatile content • crystallisation history• seismic activity

Early, high grade quartz monzonite porphyry cut by later, lower grade crystal-richQuartz monzonite porphyry, North Parkes porphyry Cu-Au deposit, NSWEarly, high grade quartz monzonite porphyry cut by later, lower grade crystal-richQuartz monzonite porphyry, North Parkes porphyry Cu-Au deposit, NSW

Page 36: Porphyry Introduction-1ACHF SEG10Lombok

Intrusion Geometries

Laramide volcanic edifice

Laramide Intrusive complex

PC intrusions

Arizona Cu-Mo PCDs

Ordovician Volcanics

Ordovician Intrusive complex

North Parkes Cu-Au PCDs

• Plutons (deep)

PCD PCD

• Pipes

• Dykes (shallow)

Early

Late

• Stocks

Subeconomic PCDSubeconomic

PCD

Sections from Lang and Titley (1998) and Lickfold et al. (2003)

Page 37: Porphyry Introduction-1ACHF SEG10Lombok

E26E26

E37E37 E31E31

E27E27

E48E48

E22E22

E28E28

Endeavour porphyry Cu-Au deposits, North Parkes, NSW

Endeavour porphyry Cu-Au deposits, North Parkes, NSW

Deposit Clusters

Page 38: Porphyry Introduction-1ACHF SEG10Lombok

Quartz-sulfide veins in hematite-altered quartz monzonite porphyry, Hopetoun Au, NSW

Alteration and Mineralisation

• Porphyry deposits are characterized by several alteration assemblages:

Potassic Propylitic Phyllic (QSP) Intermediate argillic Advanced argillic

• Understanding their spatial distributions is vital for exploration

Page 39: Porphyry Introduction-1ACHF SEG10Lombok

From Holiday and Cooke (2007), with inspiration from Sillitoe and Thompson (2006)

qz-cp veins in orthoclase-altered dacite porphyry, Ampucao, Philippines

Epidote veins and alteration, Mankayan,

PhilippinesVuggy quartz, Lepanto,

Philippines

Bladed calcite-cemented breccia, Kelian, Indonesia

Biotite-magnetite and orthoclase-altered

trachyandesite, E27, NSW

Biotite-magnetite-altered hb-qz diorite porphyry, Philex, Philippines

Actinolite-cemented hydrothermal breccia, El Teniente, Chile

Prehnite-calcite-pyrite vein in chlorite-altered basalt, Ridgeway, NSW

Lepanto mineLepanto mine

Mankayan lithocap, Philippines

Page 40: Porphyry Introduction-1ACHF SEG10Lombok

Alteration assemblages:

Qz-mt-cp veins in potassic-altered monzodiorite, Grasberg

Hydrothermal Alteration

Biotite-K-feldspar magnetite-quartz-albite

(Potassic)Garnet-epidote-actinolite chlorite-magnetite-hematite

(Calc-silicate)

Chlorite-epidote-albite

(Propylitic)

Earl

y

Chlorite-sercite (Intermediate

Argillic)

Pyrophyllite-kaolinite

(Advanced Argillic)

Sercite-quartz-pyrite

(Phyllic)

Late

Page 41: Porphyry Introduction-1ACHF SEG10Lombok

Hydrothermal Alteration Assemblages

Mineralogy, nature and style

Observations need to include:• alteration type (dominant mineral/mineral assemblage)

• dominant• subordinate

• mineral assemblage• texture • intensity• distribution

Page 42: Porphyry Introduction-1ACHF SEG10Lombok

Dominant ‘mineral’ Mineral Assemblage Composition Generic Term

Kaolinitic Kaolinite-montmorillonite ( sericite- chlorite)

K, Ca, Mg-metasomatism Argillic

Pyrophyllitic Pyrophyllite-kaolinite ( quartz-sericite) K, Ca, Mg-metasomatism Advanced argillic

Sericitic-Chloritic Chlorite-sercite ( montmorillonite-illite-smectite-calcite-epidote)

K, Ca, Mg-metasomatism Intermediate argillic

Sericitic Sercite-quartz-pyrite (chlorite) K, Na, Ca, Mg-metasomatism

Phyllic

Albitic Albite epidote-chlorite-hematite Na, Ca, Mg-metasomatism Sodic

Feldspathic K-feldspar biotite-quartz-sericite-albite-anhydrite-epidote

K-metasomatism Potassic

Biotitic Biotite K-feldspar-magnetite-quartz-albite-anhydrite

K-metasomatism Potassic

Chloritic? Garnet-epidote-actinolite-chlorite-carbonate magnetite-hematite

Ca-, Na-metasomatism Calc-silicate

Chloritic Chlorite-epidote-albite carbonate-sericite-montmorillonite-pyrite-hematite

