Point Load Test Results from Olkiluoto Area Borehole Cores · 2008-12-12 · ABSTRACT The strength...

59
POSIVA OY FI-27160 OLKILUOTO, FINLAND Tel +358-2-8372 31 Fax +358-2-8372 3709 Paula Pohjanperä Toivo Wanne Erik Johansson October 2005 Working Report 2005-59 Point Load Test Results from Olkiluoto Area Borehole Cores

Transcript of Point Load Test Results from Olkiluoto Area Borehole Cores · 2008-12-12 · ABSTRACT The strength...

P O S I V A O Y

FI -27160 OLKILUOTO, F INLAND

Tel +358-2-8372 31

Fax +358-2-8372 3709

Pau la Poh janperä

To ivo Wanne

Er ik Johansson

October 2005

Work ing Repor t 2005 -59

Point Load Test Results fromOlkiluoto Area Borehole Cores

October 2005

Base maps: ©National Land Survey, permission 41/MYY/05

Working Reports contain information on work in progress

or pending completion.

The conclusions and viewpoints presented in the report

are those of author(s) and do not necessarily

coincide with those of Posiva.

Pau la Poh janperä

To ivo Wanne

Er ik Johansson

Saan io & R i ekko l a Oy

Work ing Repor t 2005 -59

Point Load Test Results fromOlkiluoto Area Borehole Cores

ABSTRACT

The strength properties of rock core samples can be measured by simple field tests. The most common field test for this purpose is the point load test. Like most of the other field tests, it is not as accurate as a laboratory test but it is a fast and cost effective way to determine the rock properties over a large volume of rock. It should be remembered that the point load index does not directly take into account the orientation of rock’s schistosity, though most of the Olkiluoto rock types are anisotropic.

At Olkiluoto, the point load test was performed on rock core samples during the site investigation core drilling. This work includes the generation of point load test data from 1022 samples from boreholes KR1 – KR28 and PH1. The test interval between rock cores was about 30 meters. For 294 rock samples, there was information on how the rock was foliated, but not on how specimens were loaded with respect to the planes of anisotropy.

When correlating the diameter-corrected point load index with the uniaxial compressive strength of the rock, the index has to be multiplied by a coefficient. In this work, calculations are made using a coefficient value of 20, which is in accordance with ISRM (1985) suggestions. Also comparisons made between laboratory and field test results indicate that a coefficient of 20 best represents the Olkiluoto rocks and this value is therefore recommended for use in the future point load index evaluations.

The test data were classified according to the rock type into six rock type categories and the median, mean and standard deviation values were calculated. Differences between strength properties for different boreholes were also studied and it was noticed that higher mean peak strength values (>130 MPa) are met in boreholes KR2, KR4, KR8 and KR17; whereas, the low strength values (<100 MPa) are encountered in boreholes KR6, KR24, KR28 and PH1. The strength values of the different rock types vary only slightly. It is noted that the standard deviation is quite high – reflecting the heterogeneous nature of the rock in the Olkiluoto area. Hornblende gneiss (130 MPa) seems to have the highest strength values but this is based on only a few samples. Granite/pegmatite (125 MPa) and tonalite (120 MPa) have the next highest strength values and mica gneiss (116 MPa) has a slightly lower value, while veined gneiss (110 MPa) has slightly lower values than mica gneiss. Amphibolite/diabase (92 MPa) has the lowest strength, but this is also based only on a very few samples. The mean value of the whole data set (118 ± 31 MPa) can be considered as an estimate for the uniaxial compressive strength of the rock over the whole area in question. When studying the depth dependence it was found that the strength values have very little correlation with the depth. At this stage, the comparison made between foliation data and strength values did not provide any usable results and for a more accurate study it will be necessary also to have information, on how the specimens were loaded in relation to the planes of anisotropy.

Keywords: point load test, uniaxial compressive strength, field test, nuclear waste disposal, Olkiluoto

TIIVISTELMÄ

Kairansydännäytteiden lujuus- ja muodonmuutosominaisuuksia voidaan mitata yksinkertaisilla kenttäkokeilla. Yleisin tähän tarkoitukseen käytetty testi on ns. pistekuormituskoe. Kuten monet muutkin kenttäkokeet se ei anna yhtä tarkkoja tuloksia kuin laboratoriokokeet, mutta se on nopea ja edullinen keino tutkia suuresta kalliotilavuudesta saatuja tietoja tilastollisesti. On kuitenkin muistettava, että pistekuormituskoe ei huomio kiven suuntautuneisuutta ja mm. Olkiluodossa suurin osa kivestä on anisotrooppista.

Olkiluodossa pistekuormituskokeita tehtiin alueen kairaustutkimuksien yhteydessä. Tämä tutkimusraportti sisältää tiedot 1022 pistekuormituskokeesta, jotka on tehty rei’istä KR1 – KR 28 ja PH1 otetuille näytteille. Määritykset tehtiin kairanrei’istä noin 30 metrin välein. Raporttiin saatiin 294 näytteestä tieto, kuinka ja kuinka voimakkaasti kivet olivat suuntautuneet, mutta tietoa, kuinka näytteitä kuormitettiin suhteessa tähän suuntautuneisuuteen ei ollut saatavissa.

Pistekuormituskokeesta saadaan kiven yksiaksiaalinen puristusmurtolujuus kertomalla pistekuormitusindeksi tietyllä kertoimella. Tässä työssä käytettiin kerrointa 20, mikä on ISRM:n (1985) ohjeiden mukainen. Myös vertailut laboratorio- ja pistekuormituskokeilla saatujen lujuusarvojen välillä osoittavat, että kerroin 20 soveltuu parhaiten Olkiluodon alueen kivilajeille, ja siksi sitä suositellaan myös jatkossa käytettäväksi pistekuormituskokeiden yhteydessä.

Kokeilla saadut lujuusarvot jaettiin kivilajin mukaisesti kuuteen eri kivilajityyppiin ja niistä laskettiin mediaani, keskiarvo ja keskihajonta. Lujuusarvojen vaihtelua eri kairanreikien välillä tutkittiin myös ja huomattiin, että keskiarvoltaan suurimmat lujuusarvot (>130 MPa) ovat kairanrei’issä KR2, KR4, KR8 ja KR17 ja pienimmät lujuudet (<100 MPa) ovat rei’issä KR6, KR24, KR28 ja PH1. Eri kivilajien lujuusarvot vaihtelevat vain vähän. Huomattavaa on, että lujuusarvojen keskihajonta on melko suuri, joka kuvastaa Olkiluodon kivilajien heterogeenisuutta. Pistekuormituskokeella saatujen tuloksien mukaan sarvivälkegneissillä on suurin yksiaksiaalinen puristusmurtolujuus (130 MPa), mutta tämä tieto perustuu vain muutamaan näytteeseen. Graniitilla/pegmatiitilla (125 MPa) ja tonaliitilla (120 MPa) on toiseksi suurin lujuus ja kiillegneissin lujuus (116 MPa) jää hieman näiden alle. Suonigneissillä on puolestaan hieman kiillegneissiä pienempi lujuus (110 MPa). Amfiboliitilla/diabaasilla (92 MPa) on tutkituista kivinäytteistä pienin puristusmurtolujuus, mutta tämäkin tieto perustuu vain muutamaan näytteeseen. Kaikkien määritysten keskiarvon ja sen keskihajonnan (118 ± 31 MPa) voidaan arvioida edustavan laajemmin Olkiluodon kallion yksiaksiaalista puristus-murtolujuutta. Näytteen lujuuden ja syvyyden välillä ei havaittu juurikaan korrelaatiota. Näytteiden suuntautuneisuuden ja lujuusarvojen välillä ei myöskään havaittu yhteyttä, mutta tarkempaa vertailua varten olisi ollut hyvä, jos käytettävissä olisi ollut myös tieto, kuinka näytteitä oli kuormitettu suhteessa niiden suuntautuneisuuteen.

Avainsanat: pistekuormituskoe, yksiaksiaalinen puristusmurtolujuus, kenttäkoe, ydinjätteiden loppusijoitus, Olkiluoto

PREFACE

This work has been performed under contract to Posiva Oy. The contact persons at Posiva Oy have been Sanna Riikonen and formerly Heikki Hinkkanen.

The work is part of Posiva’s rock mechanics work to characterize the rock mechanics domains in Olkiluoto site. The report has been prepared by Paula Pohjanperä, Toivo Wanne and Erik Johansson from Saanio & Riekkola Oy.

The authors wish to thank John Hudson for his valuable comments on the report.

1

TABLE OF CONTENTS

ABSTRACT

TIIVISTELMÄ

PREFACE

TABLE OF CONTENTS.............................................................................................. 1

1 INTRODUCTION ................................................................................................ 3

2 METHOD ............................................................................................................ 5

3 PROCESSING OF DATA ................................................................................... 9

4 STRENGTH VALUES....................................................................................... 11

5 FOLIATION OF THE ROCK SAMPLES ........................................................... 19

6 CONCLUSIONS................................................................................................ 21

7 REFERENCES ................................................................................................. 23

Appendix 1................................................................................................................ 27

Appendix 2................................................................................................................ 39

2

3

1 INTRODUCTION

Simple field tests can be conducted for determination of the deformation and strength properties of rock core samples in addition to the usual laboratory loading tests. Field tests are not as accurate as laboratory tests but they are a quick and cost-effective way to determine the rock properties over a large volume of rock. The most common field test on rock samples is the point load test. At Olkiluoto the point load test was performed on rock cores during the site investigation core-drillings. The test was conducted for rock cores at about 30 meters interval.

In this work, the point load test results have been collected from drilling reports (Jokinen 1994; Niinimäki 2000, 2001a-b, 2002a-j, 2003a-c, 2004; Rautio 1989a-c, 1990a-b, 1995a-c, 1996a-b, 1999, 2000a-b, 2002, 2003a-b; Rautio & With 1991) by Suomen Malmi Oy, including data sets for 29 core-drilled boreholes (KR1 – KR28 and PH1) in the Olkiluoto area. The results regarding the strength properties of different rock types are compiled and summarized as graphs. The appendices contain the data

sorted by the borehole number. The locations of the boreholes can be seen in Figure 1.

