Porphyry copper systems 2013

88
B.DELGERTSOGT Porphyry Copper Systems

description

B.Delgertsogt

Transcript of Porphyry copper systems 2013

Page 1: Porphyry copper systems 2013

B.DELGERTSOGT

Porphyry Copper Systems

Page 2: Porphyry copper systems 2013

• Schematic illustration of

porphyry Cu system

Sillitoe, 2010

Page 3: Porphyry copper systems 2013

Porphyry stock and underlying pluton, overlying comagmatic volcanic rocks

Page 4: Porphyry copper systems 2013

• Alteration– Sodic-

calcic– potassic– sericitic– advanced

argillic

Sillitoe (2010)

Alteration-mineralization zoning in porphyry Cu deposits

Page 5: Porphyry copper systems 2013

Generalized alteration zoning pattern (Sillitoe, 2010)

Generalized alteration sequence (Sillitoe, 2010)

Generalized alteration zoning and sequence

Page 6: Porphyry copper systems 2013

• Most widely distributed at convergent plate boundaries• Occur with skarn, HS & IS epithermal deposits• Form linear metallogenic belts• Related with plutons (5-15km deep) and porphyry stocks• 100,000 to several million years lifespan (Dep. Clusters or belts 10 m.y or

longer)• Zoned alteration from barren, Na-Ca to potassic, chlorite-sericitic, sericitic,

and to advanced argillic from >700C to <250C• Typical hypogene porphyry Cu deposits have average grades of 0.5 to 1.5

% Cu, <0.01 to 0.04% Mo, and 0.0 – to 1.5 g/t Au. Rarely “Au-only” deposits have 0.9 to 1.5 g/t Au content, but little Cu (,0.1%)

• Ore mineral assemblage of chalcopyrite-bornite• Quartz stockwork sequence, with magmatic-hydrothermal breccia and

phreatomagmatic breccia• Formed by injection of oxidized magma saturated with S and metal-rich

aqueous fluids exolved from cupolas of parental plutons• Early two phase hypersaline liquid and vapor, and later single phase low to

moderately saline liquid associated with mineralization

Characteristics of porphyry type deposits

Page 7: Porphyry copper systems 2013

Porphyry Cu deposits within

and near precursor plutons

a: Los-Bronces-Rio Blanco, Chile

b: El Abra and Conchi Viejo, Chile

c: Highland Valley, British Columbia

Sillitoe (2010)

Page 8: Porphyry copper systems 2013

• Porphyry stocks and dikes– diameter: commonly <1km– 14 km at Chuquicamata- Radomiro Tomic– 4 km Hugo Dummett– Vertical extent: >2-4 km– Multiple phases– I type, magnetite series, metaaluminous, medium K to high

K calc-alkaline– diorite to quartz diorite through granodiorite to quartz

monzonite– Mo-rich porphyry: felsic, Au-rich porphyry: dioritic– Porphyritic texture with feldspar, hornblende, biotite

Deposit-scale characteristics

Page 9: Porphyry copper systems 2013

• Early, quartz- and sulfide-free veinlets containing one or more of actinolite, magnetite, biotite and K-feldspar (EB vein), typically lack in alteration halo, mainly in potassic alteration

• Sulfide-bearing, granular quartz-dominated veinlets with either narrow or no readily recognizable alteration halo (A and B type) in potassic alteration

• Late, crystalline quartz-sulfide veins and veinlets with prominent, feldspar-destructive alteration halo (including D type) in chlorite-sericite and sericite alteration

Porphyry Cu veinlet relationship

Page 10: Porphyry copper systems 2013

Sillitoe (2010)

Schematic chronology of typical veinlet sequence

Page 11: Porphyry copper systems 2013

Sillitoe (2010)

Relation between porphyry intrusions and stockwork mineralization

Page 12: Porphyry copper systems 2013

Early potassic alteration and EB-A vein

Page 13: Porphyry copper systems 2013

B vein at El Salvador

Page 14: Porphyry copper systems 2013

Sericitic alteration and D vein at El Salvador

Page 15: Porphyry copper systems 2013

Latest D vein:Py-tn-tet-en assemblage with muscovite haloLower extension of hydrothermal breccia

Page 16: Porphyry copper systems 2013

Early Transitional Late

EB A B C DBt

Qtz

Anhy

Kfsp

Chl

Ser

And

Bn

Cp

Mo

Py

Vein stages at El Salvador(Gustafson and Quiroga, 1995)