Ca-Mg-metasomatism Propylitic

Chloritic Actinolite-chlorite-albite epidote Ca, Na-metasomatism Calc-sodic

Defining alteration assemblages

Page 43: Porphyry Introduction-1ACHF SEG10Lombok

Original component Typical alteration replacement product

Magnetite, ilmentite and titano-magnetite Pyrite, leucoxene, titanite, pyrrhotite, hematite

Pyroxene, amphibole, olivine, and biotite Chlorite, illite, quartz, calcite, pyrite, anhydrite

Plagioclase Calcite, albite, K-feldspar, quartz, anhydrite, chlorite, illite, kaolinite, montmorillonite, epidote, sericite

Anorthoclase, sanidine and orthoclase K-feldspar, albite, sericite

Quartz Microcrystalline quartz

Hydrothermal Alteration Assemblages

K-bearing minerals alter to similarly K-bearing minerals…

Keep in mind what the ‘original’ mineral could have been, as typically

Mineral assemblage

Page 44: Porphyry Introduction-1ACHF SEG10Lombok

Hydrothermal Alteration of Mafic Volcanics

bt-mt-Kspar-py mt-bt-act-Kspar-py alb-ep-act-chl-py chl-ep-act-py

Page 45: Porphyry Introduction-1ACHF SEG10Lombok

Infill textures (veins)

Breccias

Replacement textures

Alteration Textures

Page 46: Porphyry Introduction-1ACHF SEG10Lombok

Pervasive(Strong Kflds)

Selective(chl alt mafics and

ser-chl alt feldspars)

Vein Halo(K-feldspar selvage to tourmaline vein)

Vein(qtz stockwork)

Alteration Textures

Page 47: Porphyry Introduction-1ACHF SEG10Lombok

Alteration Intensity

IntensePervasive Kspar

StrongPervasive Kspar

ModeratePervasive Kspar (chl)

Weak-ModeratePervasive Chl

Increasing alteration intensitydecreasing textural preservation

Rio Blanco

Page 48: Porphyry Introduction-1ACHF SEG10Lombok

Alteration Intensity

IntensePervasive Kspar

StrongPervasive Kspar

ModeratePervasive Kspar (chl)

Weak-ModeratePervasive Chl

Most crystal edges visibleCrystal core common replaced

Most crystal edges visible, some ghostingCrystal core common replaced/recrystallized

Most crystal edges ghosted (rimmed by alt. minerals)Crystal cores are near all replaced

Rock texture is totally obscured

Page 49: Porphyry Introduction-1ACHF SEG10Lombok

inner potassic(Kspar-bt-mt-qtz)

potassic(bt±Kspar-mt-qtz)phyllic

(illite±qtz-py)

cross sectional view

surface view

Source: Proffett, 2003

Alteration Zonation

Page 50: Porphyry Introduction-1ACHF SEG10Lombok

Kflds(pervasive)

bt-Kflds(pervasive)

tm-bt-Kflds-mt(pervasive)

bt-tm-Kfldschl overprint

Rio Blanco

Potassic Alteration Assemblages

Page 51: Porphyry Introduction-1ACHF SEG10Lombok

Calc-Silicate Alteration (Skarn)