Figure 1. Location of the boreholes KR1 – KR28 and PH1 (Pilot Hole 1).

4

5

2 METHOD

The point load tests were performed with a portable test unit termed the Rock Tester (Figure 2), which can also be used for three point and four point bending tests. The device is meant for field testing of rock cores to evaluate rock deformation and strength parameters. The rock cores tested can be unprepared and the test itself is easy to perform; hence, it is a rapid, practical and useful testing method.

The point load test value can be used as an indirect estimate of the uniaxial compressive (or peak) strength (UCS) of the rock. The test specimen can be a rock core or a block or an irregular lump of rock. In this study, the tests were made using rock core samples. In the test, a piece of rock core is loaded between two conical steel points of the point load test device. The standard geometry of the points is shown in Figure 3. According to ISRM advice (ISRM 1981 and 1985), the test can be either diametral or axial. The specimen shape requirements for a core are shown in Figure 4.

After the rock core sample is set, the load is steadily increased until the specimen breaks and the failure load P is recorded. The test result is valid only if the break surface goes through both load points (Figure 5). If the rock sample is shaly, bedded, schistose or otherwise observably anisotropic it should be tested in directions that give the largest and smallest least strength values. These directions are in general parallel and normal to the planes of anisotropy.

Figure 2. Rock Tester device (photo by Suomen Malmi Oy 2004).

6

Figure 3. The standard geometry of the point in the point load tester (ISRM 1985).

Figure 4. The specimen shape requirements for a) the diametral test and b) the axial test (ISRM 1985).

7

Figure 5. Typical modes of failure for valid and invalid tests. a) Valid diametral tests, b) valid axial tests, c) valid block tests, d) invalid core test and e) invalid axial test (ISRM 1985).

The load at which the core breaks is determined from the peak force applied by the steel points. The point load index IS is then defined as

2DI s =

P (1)

where P is the applied force at failure and D is the diameter of the core. The point load index is dependent on the diameter of the sample and it is corrected to IS50 (i.e. a 50 mm diameter core) using Equations 2 and 3 (ISRM 1985).

sS IFI ×=50 (2)

45.0

50

=

DF (3)

The diameter-corrected point load index (IS50) can be correlated with the uniaxial compressive strength of the rock by multiplying the index by a coefficient. Table 1

8

summarizes some equations concerning the correlation between the uniaxial compressive strength (UCS) and point load index (IS). The coefficient used in the drilling reports is 24, which is probably based on the original ISRM suggestions by Broch and Franklin (1972). According to the more recent ISRM (1985) Suggested Methods, the coefficient is between 20 – 25, but for many rock types, especially anisotropic rocks, it can even vary between 15 and 50. Matikainen and Simonen (1992) found out that the coefficient is closer to 19, rather than 24. Later, 19 laboratory tests and 164 field tests were compared (Rock mechanics work at HUT by J. Mikkola 1997) and it was found that, for Olkiluoto mica gneiss, the coefficient is about 20.

Therefore, it is proposed that a coefficient value of 20 should be used for the Olkiluoto rock types. In Appendix 1, the uniaxial compressive strength has been calculated using a coefficient of 20; and, in Appendix 2, a coefficient of 24 has been used. Further calculations in this study have been made using a coefficient of 20.

Table 1. Correlation between uniaxial compressive strength (UCS) and point load index (IS) (Kahraman, 2001).

Reference Equation

D’Andrea et al. 1964 UCS = 15,3Is50 + 16,3 Broch and Franklin 1972 UCS = 24Is50 Bieniawski 1975 UCS = 23Is50 Hassani et al. 1980 UCS = 29Is50 Read et al. 1980 Sedimentary rocks Basalts

UCS = 16Is50

UCS = 20 Is50

Forster 1983 UCS = 14,5Is50 Gunsallus and Kulhawy 1984 UCS = 16,5Is50 + 51,0 ISRM 1985 UCS = 20…25Is50 Chargill and Shakoor 1990 UCS = 16,5Is50 + 51,0 Chau and Wong 1996 UCS = 12,5Is50 Grasso et al. 1992 UCS = 9,3Is50 + 20,04

9

3 PROCESSING OF DATA

The point load index was determined for 1022 samples taken from 29 core-drilled boreholes in the Olkiluoto area. The results were classified according to the rock type into six rock type categories. Some of the categories were represented by only a few samples; whereas, other were represented by hundreds. The lithology of some rock samples was uncertain and these were omitted from the final evaluation. Information on how the specimens were loaded with respect to the planes of anisotropy was not available.

According to the ISRM suggested method (1985), the two lowest and highest values from the 10 or more valid tests should be rejected when calculating the mean values. In this survey, the data were first modified by rejecting 10 % of the samples with the lowest and highest values in each category. If some category included only a few samples, no rejections were made. This produced data sets for which the median and mean values were close to one other but the standard deviation values were decreased as compared to values calculated using the unmodified data. Because the difference was not significant, all calculations and graphics were executed using the unmodified data. Also, all calculations are conducted using the coefficient of 20.

The summarizing data are presented with the median, mean (Eq. 4) and standard deviation (Eq. 5) values. The standard deviation is the positive square root of the variance, which is defined as the mean of the squares of the differences between the values of xi and the sample mean value. The division is by n-1 because one degree of freedom has been lost in calculating the mean value.

n1

iix

nx

1=∑= (4)

2

1)(

11 ∑

=−

−=

n

ii xx

ns (5)

10

11

4 STRENGTH VALUES

The statistics for the uniaxial compressive strength values for each borehole are shown in Table 2 and the values classified according to rock type are shown in Table 3. For comparison, the statistics for the modified (10 % of the lowest and highest UCS values has been rejected) data sets are shown in Table 4. The uniaxial compressive strength values are also presented from the actual laboratory tests in Table 5 (Anttila et al. 1999). It should be noted that the laboratory test samples are not from the same locations in the boreholes as the field test samples.

Table 2. Uniaxial compressive strength of rock samples for each borehole (coeff. 20).

Borehole UCS [MPa] median

UCS [MPa] average

Standard deviation [MPa]

Number of samples

KR 1 124 125 32.1 76 KR 2 142 137 31.5 68 KR 3 117 114 32.3 40 KR 4 133 137 29.4 58 KR 5 120 122 30.3 38 KR 6 98 104 26.2 18 KR 7 115 118 23.7 56 KR 8 137 145 34.8 36 KR 9 115 120 32.2 30 KR 10 123 120 30.4 36 KR 11 106 108 23.0 66 KR 12 114 116 29.9 56 KR 13 108 109 25.6 38 KR 14 101 102 23.0 38 KR 15 110 118 27.4 42 KR 16 119 126 26.3 12 KR 17 132 125 29.0 12 KR 18 115 114 26.9 10 KR 19 116 113 25.6 28 KR 20 117 124 21.1 26 KR 21 129 119 41.4 16 KR 22 116 118 21.8 28 KR 23 127 119 33.5 20 KR 24 94 97 28.3 36 KR 25 112 112 31.0 40 KR 26 119 114 16.6 6 KR 27 107 107 27.8 38 KR 28 97 103 30.0 42 PH 1 90 96 26.5 12

12

Table 3. Uniaxial compressive strength of the samples based on the point load index, median, average, standard deviation and number of samples in each category (coeff. 20).

UCS [MPa]

median UCS [MPa]

average

Standard deviation

[MPa]

Number of samples

Mica gneiss 116 117 32.3 446 Veined gneiss 110 112 28.5 258 Granite/Pegmatite 125 125 29.9 232 Tonalite 120 126 25.5 82 Amphibolite/Metadiabase 92 92 9.3 2 Hornblende gneiss 130 130 2.0 2 All 117 118 30.6 1022

Table 4. Uniaxial compressive strength of the samples based on the point load index, median, average, standard deviation and number of samples in each category calculated with modified (10 % of the lowest and highest UCS values rejected) data (coeff. 20).

UCS [MPa]

median UCS [MPa]

average

Standard deviation

[MPa]

Number of samples

Mica gneiss 116 116 20.9 357 Veined gneiss 110 112 18.5 206 Granite/Pegmatite 125 124 20.5 186 Tonalite 120 125 18.9 66 Amphibolite/Metadiabase 92 92 9.3 2 Hornblende gneiss 130 130 2.0 2 All 117 117 20.6 819

Table 5. Uniaxial compressive strength of the rock samples based on the laboratory compression tests (Anttila et al. 1999).

UCS [MPa] average

Standard deviation [MPa]

Number of samples

Mica gneiss 109 27.9 59 Granite/Pegmatite 134 18.5 5 Tonalite 110 7.8 4

Figures 6 - 9 show the frequency distribution of the uniaxial compressive strength for each category and the distribution for all rock samples is represented in the Figure 10. Figures 11 - 15 show the uniaxial compressive strength with the vertical depth.

13

Mica gneiss - point load test, 446 samples

0

5

10

15

20

25

30

35

<50 50-75 75-100 100-125 125-150 150-175 175-200 200-225 225-250

UCS [MPa]

Freq

-%

Figure 6. Frequency (%) distribution of the uniaxial compressive strength of the mica gneiss samples based on the point load index.

Veined gneiss - point load test, 258 samples

0

5

10

15

20

25

30

35

40

<50 50-75 75-100 100-125 125-150 150-175 175-200 200-225 225-250UCS [MPa]

Freq

-%

Figure 7. Frequency (%) distribution of the uniaxial compressive strength of the veined gneiss samples based on the point load index.

14

Granite/Pegmatite - point load test, 232 samples

0

5

10

15

20

25

30

35

<50 50-75 75-100 100-125 125-150 150-175 175-200 200-225 225-250UCS [MPa]

Freq

-%

Figure 8. Frequency (%) distribution of the uniaxial compressive strength of the granite and pegmatite samples based on the point load index.