Page 17: Porphyry copper systems 2013

• Diatreme– phreatomagmatic eruptive activity– commonly >1km in diameter, >2km long– composed of cm size clasts in matirx of

volcanic tuff component– post-porphyry Cu mineralization, but

intra-HS epithermal Au mineralization• Magmatic-hydrothermal breccia

– absent in tuffaceous material– steep pipe like to irregular bodies– intramineral porphyry stage with

potassic and sericitic alteration– normally blind to the surface– may host porphyry Cu mineralization

• Phreatic breccia– post-mineral (pebble dike) with

advanced argillic alteration

Sillitoe (2010)

Diatremes & breccia

Page 18: Porphyry copper systems 2013

Tourmaline breccia at El Salvador

Page 19: Porphyry copper systems 2013

• cylindrical orebodies common

• narrow elongated shape (e.g. Hugo Dummett)

• veinlet stockwork at top• gradual or abrupt decrease

of Cu grade downwards• lateral halo of Pb-Zn and Au-

As zones• HS & IS Au-Cu mineralization

above

a: Bingham, Utah, b: Mineral Park, Arizona, c: Sepon, Laos Sillitoe (2010)

Orebody types and geometry

Page 20: Porphyry copper systems 2013

Sulfide zonation at El Salvador, Chile (Gustafson and Hunt, 1975)

Sulfide zoning

Page 21: Porphyry copper systems 2013

Tsagaan Suvarga, Southern Mongolia

Sericitic alteration overprinting on potassic alteration

Page 22: Porphyry copper systems 2013

Watanabe & Hedenquist ( 2001)

Lateral zoning in the sericitic alteration at El Salvador, Chile

Page 23: Porphyry copper systems 2013

Indio Muerto

Mus

Propylitic

Page 24: Porphyry copper systems 2013

Hydrothermal breccia and “lithocap”

Quartz-alunite lithocap

Hydrothermal breccia

Mus

Page 25: Porphyry copper systems 2013
Page 26: Porphyry copper systems 2013
Page 27: Porphyry copper systems 2013

• Sericitic alteration stage (center to margin)– Least altered: igneous feldspar present– Muscovite-andalusite+/-diaspore, tourmaline– Muscovite+/-diaspore, tourmaline– Pyrophyllite overprint– Propylitic (chlorite)

• Advanced argillic alteration stage– Advanced argillic: alunite (AP, APS cores), pyrophyllite,

dickite, diaspore, quartz (zunyite, andalusite)

Mineral assemblage

Page 28: Porphyry copper systems 2013

• absorption of the high-temperature magmatic vapor by ground water and disproportionation of the SO2 – HCl = H+ + Cl- – 4SO2 + 4H2O = 3H2SO4 +

H2S

– H2SO4 = H+ + HSO4-

Advanced argillic lithocaps

Page 29: Porphyry copper systems 2013
Page 30: Porphyry copper systems 2013

Magma Porphyry

Schematic mineralization zones in porphyry Cu deposits (Lowell & Guilbert, 1970)

Hydrothermal alteration

Why center of porphyry system is barren?

Page 31: Porphyry copper systems 2013

• Source magma– Chamber at depth of 5-15km – >50km3 in volume– Porphyry is conduit– water rich (4 wt %), oxidized (high oxidation state

suppresses magmatic sulfide precipitation as pyrrhotite)

– S rich (anhydrite as a magmatic mineral)

Genetic model

Page 32: Porphyry copper systems 2013

Cooling and pressure drop decreased Cu solubility and precipitate Cu-Fe.Sillitoe (2010)

Genetic model

Page 33: Porphyry copper systems 2013

• Target selection– target area selection in

known porphyry Cu belt and associated deposits

– contractional setting– erosion level (sericite-

pyrophyllite level better than advanced argillic level)

– host rock lithology (carbonate)

– climate and age

Exploration

Page 34: Porphyry copper systems 2013

Hedenquist et al. (1998)

Lepanto HS epithermal and FSE porphyry Cu-Au deposit

Page 35: Porphyry copper systems 2013
Page 36: Porphyry copper systems 2013
Page 37: Porphyry copper systems 2013

Angera (1999), modified by Nakayama (2004)

Pre-mineral porphyry

Post-mineral porphyry

Bajo de la Alumbrera porphyry Cu-Au deposit, Argentina

Page 38: Porphyry copper systems 2013

Climax porphyry Mo deposit, USA

Page 39: Porphyry copper systems 2013

Volcanic fronts in SW USA during the Cenozoic

Redmond and Einaudi (2010)

37.07-37.57Ma (Parry et al., 2001)

38.55±0.19Ma (Parry et al., 2001)