Mt-hm-epi-chl-cp skarn,

Little Cadia, NSW

Gt-px-epi-qz-py-cp skarn, Bingham Canyon, Utah

Alkalic PCDHigh-K calc-alkalic PCD Calc-alkalic PCD

Mt-anh-cp skarn, Atlas, Philippines

Page 52: Porphyry Introduction-1ACHF SEG10Lombok

Propylitic Alteration

Alkalic PCDCalc-alkalic PCD Alkalic PCD

Epi-cp-py veins with hematitic alteration selvage, Ridgeway, NSW

Propylitic alteration, Mankayan, Philippines

Epi-ab alteration, North Parkes, NSW

Page 53: Porphyry Introduction-1ACHF SEG10Lombok

Sodic Alteration

Albite-sericite alteration Cadia East, NSW

Alkalic PCD

Page 54: Porphyry Introduction-1ACHF SEG10Lombok

Intermediate Argillic Alteration

Int arg alt cut by qz-il alteration, FSE, Philippines

Pervasive int. arg. alteration, Philex, Philippines

Chl-altered rock flour matrix breccia + hem alteration halo, Cadia Hill, NSW

Alkalic PCDCalc-alkalic PCD Calc-Alkalic PCD

Page 55: Porphyry Introduction-1ACHF SEG10Lombok

Phyllic Alteration

Alkalic PCD

Calc-Alkalic PCD

Int arg alt cut by qz-illite alteration, FSE, Philippines

Pervasive phyllic alteration of QMP, E48, NSW

Page 56: Porphyry Introduction-1ACHF SEG10Lombok

Vein Arrays

Ridgeway Cadia Hill

E26NE26N

Page 57: Porphyry Introduction-1ACHF SEG10Lombok

“A” veins “B” veins “D” veins

Multi-phase vein stages

Page 58: Porphyry Introduction-1ACHF SEG10Lombok

A veins:• Granular quartz-K-feldspar-anhydrite-sulfide veins

• generally lack internal symmetry• irregular and discontinuous

“A” veins“A” veins

“B” veins“B” veins

“D” veins“D” veins

Vein Types (Gustafson and Hunt, 1975)

B veins: • continuous planar quartz veins• contain molybdenite• lack K-feldspar and any obvious alteration halos

D veins: • Late sulfide veins contain pyrite and lesser bornite, chalcopyrite, enargite, tennantite, sphalerite and galena

• Quartz-anhydrite gangue • Phyllic alteration halos

Page 59: Porphyry Introduction-1ACHF SEG10Lombok

Qtz-alb-K-spar (py-cpy-moly) vein

Bt-mt-alb

Ser-py-qtz vein

Careful observation of cross cutting relationships

Temporal Distribution of Alteration Textures

2.

2.

1.

1a.

Vein stage 1 cut by stage 2

Page 60: Porphyry Introduction-1ACHF SEG10Lombok

Spatial Distribution of Alteration Textures

Increasing gradeswitch from replacement to vein style alteration

Copper Moutain

Mapping out similar alteration assemblages in contrasting alteration texturescan be useful in determining proximity to ore

Page 61: Porphyry Introduction-1ACHF SEG10Lombok

Spatial Distribution of Alteration Textures

Mapping out disseminated versus vein/fracture controlled magnetite

Page 62: Porphyry Introduction-1ACHF SEG10Lombok

F

F

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

QMP

Latite

Volcaniclasticsandstone

+

Irregular magnetite veinlets Quartz-calcite-sulphide stockwork (sericite-hematite alteration halos)

Calcite-orthoclase-bn-(cp)veins (orthoclase halos)

Quartz-bornite stockwork(orthoclase halos)

Fault zone with quartz-pyritecarbonate base metals infill (sericite alteration halo)

Calcite-anhydrite-(gypsum)-fluorite veins

Pyrite veins

Pervasive sericite alteration

Vein-halo sericite alteration

Mottled hematite-sericite alteration

Monzonite dykes

Biotite-magnetite alteration

Propylitic-altered trachyandesite

Quartz-bornite veins (sericite halos)

F

E48 - Wolfe, 1994

Alteration Paragenesis

Page 63: Porphyry Introduction-1ACHF SEG10Lombok

Sodic (alb-chl-py-cpy) overprint early formed Potassic (bt-mt-act) alteration assemblagesCu and Fe sulfides replace bt-mt altered ferromagnesian minerals

Copper Mountain, BC

Page 64: Porphyry Introduction-1ACHF SEG10Lombok

· Main ore minerals: chalcopyrite, bornite, gold, molybdenite

Hypogene mineralisation

11,000E

9,600RL

9,450RL

9,800RL

10,000RL

10,200RL

E26, NSW - Cu & Au Grades

10,800E10,600E 11,200E

200 m

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

>2 g/t Au

1 - 2 g/t Au

0.5 - 1 g/t Au

>2 % Cu

1- 2 % Cu

0.5 – 1 % Cu

• Gangue: qz, or, anh, mt, bt ± ser ± py

• Sulfide zonation:

• bornite-rich core (+ Au)

• chalcopyrite

• outer pyrite halo

• Late-stage veins with abundant pyrite and base metal sulfides can complicate zonation patterns

House, 1994Bornite – chalcopyrite - orthoclase intergrowths, Dinkidi, Philippines

Page 65: Porphyry Introduction-1ACHF SEG10Lombok

VeinMinor disseminate

Disseminated2-5 vol.%

DisseminatedTrace (<1 vol. %)