Tonalite - point load test, 82 samples

0

5

10

15

20

25

30

35

40

45

<50 50-75 75-100 100-125 125-150 150-175 175-200 200-225 225-250uc [MPa]

Freq

-%

Figure 9. Frequency (%) distribution of the uniaxial compressive strength of the tonalite samples based on the point load index.

15

All rock samples - point load test, 1022 samples

0

5

10

15

20

25

30

35

<50 50-75 75-100 100-125 125-150 150-175 175-200 200-225 225-250ucs [MPa]

Freq

-%

Figure 10. Frequency (%) distribution of the uniaxial compressive strength of all samples based on the point load index.

Uniaxial compressive strength (point load test, coeff. 20) versus depth - 446 Mica samples

0

50

100

150

200

250

300

0 200 400 600 800 1000depth [m]

ucs

[MPa

]

Figure 11. Uniaxial compressive strength of the mica samples versus vertical depth.

16

Uniaxial compressive strength (point load test, coeff. 20) versus depth - 258 Veined gneiss samples

0

50

100

150

200

250

300

0 200 400 600 800 1000depth [m]

ucs

[MPa

]

Figure 12. Uniaxial compressive strength of the veined gneiss samples versus vertical depth.

Figure 13. Uniaxial compressive strength of the granite/pegmatite samples versus

Uniaxial compressive strength (point load test, coeff. 20) versus depth - 232 Granite/Pegmatite samples

0

50

100

150

200

250

300

0 200 400 600 800 1000depth [m]

ucs

[MPa

]

vertical depth.

17

Uniaxial compressive strength (point load test, coeff. 20) versus depth - 82 Tonalite samples

0

50

100

150

200

250

300

0 200 400 600 800 1000depth [m]

ucs

[MPa

]

xial compressive strength of the tonalite samples versus vertical depth. Figure 14. Unia

Uniaxial compressive strength (point load test, coeff. 20) versus depth - 1022 samples

0

50

100

150

200

250

300

0 200 400 600 800 1000depth [m]

ucs

[MPa

]

Figure 15. Uniaxial compressive strength of all samples versus vertical depth.

18

19

5 FOLIATION OF THE ROCK SAMPLES

From 294 rock samples, it was possible to obtain information on the rock foliation (data received from Posiva Oy, Ismo Aaltonen). These samples were taken from boreholes KR 4, KR 7, KR 8, KR 22, KR 24, KR 27 and KR 28. The samples were classified according to the foliation type in five categories, and the intensity of the foliation was also graded. The classification is shown in Table 6 and Appendices 1 and 2 present the results of the study.

Through these foliation data, the possibility of a correlation between strength and foliation properties of the samples was studied; the results of are shown in Table 7. It can be seen that there is no direct correlation between these two properties of the rock samples. For a more accurate comparison, it would be necessary to include the information on how the specimens had been loaded according to the planes of foliation – but this information was not available.

Table 6. Classification of rock samples according to foliation type and intensity (Aaltonen 2005).

Foliation type Foliation intensity GNE Gneissic 0 No foliation BAN Banded 1 Weak SCH Schistose* 2 Fair MAS Homogeneous and isotropic 3 Strong* IRR Inhomogeneous and isotropic

* No samples

20

Table 7. Strength properties of rock samples classified according to foliation type and intensity (coeff. 20).

ALL CLASSIFIED SAMPLES

Fol. Type UCS

[MPa] median

UCS [MPa] mean

Standard deviation

[MPa]

Number of

samples

Fol. Int. 0 Number of samples/

mean[MPa]

Fol Int. 1 Number of samples/

mean[MPa]

Fol. Int. 2 Number of samples/

mean[MPa] GNE 162 175 50.8 22 - 8/180 14/172 BAN 137 134 40.0 102 - 50/123 52/145 MAS 155 155 34.4 52 52/155 - - IRR 139 139 32.8 118 118/139 - - ALL 141 143 38,8 294 170/144 58/131 66/151

GRANITE / PEGMATITE

Fol. Type UCS

[MPa] median

UCS [MPa] mean

Standard deviation

[MPa]

Number of

sam

Intensity 0 Number of

Intensity 1 Number of

Intensity 2 Number of

ples samples / mean[MPa]

samples / mean[MPa]

samples / mean[MPa]

GNE - - - - - - - BAN - - - - - - - MAS 157 157 34.3 32 32/157 - - IRR 119 130 33.2 12 12/130 - - ALL 145 149 35.7 44 44/149 - -

MICAGNEISS

Fol. TStandard

iation Number

of

IntensiNumbsamp

mean[M

IntenNumbsamp

mean[

Intensity 2 Number of samples /

mean[MPa]

ype [MPa] [MPa] devUCS UCS

median mean [MPa] samples

ty 0 sity 1 er of

les / er ofles /

Pa] MPa] GNE 174 - 4/197 12/177 182 53.0 16BAN 129 128 41.3 64 - 22/107 42/140 MAS 143 149 40.0 14 14/149 - - IRR 137 133 30.1 78 78/133 - - ALL 137 137 40.5 172 92/135 26/121 54/148

VEINED GNEISS Fol. Type UCS

[MPa] median

UCS [MPa] mean

Standard deviation

[MPa]

Number of

samples

Intensity 0 Number of samples /

mean[MPa]

Intensity 1 Number of samples /

mean[MPa]

Intensity 2 Number of samples /

mean[MPa] GNE 156 174 43.4 4 - 2/201 2/148 BAN 141 145 35.8 38 - 28/136 10/169 MAS 161 157 26.8 26 26/157 - - IRR 157 163 18.9 4 4/157 - - ALL 148 152 32.9 72 30/158 30/141 12/166

TONALITE Fol. Type UCS

[MPa] median

UCS [MPa] mean

Standard deviation

[MPa]

Number of

samples

Intensity 0 Number of samples /

mean[MPa]

Intensity 1 Number of samples /

mean[MPa]

Intensity 2 Number of samples /

mean[MPa] GNE 124 124 22.3 2 - 2/124 - BAN - - - - - - - MAS 161 161 30.7 2 2/161 - - IRR 219 219 15.4 2 2/219 - - ALL 161 168 46.9 6 4/190 2/124 -

21

6 CONCLUSIONS

The point load test is a widely used test for the determination of rock peak strength (UCS) in the field. The m d co o th ry strength testing. For this reason, the m od was applied to strength testing of some Olkiluoto b c

The point load index was here conver to the u axial stre mult the index by 20 ich acc ce w ISRM suggestions. The comparisons made between lab ry field test results indicated that the coefficient of 20 best r nts th kilu ocks this re recommended for use in the future point load index evaluations. However, it should be remembered that the point load index does not directly take into acc ien e r n a f i e

In this study, the point load test results were co d in d summarized as graphs. Some differences are found when comparing the strength values fo erent hole res. er a ength va es (>130 M a) are fo in bor es K KR 8 a KR17 eas, the wer strength values (< Pa) und oreh KR6, KR24, KR28 and PH1.

The strength values of the different rock types vary only slightly. It is noted that the standard deviation is quite high – reflecting the eou the rock in the O t est ere c at various orientations to the foliation. Hornblende gneiss (130 MPa) seems e g t this conclusi ba n o n fe samples. ranite/pe e (125 and tonalite (120 MPa) ha e ne hes ength va es and m ss (116 has slightly lowe lues tho eine neiss Pa) has even lowe value. A bolite/diabase ( Pa the est s , but this is also based only on a very few samples. The mean value of the whole data set (118 ± 31 MPa) can be considered as an estimate of the uniaxial compressive strength of the rock over the whole study area.

The potent de s also studied but it w at h values have very little or no correlation with the depth. Moreover, the comparison made with the avai ol n da d str th value id not p ny usa ults b ther s in cien rmation on how the specim s were load with re t to the es o sotr

T lts are considered to be representative of the strength variation for the Olkiluoto rocks. The distribution of strengths for the individual rock types and especially f e 1 oll al distribution – the effect of the samp at l inc in t ution he foliation can t an le t ock sample h c s distribution, the mean value and the standard deviation, represents the in situ conditions.

ethod is low-priceeth

and rapid mpared t e laborato

orehole ore.

ted ni ngth by iplying, wh is in ordan ith orato and

eprese e Ol oto r and coefficient is therefo

ount the or tation of th ock foliationd most o the Olk luoto rock types are foliat d.

mpiled from ifferent drill g reports an

r diff bore co High verage mean str lu Pund ehol R2, 4, KR nd ; wher lo 100 M are fo in b oles

heterogenonducted

s nature oflkiluoto area and he fact that the t s w

to have th highest stren th values buon is sed o nly o w G gmatit MPa)

ve th xt hig t str lu ica gnei MPa) r va than se. V d g (110 M an r

mphi 92 M ) have low trengths

ial depth depen nce wa as found th the strengt

lable f iatio ta an eng s d rovide a ble resecause e wa suffi t info en edspec plan f ani opy.

he test resu

or all th samplele foli

s as showion ang

n in Fig.e being

0, clearly forporated

ow a normhe distrib . Since, t

be a y ang o a r in th peripe ery e exof th avatio s, thin

22

23

7 REFERENCES

Aaltonen, I. 2005. Syväkairaustutkimus Olkiluodon kallioperän duktiilista deformaatiosta. Master’s Thesis. University of Turku, Department of Geology. Turku. 88 + 45 p.

Anttila, P., Ahokas, H., Front, K., Hinkkanen, H., Johansson, E., Paulamäki, S., Riekkola, R., Saari, J., Saksa, P., Snellman, M., Wikström, L. & Öhberg, A. 1999. Final disposal of spent nuclear fuel in Finnish bedrock – Olkiluoto site report. Working Report 99-10. Posiva Oy. Helsinki, Finland.

Broch, E. & Franklin, J. A. 1972. The point-load strength test. International Journal of Rock Mechanics and Mining Sciences. Vol. 9. p. 669 - 697.

ISRM 1985. Suggested method for determining point load strength. International Journal of Rock Mechanics and Mining Sciences & Geomechanical Abstracts. Vol. 22. No. 2. p. 51 - 60.