Bingham Porphyry Cu-Mo-Au deposit, USA

Page 40: Porphyry copper systems 2013

Hedenquist et al. (1996)

Page 41: Porphyry copper systems 2013
Page 42: Porphyry copper systems 2013
Page 43: Porphyry copper systems 2013
Page 44: Porphyry copper systems 2013
Page 45: Porphyry copper systems 2013
Page 46: Porphyry copper systems 2013
Page 47: Porphyry copper systems 2013
Page 48: Porphyry copper systems 2013

Шүтээний төв хэсэгт бялхсан АГЛОМЕРАТ – ын биет

Page 49: Porphyry copper systems 2013

Шүтээний төв хэсэгт бялхсан АГЛОМЕРАТ –ын биет

Page 50: Porphyry copper systems 2013
Page 51: Porphyry copper systems 2013
Page 52: Porphyry copper systems 2013
Page 53: Porphyry copper systems 2013
Page 54: Porphyry copper systems 2013
Page 55: Porphyry copper systems 2013
Page 56: Porphyry copper systems 2013
Page 57: Porphyry copper systems 2013
Page 58: Porphyry copper systems 2013
Page 59: Porphyry copper systems 2013
Page 60: Porphyry copper systems 2013
Page 61: Porphyry copper systems 2013
Page 62: Porphyry copper systems 2013

• Diatreme– phreatomagmatic eruptive activity– commonly >1km in diameter, >2km long– composed of cm size clasts in matirx of

volcanic tuff component– post-porphyry Cu mineralization, but

intra-HS epithermal Au mineralization• Magmatic-hydrothermal breccia

– absent in tuffaceous material– steep pipe like to irregular bodies– intramineral porphyry stage with

potassic and sericitic alteration– normally blind to the surface– may host porphyry Cu mineralization

• Phreatic breccia– post-mineral (pebble dike) with

advanced argillic alteration

Sillitoe (2010)

Diatremes & breccia

Page 63: Porphyry copper systems 2013
Page 64: Porphyry copper systems 2013
Page 65: Porphyry copper systems 2013
Page 66: Porphyry copper systems 2013
Page 67: Porphyry copper systems 2013
Page 68: Porphyry copper systems 2013
Page 69: Porphyry copper systems 2013
Page 70: Porphyry copper systems 2013
Page 71: Porphyry copper systems 2013
Page 72: Porphyry copper systems 2013
Page 73: Porphyry copper systems 2013
Page 74: Porphyry copper systems 2013
Page 75: Porphyry copper systems 2013
Page 76: Porphyry copper systems 2013
Page 77: Porphyry copper systems 2013
Page 78: Porphyry copper systems 2013
Page 79: Porphyry copper systems 2013

Шүтээн нь нэгэн магмын голомтоос харьцангуй удаан хугацааны туршид хөгжин хэлбэржсэн бөгөөд энэ утгаараа тус структур нь Дөшийн овоогийн вулканоген – пирокласт формаци болон Мандахын интрүзив бүрдэл зэрэг стратиграфи, магматизмийн өөр өөр нэгжүүдээс тогтсон бус харин нэгдмэл нэгэн эх үүсвэрээс гаралтай Шүтээний магматоген–гидротермаль систем болно.

Page 80: Porphyry copper systems 2013

A magma generation model at subduction zone

Page 81: Porphyry copper systems 2013

Examples of the volcanic chains at subduction zones

Tatsumi (1995)

KurileKamchatka

Page 82: Porphyry copper systems 2013

a: Globe-Miami district, Arizona, b: Chuquicamata district, Chile, c: Cadia district, New South Wales, Australia, d: Oyu Tolgoi district, Mongolia.

Arrows: orientation of magmatic arcs

Sillitoe (2010)

Porphyry Cu clusters

Page 83: Porphyry copper systems 2013

Оюу Толгой орд

Page 84: Porphyry copper systems 2013
Page 85: Porphyry copper systems 2013
Page 86: Porphyry copper systems 2013

• Metallogenic provinces– linear, parallel to magmatic arc– some 100 to some 1000km– well defined metallogenic

epoch, typically 10 to 20 m.y.– slab shallowing– crustal thickening & uplift

Porphyry Cu belts and provinces

Sillitoe (2010)

Page 87: Porphyry copper systems 2013

Data sources: Clark (1993), Garwin et al. (2005), Hou et al. (2003), MMAJ (1998)

Cu grade and ore reserves of porphyry Cu deposits

Page 88: Porphyry copper systems 2013

Thank you for your attention