Sulfide Abundance and Texture

Page 66: Porphyry Introduction-1ACHF SEG10Lombok

Deposit Form

Page 67: Porphyry Introduction-1ACHF SEG10Lombok

Alkalic deposits

Page 68: Porphyry Introduction-1ACHF SEG10Lombok

Afton, BC Magnetite-apatite veins

Alkalic porphyry Au-Cu deposits

Distance

Cal

c-p

ota

ssic

Po

tass

ic

Propylitic

SodicT

ime

act-gnt-bt-mt-or-alb qtz-ep-ap-ttn-cal

or-alb-act-ap-mt-chl-cal qtz-ttn-rt

chl-hem-or-alb-ep-ap-mt-cal qtz-ttn-rt-act

alb-qtz-chl-calill mt-ttn-rt-scap

Au-Cu Ag-(Pd-Te)

0 km 0.8 km0.3 km

Page 69: Porphyry Introduction-1ACHF SEG10Lombok

Copper Mountain, British Columbia

Ore is localized in chemically reactive rocks…….

Page 70: Porphyry Introduction-1ACHF SEG10Lombok

Smoke around the Fire

Page 71: Porphyry Introduction-1ACHF SEG10Lombok

High K calc-alkalic deposits

Page 72: Porphyry Introduction-1ACHF SEG10Lombok

High-K Calc-Alkalic porphyry Au-Cu deposits

Distance

Po

tass

icPropylitic

Tim

e

bt-Kspar-mt

chl-ep-mt-cal qtz-ttn-rt

Au-Cu

chl-serIntermediate Argillic Argillic

0 km 0.8 km 1.0 km

bt

2.0 km

actepi veins

3.0 km

epi-chl

Ag-Zn-Pb

Nfract = 30-15/m

Ksap >> Alb

Page 73: Porphyry Introduction-1ACHF SEG10Lombok

inner potassic(Kspar-bt-mt-qtz)

potassic(bt±Kspar-mt-qtz)phyllic

(illite±qtz-py)

cross sectional view

surface view

Source: Proffett, 2003

Bajo de la Alumbrera, Argentina

Page 74: Porphyry Introduction-1ACHF SEG10Lombok

MnCO3 veins

D vein, Bajo de la Alumbrera

1.1 Mt @ 6.36 g/t Au and 126 g/t Ag

3.5 km (x 150m x 25m)

Smoke around the Fire

Page 75: Porphyry Introduction-1ACHF SEG10Lombok

Volatile-saturated intrusion undergoes catastrophic brittle

failure due to hydrostatic pressure exceeding lithostatic load and the tensile strength

of the wallrocks

1 - Magmatic-hydrothermal breccias

• Containment and focussing of volatiles

birth of a magmatic-hydrothermal ore

deposit

Breccias in Hydrothermal Systems

• Permeability enhancement through the formation of a subsurface breccia body allows for focussed fluid flow

• Can precipitate abundant, well-mineralised cement which contains hypersaline & vapour-rich fluid inclusions

• Clastic matrix and clasts may be altered to high temperature mineral assemblages (e.g. biotite)

from D. Cooke, 2010

Page 76: Porphyry Introduction-1ACHF SEG10Lombok

Sulfide Mineralisation StylesSulfide Mineralisation Styles

Clast alteration

VeinCement

Tourmaline breccia, Río Blanco, Chile

• Hydrothermal cement• Alteration of rock flour

• Alteration of clasts• Cross-cutting veins

Page 77: Porphyry Introduction-1ACHF SEG10Lombok

Maar-diatreme breccia complex

Late intrusion into active

hydrothermal system

2 - 5

km

p

ale

od

ep

th

2 – Phreatomagmatic breccias

• Clastic matrix & milled clasts abundant

• Surficial and subsurface breccia deposits

• Bedded and massive breccia facies

• Venting of volatiles to the surface

Þ death of a porphyry deposit

Þ shortcut to the epithermal environment

Breccias in Hydrothermal Systems

from D. Cooke, 2010

Page 78: Porphyry Introduction-1ACHF SEG10Lombok

Late-stage diatreme breccia, Dizon porphyry Cu-Au, Philippines

Page 79: Porphyry Introduction-1ACHF SEG10Lombok

Supergene enrichment

Oxidation can upgrade low grade resources

Page 80: Porphyry Introduction-1ACHF SEG10Lombok

From Titley, 1982

EnrichmentBlanket

Idealised supergene enrichment blanket

Page 81: Porphyry Introduction-1ACHF SEG10Lombok

Deposit Genesis

Page 82: Porphyry Introduction-1ACHF SEG10Lombok

Batholithic Roots - Yerington, Nevada

Ann-Mason PCD McArthur PCD

Dilles et al., 2000

Page 83: Porphyry Introduction-1ACHF SEG10Lombok

Dismembered PCD and source Batholith

Porphyry Cu Deposit

Phyllic alteration

Advanced argillic alteration

Tosdal 2008

Page 84: Porphyry Introduction-1ACHF SEG10Lombok

Comb quartz layers (USTs) in intra-mineral monzonite, Ridgeway porphyry Cu-Au deposit,