ISRM 1981. Suggested method for determining uniaxial compressive strength and deformability of rock materials. In Rock Characterization testing and monitoring. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, Vol. 18, No 6, p. 113 – 116.

Jokinen, J. 1994. Reiän OL-KR7 syväkairaus Eurajoen Olkiluodossa 1994. Työraportti 94-38. Teollisuuden voima Oy, Helsinki.

Kahraman, S. 2001. Evaluation of simple methods for assessing the uniaxial compressive strength. International Journal of Rock Mechanics and Mining Sciences. Vol. 38. p. 981 – 994.

Matikainen, R. & Simonen, A. 1992. Sijoituspaikkatutkimuksissa kairattujen kairasydännäytteiden kalliomekaaniset luokitusominaisuudet. Työraportti 92-36. Teollisuuden voima Oy, Helsinki.

Niinimäki, R. 2000. Syväkairaus OL-KR12 Eurajoen Olkiluodossa vuonna 2000. Työraportti 2000-28. Posiva Oy, Helsinki, Finland.

Niinimäki, R. 2001a. Syväkairaus OL-KR13 Eurajoen Olkiluodossa vuonna 2001. Työraportti 2001-19. Posiva Oy, Helsinki, Finland.

Niinimäki, R. 2001b. Syväkairaus OL-KR14 Eurajoen Olkiluodossa vuonna 2001. Työraportti 2001-24. Posiva Oy, Helsinki, Finland.

Niinimäki, R. 2002a. Core drilling of deep borehole OL-KR15 at Olkiluoto in Eurajoki 2001. Working report 2002-01. Posiva Oy, Helsinki, Finland.

Niinimäki, R. 2002b. Core drilling of deep borehole OL-KR16 at Olkiluoto in Eurajoki 2001. Working report 2002-09. Posiva Oy, Helsinki, Finland.

24

Niinimäki, R. 2002c. Core drilling of deep borehole OL-KR17 at Olkiluoto in Eurajoki 2001. Working report 2002-12. Posiva Oy, Helsinki, Finland.

elsinki, Finland.

.

. Posiva Oy, Helsinki, Finland.

, Helsinki, Finland.

Niinimäki, R. 2003c. Core drilling of deep borehole OL-KR27 at Olkiluoto in Eurajoki

f pilot hole OL-PH1 at Olkiluoto in Eurajoki 2003 - 2004. Working report 2004-05. Posiva Oy, Helsinki, Finland.

Olkiluodossa. Työraportti 89-38. Teollisuuden voima Oy, Helsinki, Finland.

Olkiluodossa. Työraportti 89-43. Teollisuuden voima Oy, Helsinki, Finland.

Olkiluodossa. Työraportti 89-45. Teollisuuden voima Oy, Helsinki, Finland.

ossa. Työraportti 90-24. Teollisuuden voima Oy, Helsinki, Finland.

ossa. Työraportti 90-26. Teollisuuden voima Oy, Helsinki, Finland.

Niinimäki, R. 2002d. Core drilling of deep borehole OL-KR18 at Olkiluoto in Eurajoki 2001. Working report 2002-13. Posiva Oy, Helsinki, Finland.

Niinimäki, R. 2002e. Core drilling of deep borehole OL-KR19 at Olkiluoto in Eurajoki 2002. Working report 2002-49. Posiva Oy, Helsinki, Finland.

Niinimäki, R. 2002f. Core drilling of deep borehole OL-KR21 at Olkiluoto in Eurajoki 2002. Working report 2002-56. Posiva Oy, H

Niinimäki, R. 2002g. Core drilling of deep borehole OL-KR22 at Olkiluoto in Eurajoki 2002. Working report 2002-59. Posiva Oy, Helsinki, Finland

Niinimäki, R. 2002h. Core drilling of deep borehole OL-KR23 at Olkiluoto in Eurajoki 2002. Working report 2002-60. Posiva Oy, Helsinki, Finland.

Niinimäki, R. 2002i. Extension core drilling of deep borehole OL-KR8 at Olkiluoto in Eurajoki 2002. Working report 2002-53. Posiva Oy, Helsinki, Finland.

Niinimäki, R. 2002j. Extension core drilling of deep borehole OL-KR15 at Olkiluoto in Eurajoki 2002. Working report 2002-35

Niinimäki, R. 2003a. Core drilling of deep borehole OL-KR24 at Olkiluoto in Eurajoki 2003. Working report 2003-52. Posiva Oy

Niinimäki, R. 2003b. Core drilling of deep borehole OL-KR25 at Olkiluoto in Eurajoki 2003. Working report 2003-44. Posiva Oy, Helsinki, Finland.

2003. Working report 2003-61. Posiva Oy, Helsinki, Finland.

Niinimäki, R. 2004. Core drilling o

Rautio, T. 1989a. Syväkairaus OL-KR1 Eurajoen

Rautio, T. 1989b. Syväkairaus OL-KR2 Eurajoen

Rautio, T. 1989c. Syväkairaus OL-KR3 Eurajoen

Rautio, T. 1990a. Syväkairaus OL-KR4 Eurajoen Olkiluod

Rautio, T. 1990b. Syväkairaus OL-KR5 Eurajoen Olkiluod

25

Rautio, T. & Esko With. 1991. Kallionäytekairaus ja vedenjohtavuusmittaukset Eurajoen Olkiluodossa, kairanreikä OL-KR6. Työraportti 91-41. Teollisuuden Voima Oy, Helsinki, Finland.

kiluodossa vuonna 1995. Suomen Malmi Oy. Työraportti 95-62. Teollisuuden voima Oy, Helsinki, Finland.

kiluodossa vuonna 1995. Työraportti 95-46. Teollisuuden voima Oy, Helsinki, Finland.

ossa. Työraportti 95-22. Teollisuuden voima Oy, Helsinki, Finland.

ossa. Työraportti 96-32. Teollisuuden voima Oy, Helsinki, Finland.

ossa. Työraportti 96-02. Teollisuuden voima Oy, Helsinki, Finland.

vuonna 1999. Työraportti 99-50. Posiva Oy, Helsinki, Finland.

a vuonna 2000. Työraportti 2000-33. Posiva Oy, Helsinki, Finland.

kiluodossa vuonna 2000. Työraportti 2000-31. Posiva Oy, Helsinki, Finland.

at Olkiluoto in Eurajoki 2002. Working report 2002-50. Posiva Oy, Helsinki, Finland.

at Olkiluoto in Eurajoki 2003. Working report 2003-41. Posiva Oy, Helsinki, Finland.

at Olkiluoto in Eurajoki 2003. Working report 2003-57. Posiva Oy, Helsinki, Finland.

Rautio, T. 1995a. Reiän OL-KR2 jatkokairaus Eurajoen Ol

Rautio, T. 1995b. Reiän OL-KR4 jatkokairaus Eurajoen Ol

Rautio, T. 1995c. Syväkairaus OL-KR8 Eurajoen Olkiluod

Rautio, T. 1996a. Syväkairaus OL-KR9 Eurajoen Olkiluod

Rautio, T. 1996b. Syväkairaus OL-KR10 Eurajoen Olkiluod

Rautio, T. 1999. Syväkairaus OL-KR11 Eurajoen Olkiluodossa

Rautio, T. 2000a. Reiän OL-KR6 jatkokairaus Eurajoen Olkiluodoss

Rautio, T. 2000b. Reiän OL-KR7 jatkokairaus Eurajoen Ol

Rautio, T. 2002. Core drilling of deep borehole OL-KR20

Rautio, T. 2003a. Core drilling of deep borehole OL-KR26

Rautio, T. 2003b. Core drilling of deep borehole OL-KR28

26

27

Hole data of the uniaxial compressive strength based on the point load index (coeff. 20) Appendix 1

Appendix 1

Hole data of the uniaxial compressive strength based on the point load index (coeff. 20)

Rock type key:

AFB/MDB Amphibolite/Metadiabase GR Granite HGN Hornblende gneiss MGN Mica gneiss PG Pegmatite SGN Veined gneiss TON Tonalite

Hole ID key:

kr1 OL-KR1 kr2 OL-KR2 …

Foliation type:

GNE Gneissic BAN Banded SCH Schistose MAS Homogeneous and isotropic IRR Nonhomogeneous and isotropic

Foliation intensity:

0 No foliation 1 Weak 2 Fair 3 Strong

28

Hole data of the uniaxial compressive strength based on the point load index (coeff. 20) Appendix 1

Length UCS Rocktype Fol. Type

Fol. Intensity Hole ID Length

(m) UCS

(MPa) Rocktype Fol. Type

Fol. Intensity Hole ID

MGN kr1 769,0 114,3 SGN kr1 (m) (MPa) 44,0 120,3 44,0 155,5 MGN kr1 795,0 159,8 MGN kr1

kr1 kr1

N kr1 825,0 98,8 SGN kr1 77,0 187,4 MGN kr1 851,0 151,1 SGN kr1

104,0 140,5 MGN kr1 851,0 111,7 SGN kr1 104,0 156,6 MGN kr1 877,0 99,4 SGN kr1 119,0 43,5 GR/PG kr1 877,0 85,1 SGN kr1

GR/PG 96,9 SGN kr1 kr1

kr1 kr1

kr1 kr1 963, kr1 963, kr1 kr1 977,0 126,3 MGN kr1 ,6 MGN kr1 ,4 MGN kr1

MGN kr1 MGN kr10

kr10 kr10 kr10

3,0 154,9 GR/PG 1 71,0 124,7 MGN kr10 3,0 120,0 GR/PG 1 71,0 122,3 MGN kr10

368,0 163,9 MGN 1 102,0 113,1 MGN kr10 368,0 173,6 MGN kr1 102,0 104,1 MGN kr10 419,0 70,9 MGN kr1 131,5 132,9 GR/PG kr10 419,0 75,0 MGN kr1 131,5 81,4 GR/PG kr10 443,0 133,3 GR/PG kr1 160,0 179,5 MGN kr10 443,0 92,4 GR/PG kr1 160,0 123,9 MGN kr10 443,0 65,3 GR/PG kr1 190,0 128,5 MGN kr10 485,0 154,2 GR/PG kr1 190,0 72,6 MGN kr10 485,0 188,8 GR/PG kr1 219,5 155,1 GR/PG kr10 533,0 96,7 MGN kr1 219,5 57,9 GR/PG kr10 533,0 115,8 MGN kr1 248,5 127,4 MGN kr10 559,0 123,7 MGN kr1 248,5 160,2 MGN kr10 559,0 97,0 SGN kr1 309,5 107,4 MGN kr10 559,0 142,5 SGN kr1 309,5 144,5 MGN kr10 585,0 102,8 SGN kr1 337,7 150,1 GR/PG kr10 585,0 128,2 SGN kr1 337,7 103,2 GR/PG kr10 612,0 129,9 MGN kr1 366,5 117,3 MGN kr10 637,0 142,1 MGN kr1 366,5 184,6 MGN kr10 637,0 118,7 MGN kr1 396,0 134,4 MGN kr10 664,0 148,0 MGN kr1 396,0 96,2 MGN kr10 664,0 165,6 MGN kr1 426,0 150,7 PG kr10 691,0 150,2 MGN kr1 426,0 142,8 PG kr10 691,0 120,8 MGN kr1 456,0 113,3 MGN kr10 717,0 106,0 SGN kr1 456,0 149,2 MGN kr10 717,0 124,4 SGN kr1 545,0 93,5 MGN kr10 744,0 99,1 SGN kr1 545,0 94,6 MGN kr10 744,0 81,1 SGN kr1 575,0 150,9 MGN kr10 769,0 102,7 SGN kr1 575,0 119,9 MGN kr10

52,0 127,4 MGN kr1 795,0 162,8 MGN 52,0 150,2 MGN kr1 825,0 93,7 SGN 77,0 183,5 MG

119,0 131,0 kr1 903,0 119,0 119,4 GR/PG 139,0 68,0 GR/PG

kr1 903,0 77,1 SGN kr1 921,0 115,0 GR/PG

139,0 170,5 GR/PG kr1 921,0 109,3 GR/PG 174,0 165,0 GR/PG kr1 938,0 128,0 TON

938,0174,0 124,7 GR/PG 174,0 148,9 GR/PG

kr1 120,4 TON kr1 0 117,9 GR/PG

198,0 76,0 GR/PG kr1 0 124,3 GR/PG 198,0 79,2 GR/PG 198,0 133,0 GR/PG 270,0 156,2 MGN

kr1 977,0 127kr1 1000,0 133

270,0 182,3297,0 118,2

kr1 1000,0 151,8 MGN kr1 41,0 127,6 GR/PG

297,0 117,7 MGN 326,0 78,0 GR/PG

kr1 41,0 125,6 GR/PGkr1 42,5 54,6 GR/PG

326,0 158,6 GR/PG kr1 42,5 98,6 GR/PG 3434

krkrkr

29

Hole data of the uniaxial compressive strength based on the point load index (coeff. 20) Appendix 1

G

Length (m)

UCS (MPa) Rocktype Fol.

Type Fol.

Intensity Hole ID Length (m)

UCS (MPa) Rocktype Fol.

Type Fol.

Intensity Hole ID

605,0 105,6 GR/PG kr10 820,0 71,7 R/PG kr11 605,0 87,6 GR/PG

GG

G G

MGN MGN

G G

G

kr10 849,5 152,6 MGN kr11 42,5 96,3 SGN kr11 849,5 134,1 MGN kr11 42,5 89,9 SGN kr11 879,5 102,4 SGN kr11 71,5 98,6 MGN kr11 879,5 103,7 SGN kr11 71,5 94,7 MGN kr11 909,0 90,2 MGN kr11

101,0 62,5 MGN kr11 909,0 121,7 MGN kr11 101,0 59,4 MGN kr11 939,0 159,8 PG kr11 161,0 107,1 SGN kr11 939,0 142,9 PG kr11 161,0 109,3 SGN kr11 968,0 88,8 R/PG kr11 183,0 153,3 GR/PG kr11 968,0 100,6 R/PG kr11 183,0 168,8 GR/PG kr11 997,5 121,1 MGN kr11 208,0 81,5 MGN kr11 997,5 110,9 MGN kr11 208,0 108,5 MGN kr11 40,9 97,8 R/PG kr12 238,5 99,7 MGN kr11 40,9 95,6 R/PG kr12 238,5 99,7 MGN kr11 67,0 142,4 MGN kr12 268,5 128,1 MGN kr11 67,0 159,6 MGN kr12 268,5 138,1 MGN kr11 98,6 73,4 SGN kr12 297,5 118,7 MGN kr11 98,6 78,6 SGN kr12 297,5 105,4 MGN kr11 156,7 140,3 SGN kr12 308,5 155,0 GR/PG kr11 156,7 112,4 SGN kr12 308,5 143,9 GR/PG kr11 185,3 188,8 MGN kr12 332,7 110,2 MGN kr11 185,3 156,6 MGN kr12 332,7 108,7 MGN kr11 192,7 125,2 GR/PG kr12 360,0 110,2 TON kr11 192,7 138,9 GR/PG kr12 360,0 107,8 TON kr11 216,8 96,9 GR/PG kr12 388,0 110,4 TON kr11 216,8 119,6 GR/PG kr12 388,0 110,0 TON kr11 226,5 106,1 SGN kr12 416,0 117,6 PG kr11 226,5 100,6 SGN kr12 416,0 132,0 PG kr11 256,1 92,3 SGN kr12 436,0 138,1 PG kr11 256,1 84,7 SGN kr12 436,0 123,9 PG kr11 284,9 86,7 SGN kr12 460,5 102,3 TON kr11 284,9 114,3 SGN kr12 460,5 80,4 TON kr11 313,0 54,7 MGN kr12 521,0 95,6 GR/PG kr11 313,0 57,5 MGN kr12 521,0 110,0 GR/PG kr11 344,4 140,3 GR/PG kr12 550,0 96,0 SGN kr11 344,4 135,0 GR/PG kr12 550,0 89,9 SGN kr11 373,9 137,6 TON kr12 580,5 87,5 MGN kr11 373,9 117,4 TON kr12 580,5 79,1 MGN kr11 401,5 148,9 MGN kr12 610,5 97,1 SGN kr11 401,5 160,5 MGN kr12 610,5 109,3 SGN kr11 408,4 165,3 TON kr12 640,0 100,4 PG kr11 408,4 155,9 TON kr12 640,0 102,4 PG kr11 437,3 101,3 TON kr12 670,0 100,2 PG kr11 437,3 134,1 TON kr12 670,0 119,6 PG kr11 466,0 95,2 TON kr12 700,0 89,1 MGN kr11 466,0 124,3 TON kr12 700,0 70,8 MGN kr11 495,8 110,8 kr12 730,0 105,8 SGN kr11 495,8 104,1 kr12 730,0 100,2 SGN kr11 525,4 132,4 MGN kr12 760,0 138,7 R/PG kr11 525,4 135,2 MGN kr12 760,0 119,6 R/PG kr11 552,4 108,2 MGN kr12 790,0 89,9 MGN kr11 552,4 83,4 MGN kr12 790,0 89,5 MGN kr11 584,4 77,5 MGN kr12 820,0 98,7 R/PG kr11 584,4 73,0 MGN kr12

30

Hole data of the uniaxial compressive strength based on the point load index (coeff. 20) Appendix 1

Length (m)

UCS (MPa) Rocktype Fol.

Type Fol.

Intensity Hole ID Length (m)

UCS (MPa) Rocktype Fol.

Type Fol.

Intensity Hole ID

617,0 167,0 MGN kr12 41,1 100,2 SGN kr14 617,0 146,1 MGN kr12 68,7 132,1 SGN kr14 641,4 113,7 G

G G G

G G

G G

MGN MGN

G G

G G

G G

R/PG kr12 68,7 123,6 SGN kr14 641,4 88,9 R/PG kr12 96,8 87,5 R/PG kr14 673,1 123,5 MGN kr12 96,8 84,9 R/PG kr14 673,1 137,4 MGN kr12 126,6 107,9 GR/PG kr14 701,9 124,1 MGN kr12 126,6 119,9 GR/PG kr14 701,9 106,1 MGN kr12 155,5 67,0 SGN kr14 731,0 142,0 MGN kr12 155,5 57,2 SGN kr14 731,0 122,2 MGN kr12 185,1 115,8 MGN kr14 762,0 75,3 SGN kr12 185,1 129,1 MGN kr14 762,0 80,1 SGN kr12 242,9 68,8 SGN kr14 790,1 94,9 SGN kr12 242,9 76,7 SGN kr14 790,1 97,8 SGN kr12 272,2 71,3 SGN kr14 10,5 50,5 SGN kr13 272,2 92,8 SGN kr14 10,5 58,2 SGN kr13 276,9 102,2 GR/PG kr14 47,4 107,1 SGN kr13 276,9 103,0 GR/PG kr14 47,4 102,4 SGN kr13 306,1 103,0 R/PG kr14 63,6 136,2 MGN kr13 306,1 84,9 R/PG kr14 63,6 120,7 MGN kr13 333,6 79,8 MGN kr14 78,6 133,3 GR/PG kr13 333,6 77,0 MGN kr14 78,6 131,3 GR/PG kr13 363,2 139,6 PG/GR kr14