NSW

Magmatic-hydrothermal transitionMagmatic-hydrothermal transition

15 cm15 cm

Page 85: Porphyry Introduction-1ACHF SEG10Lombok

• ‘Slushy’ textures are features of the transition from magmatic to hydrothermal conditions:

unidirectional solidification textures (USTs)

miarolitic cavities vein dykes pegmatite pods and pegmatite veins

• These textural features provide evidence for volatile exsolution and concentration in the top of mineralizing intrusions

fertile magmas crystallise in batches They may release volatiles episodically

through a significant part of their crystallisation history

Comb-layered quartz, KoreaComb-layered quartz, Korea

Volatile Exsolution

Page 86: Porphyry Introduction-1ACHF SEG10Lombok

Felsicmagma

Volatilemigration

• Tectonic trigger (e.g., ridge subduction)

• Multiple phases of intrusive activity – one or more of which efficiently concentrates and releases metals

• Incompatible behaviour of metals and volatiles allows magmatic transport of metals and sulfur

• Cycles of volatile accumulation and release at the apex of the mineralizing intrusion (multiple seismic events)

• Fluid exsolution may be triggered by mafic magma underplating of felsic magma chamber

Mafic magma (?)Mafic magma (?)

Outflow and mineralisationOutflow and mineralisation

Episodic fluid accumulation and release

Episodic fluid accumulation and release

Severa

l km

sS

evera

l km

s

Porphyry ore genesis

Page 87: Porphyry Introduction-1ACHF SEG10Lombok

Magma flow in dykes

Scale

Chang

e

~5 k

m

Upper cru

stPCD?PCD?

PCD?PCD?

Upper crustal magma chamber

Arc-transverse lin

eaments

Magma flow in dykes

Diatexite

Sh

ear Z

on

e

~20

km

Low

er c

rust

Magma flow by percolation

Magma flow by percolation

Magma flow in plugs and diapirs

Hypogene Ore Genesis

A

A: Fertile Magma Production• Partial melting in migmatitic zone

at base of crust• Melts transferred to upper crust

along dykes in shear zones

B B: Volatile Exsolution• Magma ascends to neutral

buoyancy level• Shutdown of volcanism?

• Volatiles exsolved during fractional crystallisation (mafic magma involvement?)

Modified from Richards (2003)

Page 88: Porphyry Introduction-1ACHF SEG10Lombok

• Interaction of mafic and felsic magmas may be an effective method of enhancing the volatile and metal budget of felsic magmas

1991 eruption of Mt Pinatubo, Philippines (image from http://www.unep-wcmc.org/resources)

• Thermal and chemical instabilities can be caused by mafic underplating of felsic magma bodies • metal, volatile and

fluid exsolution • magmatic-

hydrothermal mineralisation

Mafic magmas as fertilizersMafic magmas as fertilizers

Page 89: Porphyry Introduction-1ACHF SEG10Lombok

Fluid SourcesFluid Sources

Primitive hydrous K-rich mafic magmas have been shown to be important in the formation of porphyry ore deposits

e.g., Northparkes (Lickfold et al. 2007)

Mantle-derived CO2-rich fluids

Source of the sulfur…

E22, Australia

Ajax, Canada

Page 90: Porphyry Introduction-1ACHF SEG10Lombok

Mingling of primitive alkalic magmas

Bingham, USA

Pd- and Pt-bearing (Au-rich) ore

Magmatic sulfides (rich in Ni-Cu Zn-As-Ag-Pb, Se-Mo-Pd)

Cu-Ni-rich melt inclusions

LMP, Bingham

Contributions of Cu, Au, PGEs and S

Deposit Ag (g/t) Au (g/t) Pd (g/t) Pt (g/t)

Copper Mnt 92 5.0 1.37 0.06

Afton 16.4 4.7 3.5 0.07

Skouries 57 35.8 2.67 0.20

Bingham na 0.02 0.10 0.93

Elatsite 33 13.6 0.72 0.15

Santo Tomas II 45 40 2.67 1.85

Ok Tedi na 17 0.62 0.02

Representative PGE analysesCadia Hill

Fluid SourcesFluid Sources

Page 91: Porphyry Introduction-1ACHF SEG10Lombok

Fluid PathwaysFluid Pathways

e.g., E26 (Lickfold et al. 2003)