123,8 86,3 GR/PG kr13 363,2 156,9 PG/GR kr14 123,8 87,5 GR/PG kr13 374,5 121,5 TON kr14 137,8 110,1 R/PG kr13 374,5 94,7 TON kr14 137,8 106,9 R/PG kr13 402,9 90,4 SGN kr14 164,8 113,6 MGN kr13 402,9 89,8 SGN kr14 164,8 125,0 MGN kr13 432,0 139,6 TON kr14 192,7 100,2 kr13 432,0 117,3 TON kr14 192,7 82,4 kr13 461,5 101,0 MGN kr14 225,2 112,0 SGN kr13 461,5 87,5 MGN kr14 225,2 101,2 SGN kr13 489,3 122,3 R/PG kr14 255,4 93,8 SGN kr13 489,3 129,3 R/PG kr14 255,4 107,9 SGN kr13 511,0 110,5 SGN kr14 287,4 103,0 TON kr13 511,0 122,1 SGN kr14 287,4 86,3 TON kr13 32,0 144,9 GR/PG kr15 315,5 103,6 TON kr13 32,0 125,8 GR/PG kr15 315,5 117,3 TON kr13 46,0 109,3 R/PG kr15 344,4 118,5 TON kr13 46,0 129,1 R/PG kr15 344,4 107,5 TON kr13 75,3 135,6 GR/PG kr15 377,0 128,2 TON kr13 75,3 123,2 GR/PG kr15 377,0 151,3 TON kr13 103,7 174,0 R/PG kr15 405,9 148,8 TON kr13 103,7 171,4 R/PG kr15 405,9 169,6 TON kr13 117,0 109,5 SGN kr15 413,8 73,7 SGN kr13 117,0 107,7 SGN kr15 413,8 64,1 SGN kr13 144,2 95,3 SGN kr15 443,0 125,6 SGN kr13 144,2 81,4 SGN kr15 443,0 102,4 SGN kr13 171,2 126,4 MGN kr15 471,8 90,2 MGN kr13 171,2 130,7 MGN kr15 471,8 109,3 MGN kr13 200,4 97,3 SGN kr15 498,3 143,9 GR/PG kr13 200,4 96,7 SGN kr15 498,3 133,9 GR/PG kr13 221,8 156,1 SGN kr15 11,2 91,0 SGN kr14 221,8 177,3 SGN kr15 11,2 94,9 SGN kr14 239,1 98,3 SGN kr15 41,1 87,3 SGN kr14 239,1 86,0 SGN kr15

31

Hole data of the uniaxial compressive strength based on the point load index (coeff. 20) Appendix 1

Length (m)

G

UCS (MPa) Rocktype Fol.

Type Fol.

Intensity Hole ID Le h ngt(m)

UCS (MPa) Rocktype Fol.

Type Fol.

Intensity Hole ID

266,6 94,4 SGN kr15 117,6 109,1 R/PG kr18 266,6 98,9 SGN kr15 16,5 110,0 SGN kr19 295,5 102,9 GR/PG kr15 16,5 130,6 SGN kr19 295,5 111,4 GR/PG kr15 100,0 80,9 SGN kr19 324,1 83,3 SGN kr15 100,0 86,0 SGN kr19 324,1 80,7 SGN kr15 133,9 131,6 MGN kr19 352,2 100,9 MGN kr15 133,9 131,2 MGN kr19 352,2 98,1 MGN kr15 192,8 80,5 MGN kr19 360,8 88,4 TON kr15 192,8 81,9 MGN kr19 360,8 106,3 TON kr15 218,8 121,5 MGN kr19 389,9 159,8 TON kr15 218,8 130,8 MGN kr19 389,9 143,5 TON kr15 250,5 155,4 MGN kr19 391,7 138,6 G

G G G

G G G

R/PG kr15 250,5 154,0 MGN kr19 391,7 58,3 R/PG kr15 281,2 121,5 SGN kr19 421,3 127,9 R/PG kr15 281,2 159,4 SGN kr19 421,3 121,7 R/PG kr15 306,3 78,3 SGN kr19 455,3 127,7 MGN kr15 306,3 79,9 SGN kr19 455,3 131,0 MGN kr15 335,4 145,9 MGN kr19 484,9 100,3 GR/PG kr15 335,4 131,4 MGN kr19 484,9 108,4 GR/PG kr15 361,9 111,8 SGN kr19 514,6 144,1 MGN kr15 361,9 122,5 SGN kr19 514,6 144,1 MGN kr15 449,8 109,2 SGN kr19 24,9 107,5 SGN kr16 449,8 119,3 SGN kr19 24,9 96,1 SGN kr16 479,6 109,2 SGN kr19 44,8 116,4 SGN kr16 479,6 121,7 SGN kr19 44,8 101,4 SGN kr16 508,9 103,9 SGN kr19 62,8 153,1 GR/PG kr16 508,9 104,5 SGN kr19 62,8 192,6 GR/PG kr16 538,1 78,1 SGN kr19 91,9 113,0 GR/PG kr16 538,1 73,5 SGN kr19 91,9 131,5 GR/PG kr16 47,0 172,5 MGN kr2

123,0 137,2 SGN kr16 47,0 198,1 MGN kr2 123,0 125,4 SGN kr16 145,0 113,4 GR/PG kr2 158,0 121,7 SGN kr16 145,0 156,4 GR/PG kr2 158,0 114,0 SGN kr16 181,0 171,3 MGN kr2 11,4 131,3 HGN kr17 181,0 174,3 MGN kr2 11,4 128,5 HGN kr17 202,0 137,3 MGN kr2 25,8 143,1 MGN kr17 202,0 142,5 MGN kr2 25,8 132,1 MGN kr17 242,0 102,3 GR/PG kr2 46,6 138,4 MGN kr17 242,0 127,7 GR/PG kr2 46,6 146,2 MGN kr17 281,0 130,9 MGN kr2 72,6 80,2 MGN kr17 281,0 102,4 MGN kr2 72,6 82,4 MGN kr17 302,0 115,3 TON kr2

102,9 171,8 MGN kr17 302,0 161,5 TON kr2 102,9 148,6 MGN kr17 323,0 145,8 TON kr2 130,0 87,5 MGN kr17 323,0 131,1 TON kr2 130,0 109,7 MGN kr17 341,0 106,8 TON kr2 16,4 116,2 SGN kr18 341,0 143,5 TON kr2 16,4 115,4 SGN kr18 361,0 161,1 TON kr2 43,9 79,8 GR/PG kr18 361,0 143,2 TON kr2 43,9 69,6 GR/PG kr18 382,0 111,1 TON kr2 54,6 115,2 MGN kr18 382,0 137,3 TON kr2 54,6 121,3 MGN kr18 403,0 106,2 MGN kr2 84,0 163,5 GR kr18 403,0 125,3 MGN kr2 84,0 141,9 GR kr18 422,0 91,8 R/PG kr2

117,6 106,3 R/PG kr18 422,0 194,8 R/PG kr2

32

Hole data of the uniaxial compressive strength based on the point load index (coeff. 20) Appendix 1

G

Length (m)

UCS (MPa) Rocktype Fol.

Type Fol.

Intensity Hole ID Length (m)

UCS (MPa) Rocktype Fol.

Type Fol.

Intensity Hole ID

442,0 165,2 R/PG kr2 306,5 114,2 TON kr20 442,0 142,1 G

G G

AFB/MDB AFB/MDB

G G G G

MAS MAS BAN BAN BAN BAN BAN

1008,5 133,3 G BAN 1008,5 153,8 G BAN 1038,0 165,3 BAN 1038,0 114,8 IRR

IRR MAS MAS BAN BAN BAN BAN BAN BAN BAN BAN BAN BAN BAN BAN

R/PG kr2 334,4 141,5 TON kr20 482,0 166,7 GR/PG kr2 334,4 111,2 TON kr20 482,0 147,8 GR/PG kr2 363,6 115,8 MGN kr20 502,0 140,9 MGN kr2 363,6 124,3 MGN kr20 502,0 133,5 MGN kr2 445,6 165,7 GRAN kr20 507,5 168,5 SGN kr2 445,6 157,8 GRAN kr20 507,5 126,0 SGN kr2 474,9 101,9 SGN kr20 513,0 157,7 R/PG kr2 474,9 125,1 SGN kr20 513,0 132,2 R/PG kr2 33,5 102,9 MGN kr21 569,5 104,2 SGN kr2 33,5 88,8 MGN kr21 569,5 97,6 SGN kr2 59,4 116,0 GRAN kr21 598,0 83,7 MGN kr2 59,4 130,4 GRAN kr21 598,0 74,9 MGN kr2 92,0 142,7 TON kr21 713,0 164,6 MGN kr2 92,0 141,1 TON kr21 713,0 97,3 MGN kr2 149,5 151,8 MGN kr21 742,0 99,0 kr2 149,5 165,3 MGN kr21 742,0 85,9 kr2 177,9 41,4 SGN kr21 744,0 105,0 GR/PG kr2 177,9 45,6 SGN kr21 744,0 184,3 GR/PG kr2 210,1 77,3 SGN kr21 762,5 158,0 TON kr2 210,1 90,4 SGN kr21 762,5 160,5 TON kr2 270,6 166,7 SGN kr21 777,0 185,5 R/PG kr2 270,6 179,0 SGN kr21 777,0 180,1 R/PG kr2 296,8 126,7 SGN kr21 807,0 172,0 R/PG kr2 296,8 134,6 SGN kr21 807,0 160,8 R/PG kr2 33,3 110,8 MGN kr22 867,0 145,9 MGN kr2 33,3 97,9 MGN kr22 867,0 146,9 MGN kr2 74,7 128,1 SGN 0 kr22 918,5 182,2 GR/PG kr2 74,7 158,4 SGN 0 kr22 918,5 158,1 GR/PG kr2 98,4 146,7 SGN 2 kr22 948,0 160,7 TON kr2 98,4 115,0 SGN 2 kr22 948,0 153,0 TON kr2 131,0 94,2 SGN 1 kr22 978,0 87,3 MGN kr2 131,0 82,5 SGN 1 kr22 978,0 118,7 MGN kr2 161,1 159,6 SGN 1 kr22

R/PG kr2 161,1 157,4 SGN 1 kr22 R/PG kr2 223,7 117,0 SGN 1 kr22

MGN kr2 223,7 114,2 SGN 1 kr22 MGN kr2 255,1 120,5 SGN 0 kr22

19,4 117,2 MGN kr20 255,1 98,7 SGN 0 kr22 19,4 110,8 MGN kr20 281,4 122,9 SGN 0 kr22 42,8 103,5 SGN kr20 281,4 133,6 SGN 0 kr22 42,8 109,4 SGN kr20 311,3 107,4 SGN 1 kr22 74,9 126,7 GRAN kr20 311,3 103,5 SGN 1 kr22 74,9 116,2 GRAN kr20 340,7 122,9 SGN 1 kr22

102,3 113,0 MGN kr20 340,7 117,0 SGN 1 kr22 102,3 119,9 MGN kr20 371,9 82,7 SGN 1 kr22 132,4 110,6 GRAN kr20 371,9 100,9 SGN 1 kr22 132,4 92,2 GRAN kr20 429,3 151,1 SGN 1 kr22 165,7 142,5 SGN kr20 429,3 135,8 SGN 1 kr22 165,7 135,6 SGN kr20 462,5 114,6 SGN 1 kr22 193,3 130,4 GRAN kr20 462,5 120,1 SGN 1 kr22 193,3 187,3 GRAN kr20 489,6 101,5 SGN 1 kr22 276,0 116,8 TON kr20 489,6 95,5 SGN 1 kr22 276,0 131,4 TON kr20 21,0 93,4 SGN kr23 306,5 109,2 TON kr20 21,0 118,5 SGN kr23

33

Hole data of the uniaxial compressive strength based on the point load index (coeff. 20) Appendix 1

Length (m)

UCS (MPa) Rocktype Fol.