Page 92: Porphyry Introduction-1ACHF SEG10Lombok

Extreme magmas oxidized meltsCu Au-Mo bearing volatilesCl-, F, SO4

2-, CO32-. PO4

3-, OH-

Quartz-magnetite UST Ridgeway, NSW

Anhydrite-apatite E26, NSW

Fluid PathwaysFluid Pathways

Fe-Zn-Cu : RGB composite

Red – Fe; Green – Zn; Blue – Copper

Fe

Ridgeway, Australia

Page 93: Porphyry Introduction-1ACHF SEG10Lombok

Just as volatile-rich granite preserves evidence of volatile accumulation…

Page 94: Porphyry Introduction-1ACHF SEG10Lombok

1.0 mm

‘Quartz Eyes’

Magma EmplacementMagma Emplacement

Bajo de la Alumbrera

Page 95: Porphyry Introduction-1ACHF SEG10Lombok

Magma EmplacementMagma Emplacement

Ridgeway, Australia

Page 96: Porphyry Introduction-1ACHF SEG10Lombok

Cathodoluminescence image

CL imaging of comb-quartz layered textures reveals well-defined luminescent bands disrupted by irregular embayments and tubules

Page 97: Porphyry Introduction-1ACHF SEG10Lombok

Th (V L): ~ 365CX: 45- 47 wt.% NaCl equiv.

Boiling TrailsTh (V L): up to 550CX: 45 wt.% NaCl equiv.

Near-Critical BehaviourTh (V L): ~ 310CX: 3 wt.% NaCl equiv.

Inclusion assemblages record volatile accumulation + release…

[inside an apparently ‘barren’ porphyritic intrusion]

Cathodoluminescence image

~70 MPa

~30 MPa

Average 0.3 wt.% Cu

Page 98: Porphyry Introduction-1ACHF SEG10Lombok

What are A veins?

Extreme T fluids carried significant Fe and Si…

Vein EmplacementVein Emplacement

A veins diffuse sugary textured vein

Alumbrera, Argentina

Page 99: Porphyry Introduction-1ACHF SEG10Lombok

Silicate melt inclusions in hydrothermal quartz veinsAlumbrera, Argentina

Page 100: Porphyry Introduction-1ACHF SEG10Lombok

Cl

Cu

K

A veins preserve the magmatic-hydrothermal transition

Primitive and Cu-rich (up to wt.%) ore fluids

Rio Blanco, Chile

Vein EmplacementVein Emplacement

Recognition of these textures, including the quartz segregations, may provide immediate evidence for a potentially fertile magma

Page 101: Porphyry Introduction-1ACHF SEG10Lombok

CO2-rich saline fluidsNaCl – H2O CO2 – KClrich in Fe-Cu-Zn-Mn-Ca-Ba-As (?REE)

Dinkidi porphyry Au deposit, Philippines

Wolfe, 2000

Ore-forming fluidsOre-forming fluids

Page 102: Porphyry Introduction-1ACHF SEG10Lombok

30mm

~1500 ppm Cu (up to 2wt%)3-5 wt% NaCl equiv., 3-8 mol% CO2

Trapped at ~650°C, 2.5kb

Ore-forming fluidsOre-forming fluids

Butte (from J. Wilkinson)

Page 103: Porphyry Introduction-1ACHF SEG10Lombok

Potassic alterationT = 350°C to 550°C, up to 845°C18O and D compositions Magmatic fluid

Phyllic alterationT = up to 400°C18O and D compositions Magmatic fluid (> 200°C)

Magmatic + Meteoric water (< 200°C)

Fluid SourceFluid Source

Meteoric water has long been thought to play a major role in hydrothermal alteration and ore deposition

continuum between high-T magmatic lower T meteoric water-dominated hydrothermal systems

Page 104: Porphyry Introduction-1ACHF SEG10Lombok

Recognition of contrasting phyllic alteration is important because it means that the distribution of

alteration zones and mineralization may not fit the expected alteration pattern

so often used to focus drilling programs

Phyllic alteration assemblages need not be post-ore…

Fluid SourceFluid Source

Page 105: Porphyry Introduction-1ACHF SEG10Lombok

Hypogene Ore Genesis

Hydrothermal Alteration

• Early K-metasomatism (brines): lithostatic load

• Late H-ion metasomatism (gases): hydrostatic load

Ore Formation

Cooling is a symptom, not a cause• The sulfur conundrum: H2S-

predominant fluids, but sulfur transported in the melt as SO2

• Sulfate reduction mechanism? (water-rock interaction, fluid mixing)

Bn-cp mineralisation, E27

Page 106: Porphyry Introduction-1ACHF SEG10Lombok

Alteration mineralogy:Temperature and acidity controls

• Phase relationships for K-aluminosilicate phases have traditionally been plotted on activity ratio diagrams

• HCl(aq) and KCl(aq) are strongly associated species at high temperatures

• They dissociate strongly when T < 300°C

• Fluid evolution from feldspar- to mica- to clay-stable conditions equates to increasing acidity (i.e. decreasing pH)

P = 500 bars, qz saturated, log a (Al3+) = -5, log a (K+) = -1.3

250

275

300

325

350

375

400

425

450

475

T (

°C)

–3 –2 –1 0 1 2 3 4 5 6

log a (KCl(aq)/HCl(aq))

Al3+(aq)

Andalusite(advanced

argillicalteration) M

usco

vite

(phyllic a

ltera

tion)

Musco

vite

(phyllic a

ltera

tion)

Pyro

phyllite

(advance

d

arg

illic

alte

ratio

n)

Kaolinite(argillic)

K-feldspar(potassic

alteration)

K-feldspar(potassic

alteration)

AlO

H2+

Al(O

H)

2 +

from D. Cooke, 2010

Page 107: Porphyry Introduction-1ACHF SEG10Lombok

0 1 2 3 4 5 6 7 8

pH

Alteration mineralogy:Temperature and acidity controls

• Clays and aluminosilicates are stable under acidic conditions Less hydrous clays

are stable at higher T

• Micas and feldspars are stable under weakly acidic to alkaline conditions

• Andalusite is predicted to be stable at high temperatures but is rarely observed in advanced argillic assemblages

P = 500 bars, qz saturated, log a (Al3+) = -5, log a (K+) = -1.3

250

275

300

325

350

375

400

425

450

475

T (

°C)

Al3+(aq)

Andalusite(advanced

argillicalteration)

Mu

scovit

e(p

hyllic

alt

era

tion

)M

uscovit

e(p

hyllic

alt

era

tion

)

Pyro

ph

yllit

e(a

dvan

ced

arg

illic

alt

era

tion

)Kaolinite(argillic)

K-feldspar(potassic

alteration)

K-feldspar(potassic

alteration)

AlO

H2+

Al(O

H)

2+

Al3+

Alkaline Strongly acidic from D. Cooke, 2010

Page 108: Porphyry Introduction-1ACHF SEG10Lombok

Kal’makyr (Almalyk) Cu-Au, Uzbekistan 2.5 Gt @ 0.38% Cu and 0.5 g/t Au

Fluid evolution from feldspar- to mica-stable conditions equates to decreasing pH

Page 109: Porphyry Introduction-1ACHF SEG10Lombok

Alteration mineralogy:Temperature and acidity controls

• Calc-silicate and calc-potassic alteration assemblages are stable at high T and high pH

• Chlorite is stable under weakly acidic conditions when temperatures are less than ~350°C

P = 500 bars, qz saturated, log a (Al3+) = -5, log a (K+) = -1.3log a (Ca2+) = -5, log a (Fe2+) = -6.5, log a (Cl-) = 1, log a (SO4

2-) = -2

pH

250

275

300

325

350

375

400

425

450

475

T (

°C)

Alkaline Strongly acidic

Alu

nit

e(a

dvan

ced

arg

illic a

ltera

tion

)

Fe-biotite(potassic

alteration)

Fe-biotite(potassic

alteration)

Fe-chloriteFe-chlorite

Ca-g

arn

et

(calc

-silic

ate

alt

era

tion

)C

a-g

arn

et

(calc

-silic

ate

alt

era

tion

)

0 1 2 3 4 5 6 7 8

Andalu

site

Al3+

Al3+

AlO

H2+

Pyro

ph

yllit

eKaol

Mu

scovit

e(p

hyllic

alt

era

tion

)M

uscovit

e(p

hyllic

alt

era

tion

)

Kf

Kf

from D. Cooke, 2010

Page 110: Porphyry Introduction-1ACHF SEG10Lombok

Alteration mineralogy:Redox and acidity controls

• Epidote and garnet contain Fe3+

they typically form under oxidizing conditions

• Chlorite and biotite contain Fe2+

they typically form under reducing conditions

• Propylitic and calc-potassic alteration assemblages are produced by alkaline fluids