Type Fol.

Intensity Hole ID Length (m)

UCS (MPa) Rocktype Fol.

Type Fol.

Intensity Hole ID

41,0 108,4 SGN kr23 544,4 144,86 GRAN kr24 41,0 107,0 SGN kr23 7,0 87,16 PG kr25 69,8 129,4 SGN kr23 7,0 76,94 PG kr25 69,8 88,4 SGN kr23 32,3 102,98 MGN kr25

100,4 124,7 SGN kr23 32,3 105,59 MGN kr25 100,4 123,1 SGN kr23 68,8 122,02 MGN kr25 129,3 34,7 SGN kr23 68,8 112,80 MGN kr25 129,3 38,3 SGN kr23 101,5 101,98 MGN kr25 159,5 122,5 SGN kr23 101,5 123,82 MGN kr25 159,5 148,1 SGN kr23 136,4 116,21 GRAN kr25 192,1 148,9 SGN kr23 136,4 1

1 IRR 1 IRR BAN BAN BAN BAN BAN BAN BAN 1 BAN BAN BAN IRR IRR 111,00

1 BAN 121,22 BAN BAN BAN BAN BAN M 100,58 PG MAS IRR IRR IRR IRR MAS MAS 102,38 BAN

1 BAN BAN BAN GNE GNE GNE GNE 118,61 IRR MAS IRR

35,44 GRAN kr25 192,1 139,8 SGN kr23 157,6 162,49 SGN kr25 220,5 136,4 SGN kr23 157,6 190,94 SGN kr25 220,5 131,2 SGN kr23 192,3 59,11 MGN kr25 249,0 146,9 SGN kr23 192,3 59,31 MGN kr25 249,0 146,7 SGN kr23 223,5 148,47 GRAN kr25 282,0 133,2 SGN kr23 223,5 153,48 GRAN kr25 282,0 155,4 SGN kr23 252,0 30,83 GRAN kr25 28,1 92,17 GR/PG 0 kr24 252,0 35,44 GRAN kr25 28,1 87,16 GR/PG 0 kr24 279,5 90,36 MGN kr25 37,6 32,26 MGN 2 kr24 279,5 95,77 MGN kr25 37,6 33,46 MGN 2 kr24 308,1 147,46 SGN kr25 65,3 78,74 MGN 1 kr24 308,1 155,68 SGN kr25 65,3 87,16 MGN 1 kr24 341,0 49,29 MGN kr25 96,5 64,92 MGN 1 kr24 341,0 50,09 MGN kr25 96,5 68,12 MGN 1 kr24 374,3 110,00 MGN kr25

125,8 84,35 MGN 2 kr24 374,3 15,41 MGN kr25 125,8 76,74 MGN 2 kr24 398,2 78,34 MGN kr25 155,6 106,19 MGN 1 kr24 398,2 97,17 MGN kr25 155,6 106,99 MGN 1 kr24 430,0 133,24 SGN kr25 185,0 92,37 MGN 0 kr24 430,0 135,04 SGN kr25 185,0 95,57 MGN 0 kr24 459,8 PG kr25 215,7 07,19 MGN 1 kr24 459,8 PG kr25 215,7 80,34 MGN 1 kr24 490,1 93,97 MGN kr25 246,8 89,36 MGN 2 kr24 490,1 108,59 MGN kr25 246,8 69,32 MGN 2 kr24 522,9 93,97 PG kr25 276,4 62,11 MGN 2 kr24 522,9 84,15 PG kr25 276,4 65,72 MGN 2 kr24 549,6 121,82 PG kr25 319,6 82,55 MGN AS 0 kr24 549,6 kr25 319,6 92,37 MGN 0 kr24 580,0 125,63 MGN kr25 333,1 103,59 SGN 0 kr24 580,0 127,23 MGN kr25 333,1 121,22 SGN 0 kr24 33,5 118,61 SGN kr26 354,5 139,45 MGN 0 kr24 33,5 118,61 SGN kr26 354,5 125,02 MGN 0 kr24 64,0 132,04 GRAN kr26 400,8 113,40 GRAN 0 kr24 64,0 125,43 GRAN kr26 400,8 106,99 GRAN 0 kr24 96,0 MGN kr26 428,5 135,84 MGN 2 kr24 96,0 86,76 MGN kr26 428,5 27,23 MGN 2 kr24 20,0 116,21 SGN kr27 457,6 122,62 SGN 1 kr24 20,0 117,01 SGN kr27 457,6 119,01 SGN 1 kr24 49,9 133,44 SGN IRR 0 kr27 486,5 147,06 MGN 2 kr24 49,9 137,65 SGN IRR 0 kr27 486,5 148,27 MGN 2 kr24 77,5 79,54 MGN BAN 1 kr27 515,9 115,41 MGN 2 kr24 77,5 61,71 MGN BAN 1 kr27 515,9 114,00 MGN 2 kr24 104,6 MGN 0 kr27 544,4 152,67 GRAN 0 kr24 104,6 92,57 MGN 0 kr27

34

Hole data of the uniaxial compressive strength based on the point load index (coeff. 20) Appendix 1

GNE BAN

Length (m)

UCS (MPa) Rocktype Fol.

Type Fol.

Intensity Hole ID Length (m)

UCS (MPa) Rocktype Fol.

Type Fol.

Intensity Hole ID

139,6 89,76 TON 1 kr27 400,2 87,98 SGN 1 kr28 139,6 116,01 TON GNE 433,0 122,69 MGN IRR

BAN 433,0 118,85 MGN IRR BAN IRR IRR IRR IRR BAN IRR BAN kr28 IRR BAN IRR BAN IRR M IRR M IRR MAS IRR IRR GNE IRR GNE IRR BAN

G MAS BAN G MAS

MGN MGN

MGN MGN

G G

1 kr27 0 kr28 169,8 51,29 SGN 1 kr27 0 kr28 169,8 97,98 SGN 1 kr27 457,5 104,12 MGN 0 kr28 197,7 88,16 MGN 0 kr27 457,5 122,49 MGN 0 kr28 197,7 105,39 MGN 0 kr27 490,6 113,41 SGN 1 kr28 226,1 75,94 MGN 0 kr27 490,6 146,50 SGN 1 226,1 81,75 MGN 0 kr27 519,1 186,25 SGN 2 kr28 256,0 134,64 MGN 0 kr27 519,1 153,16 SGN 2 kr28 256,0 129,63 MGN 0 kr27 552,1 92,62 GRAN AS 0 kr28 307,1 120,62 SGN 0 kr27 552,1 96,46 GRAN AS 0 kr28 307,1 135,04 SGN 0 kr27 582,0 106,95 GRAN 0 kr28 322,6 89,76 MGN 0 kr27 582,0 80,31 GRAN MAS 0 kr28 322,6 77,94 MGN 0 kr27 608,3 134,19 MGN 1 kr28 350,5 130,83 MGN 0 kr27 608,3 149,73 MGN 1 kr28 350,5 114,81 MGN 0 kr27 635,6 91,81 MGN 1 kr28 375,3 130,63 R/PG 0 kr27 635,6 75,27 MGN 1 kr28 375,3 139,05 R/PG 0 kr27 41,0 167,1 MGN kr3 404,4 106,19 MGN BAN 1 kr27 41,0 110,7 MGN kr3 404,4 108,39 MGN BAN 1 kr27 60,0 91,3 MGN kr3 451,6 83,55 MGN IRR 0 kr27 60,0 100,9 MGN kr3 451,6 86,15 MGN IRR 0 kr27 82,0 112,7 MGN kr3 462,9 109,60 MGN BAN 1 kr27 82,0 118,5 MGN kr3 462,9 119,01 MGN BAN 1 kr27 102,0 32,4 MGN kr3 491,5 164,50 MGN MAS 0 kr27 102,0 58,0 MGN kr3 491,5 178,32 MGN MAS 0 kr27 121,0 167,5 MGN kr3 521,4 61,91 MGN BAN 1 kr27 121,0 60,3 MGN kr3 521,4 79,34 MGN BAN 1 kr27 162,0 136,8 GR/PG kr3 549,7 105,99 MGN IRR 0 kr27 162,0 103,1 GR/PG kr3 549,7 95,17 MGN IRR 0 kr27 201,0 83,2 MGN kr3 31,0 80,31 MGN IRR 0 kr28 201,0 163,0 MGN kr3 31,0 91,61 MGN IRR 0 kr28 241,0 105,8 kr3 71,5 81,32 MGN BAN 1 kr28 241,0 139,9 kr3 71,5 41,37 MGN BAN 1 kr28 261,0 118,1 MGN kr3