T = 325°C, P = 500 bars, qz saturated, log a (Ca2+) = -5, log a (Fe2+) = -6.5,

log a (Al3+) = -5, log a (K+) = -1.3, log a (SO42-) = -2

pHAlkaline Strongly acidic

0 1 2 3 4 5 6 7 8–36

–34

–32

–30

–28

–26

–24

–22

–20

log

f O

2 (

g)

325°C325°C

Alu

nit

e(A

A a

ltera

tion

)

Ep

idote

Ep

idote

Mu

scovit

e(p

hyllic

alt

era

tion

)M

uscovit

e(p

hyllic

alt

era

tion

)

Pyro

ph

yllit

e(a

dvan

ced

arg

illic

alt

era

tion

)

Pyro

ph

yllit

e(a

dvan

ced

arg

illic

alt

era

tion

)

Fe-chloriteFe-chlorite

K-f

eld

sp

ar

(pota

ssic

alt

era

tion

)K-f

eld

sp

ar

(pota

ssic

alt

era

tion

)

Al3+(aq)

AlO

H2+

Al(

OH

) 2+

(aq

)

H2S

(aq

)

HS

O4-

(aq

)

Ca-g

arn

et

(calc

-silic

ate

alt

era

tion

)C

a-g

arn

et

(calc

-silic

ate

alt

era

tion

)

Fe-biotite(potassic

alteration)

Fe-biotite(potassic

alteration)

SO

42-

(aq

)

HS

- (aq

)H

S- (a

q)

MagnetiteMagnetite

HematiteHematite

from D. Cooke, 2010

Page 111: Porphyry Introduction-1ACHF SEG10Lombok

• Phyllic alteration can be produced by magmatic-hydrothermal fluids

• The phyllic alteration zone can cut through potassic alteration zones, and be independently mineralised

Alteration Zoning Alteration Zoning

Lowell and Guilbert (1970) model

South American porphyry model

potassic

potassicpotassic

phyllicpropylitic propylitic

wallrocks

wallrocks

Page 112: Porphyry Introduction-1ACHF SEG10Lombok

Alteration mineralogy:Reaction paths

• If K-feldspar stable fluids become more alkaline, epidote may be stabilized

T = 325°C, P = 500 bars, qz saturated, log a (Ca2+) = -5, log a (Fe2+) = -6.5,

log a (Al3+) = -5, log a (K+) = -1.3, log a (SO42-) = -2

pHAlkaline Strongly acidic

0 1 2 3 4 5 6 7 8–36

–34

–32

–30

–28

–26

–24

–22

–20

log

f O

2 (

g)

325°C325°C

Alu

nit

e(A

A a

ltera

tion

)

Ep

idote

Ep

idote

Mu

scovit

e(p

hyllic

alt

era

tion

)M

uscovit

e(p

hyllic

alt

era

tion

)

Pyro

ph

yllit

e(a

dvan

ced

arg

illic

alt

era

tion

)

Pyro

ph

yllit

e(a

dvan

ced

arg

illic

alt

era

tion

)

Fe-chloriteFe-chlorite

K-f

eld

sp

ar

K-f

eld

sp

ar

AlO

H2+

Al(

OH

) 2+

(aq

)

H2S

(aq

)

HS

O4-

(aq

)

Ca-g

arn

et

(calc

-silic

ate

alt

era

tion

)C

a-g

arn

et

(calc

-silic

ate

alt

era

tion

)

Fe-biotite(potassic

alteration)

Fe-biotite(potassic

alteration)

SO

42-

(aq

)

HS

- (aq

)H

S- (a

q)

• Acidification can cause transformations from K-feldspar to sericite• It is not possible for a fluid to evolve from K-feldspar-stable first to muscovite-stable and then to epidote-stable conditions

• Carefully observe textural relationships! from D. Cooke, 2010

Page 113: Porphyry Introduction-1ACHF SEG10Lombok

Conclusions

• Porphyry Cu-Au-(Mo) deposits form in arc-related settings• Most abundant in Tertiary and Quaternary settings

(preservation)• Quartz stockwork veins and/or hydrothermal breccias

associated with potassic alteration typically host Cu-Au mineralization

• Replacement-style mineralization predominates in some deposits

Diopside – orthoclase – magnetite vein in diorite, Dinkidi alkalic porphyry Cu-Au deposit, PhilippinesDiopside – orthoclase – magnetite vein in diorite,

Dinkidi alkalic porphyry Cu-Au deposit, Philippines