102,1 64,57 MGN IRR 0 kr28 261,0 97,0 MGN kr3 102,1 78,09 MGN IRR 0 kr28 283,0 117,6 kr3 130,2 84,75 PG IRR 0 kr28 283,0 127,6 kr3 130,2 103,52 PG IRR 0 kr28 299,0 165,0 R/PG kr3 160,2 86,16 MGN IRR 0 kr28 299,0 119,0 R/PG kr3 160,2 117,85 MGN IRR 0 kr28 322,0 103,5 MGN kr3 189,1 108,36 MGN IRR 0 kr28 322,0 117,1 MGN kr3 189,1 115,22 MGN IRR 0 kr28 342,0 129,8 MGN kr3 220,9 86,57 MGN IRR 0 kr28 342,0 138,8 MGN kr3 220,9 79,10 MGN IRR 0 kr28 380,0 159,0 GR/PG kr3 252,4 67,32 MGN IRR 0 kr28 380,0 165,1 GR/PG kr3 252,4 87,17 MGN IRR 0 kr28 401,0 122,6 MGN kr3 278,0 79,71 GRAN IRR 0 kr28 401,0 108,0 MGN kr3 278,0 116,03 GRAN IRR 0 kr28 421,0 63,8 MGN kr3 311,8 64,77 MGN IRR 0 kr28 421,0 99,4 MGN kr3 311,8 82,33 MGN IRR 0 kr28 441,0 89,9 MGN kr3 341,6 125,92 MGN IRR 0 kr28 441,0 111,7 MGN kr3 341,6 158,00 MGN IRR 0 kr28 460,0 130,6 GR/PG kr3 374,0 107,96 MGN IRR 0 kr28 460,0 132,2 GR/PG kr3 374,0 98,27 MGN IRR 0 kr28 480,0 139,3 MGN kr3 400,2 155,98 SGN BAN 1 kr28 480,0 121,0 MGN kr3

35

Hole data of the uniaxial compressive strength based on the point load index (coeff. 20) Appendix 1

G

Length (m)

UCS (MPa) Rocktype Fol.

Type Fol.

Intensity Hole ID Length (m)

UCS (MPa) Rocktype Fol.

Type Fol.

Intensity Hole ID

501,0 86,6 MGN kr3 860,9 140,4 R/PG MAS 0 kr4 501,0 61,7 MGN kr3 888,5 98,2 MGN IRR 0 kr4 54,0 93,0 G

G

kr4

kr5 SGN IRR

BAN IRR IRR IRR IRR IRR IRR IRR IRR

IRR IRR

IRR IRR IRR IRR BAN BAN

IRR IRR

MGN MAS MGN MAS

GNE GNE IRR IRR IRR IRR BAN BAN BAN BAN

MAS MAS MAS MAS MAS MAS

G MAS

R/PG IRR 0 kr4 888,5 145,3 MGN IRR 0 kr4 54,0 94,5 R/PG IRR 0 kr4 897,7 181,7 GR/PG MAS 0 kr4 77,0 51,6 MGN IRR 0 kr4 897,7 152,9 GR/PG MAS 0 kr4 77,0 98,9 MGN IRR 0 kr4 40,0 96,3 MGN kr5

102,0 133,1 MGN IRR 0 kr4 40,0 119,2 MGN kr5 102,0 116,4 MGN IRR 0 kr4 66,0 170,3 MGN kr5 176,0 85,9 SGN BAN 2 kr4 66,0 165,7 MGN kr5 176,0 132,7 SGN BAN 2 kr4 117,0 60,3 MGN kr5 201,0 115,6 SGN IRR 0 kr4 117,0 92,5 MGN kr5 201,0 158,9 SGN IRR 0 kr4 152,0 162,1 TON kr5 226,0 118,4 MGN IRR 0 152,0 170,8 TON kr5 226,0 157,3 MGN IRR 0 kr4 163,0 108,7 TON kr5 277,0 143,6 SGN IRR 0 kr4 163,0 127,5 TON 277,0 143,9 0 kr4 176,0 138,0 TON kr5 306,0 182,9 MGN BAN 2 kr4 176,0 112,0 TON kr5 306,0 128,9 MGN 2 kr4 202,0 77,1 TON kr5 331,0 111,0 SGN 0 kr4 202,0 92,8 TON kr5 331,0 96,7 SGN 0 kr4 228,0 85,1 TON kr5 380,0 115,9 MGN 0 kr4 228,0 99,7 TON kr5 380,0 158,6 MGN 0 kr4 255,0 166,0 TON kr5 408,0 168,1 SGN 0 kr4 255,0 133,3 TON kr5 408,0 111,5 SGN 0 kr4 293,0 109,0 GR/PG kr5 434,0 128,9 MGN 0 kr4 293,0 144,6 GR/PG kr5 434,0 129,3 MGN 0 kr4 318,0 121,4 MGN kr5 477,0 124,8 GR/PG 0 kr4 318,0 174,0 MGN kr5 477,0 132,4 GR/PG 0 kr4 326,0 134,9 TON kr5 501,0 162,8 SGN 0 kr4 326,0 125,3 TON kr5 501,0 91,5 SGN 0 kr4 354,0 89,2 TON kr5 504,0 144,4 SGN 0 kr4 354,0 91,1 TON kr5 504,0 109,3 SGN 0 kr4 381,0 116,5 TON kr5 534,5 159,6 MGN 2 kr4 381,0 104,0 TON kr5 534,5 133,3 MGN 2 kr4 393,0 98,7 MGN kr5 564,5 112,6 GR/PG 0 kr4 393,0 101,5 MGN kr5 564,5 178,7 GR/PG 0 kr4 448,0 128,0 MGN kr5 590,0 165,2 0 kr4 448,0 95,4 MGN kr5 590,0 163,4 0 kr4 503,0 134,9 MGN kr5 620,3 193,9 MGN 1 kr4 503,0 150,3 MGN kr5 620,3 178,9 MGN 1 kr4 529,0 101,2 SGN kr5 650,0 121,6 MGN 0 kr4 529,0 162,9 SGN kr5 650,0 145,4 MGN 0 kr4 557,0 120,9 MGN kr5 680,5 153,3 MGN 0 kr4 557,0 169,8 MGN kr5 680,5 154,5 MGN 0 kr4 300,5 100,5 SGN kr6 709,0 116,2 MGN 2 kr4 300,5 94,1 SGN kr6 709,0 127,2 MGN 2 kr4 330,0 141,5 SGN kr6 768,0 181,9 MGN 2 kr4 330,0 113,3 SGN kr6 768,0 163,3 MGN 2 kr4 346,0 101,6 GR/PG kr6 787,3 169,8 GR/PG 0 kr4 346,0 88,6 GR/PG kr6 787,3 156,1 GR/PG 0 kr4 375,0 156,2 GR kr6 800,0 131,4 GR/PG 0 kr4 375,0 156,0 GR kr6 800,0 142,8 GR/PG 0 kr4 455,0 81,5 SGN kr6 831,2 119,3 GR/PG 0 kr4 455,0 87,9 SGN kr6 831,2 180,3 GR/PG 0 kr4 485,0 96,5 PG kr6 860,9 122,3 R/PG 0 kr4 485,0 126,3 PG kr6

36

Hole data of the uniaxial compressive strength based on the point load index (coeff. 20) Appendix 1

Length (m) Intensity Rocktype

514,5 104,2 696,0

UCS (MPa) Rocktype Fol.

Type Fol. Hole ID Length

(m) UCS

(MPa) Fol.

Type Fol.

Intensity Hole ID

SGN kr6 117,60 SGN BAN 2 kr7 514,5 110,6 725,0 1 544,7 725,0 544,7 751,5 600,0 92,3 751,5 600,0 71,6 781,0 1 BAN 21,0 781,0 BAN 2 kr7

GNE kr7 GNE kr7 kr7 IRR kr8 kr7 IRR kr8 kr7 BAN 2 kr8

T kr7 BAN kr8 T kr7 IRR kr8

kr7 IRR kr8 MGN IRR G MAS

G MAS BAN GNE IRR GNE IRR IRR MAS IRR MAS BAN BAN 2 BAN 2 BAN GNE MAS 0 GNE 2 MAS IRR MAS IRR MAS BAN

146,67 GNE BAN 1 125,59 GNE BAN

202,81 BAN 2 BAN 2 188,38 BAN GNE

MAS 0 GNE 2 MAS IRR MAS IRR MAS IRR

IRR MAS MAS BAN BAN MAS MAS

G MAS G MAS

MGN MGN

SGN kr6 38,60 MGN BAN 2 kr7 74,9 SGN kr6 104,40 MGN BAN 2 kr7 72,7 SGN kr6 87,60 MGN IRR 0 kr7

SGN kr6 101,60 MGN IRR 0 kr7 SGN kr6 02,80 MGN 2 kr7

125,0 MGN BAN 2 kr7 111,40 MGN 21,0 117,2 MGN BAN 2 kr7 811,0 121,60 SGN 2 kr7 51,0 57,4 MGN BAN 2 811,0 124,60 SGN 2 51,0 122,8 MGN BAN 2 20,5 133,2 MGN 0 81,0 136,6 SGN BAN 1 20,5 133,1 MGN 0 81,0 71,0 SGN BAN 1 77,0 107,5 MGN

111,0 152,2 ONGN MAS 0 77,0 141,5 MGN 2 111,0 116,0 ONGN MAS 0 105,5 170,0 SGN 0 125,0 136,2 MGN IRR 0 105,5 152,2 SGN 0 125,0 113,4 0 kr7 130,0 137,9 R/PG 0 kr8 159,0 125,6 MGN BAN 2 kr7 130,0 140,3 R/PG 0 kr8 159,0 139,0 MGN 2 kr7 213,3 198,7 SGN 1 kr8 187,0 94,0 MGN 0 kr7 213,3 135,7 SGN 1 kr8 187,0 111,2 MGN 0 kr7 241,0 191,7 TON 0 kr8 209,0 104,6 PG 0 kr7 241,0 173,6 TON 0 kr8 209,0 71,0 PG 0 kr7 250,5 136,5 MGN 2 kr8 232,0 141,6 MGN kr7 250,5 129,0 MGN kr8 232,0 107,0 MGN 2 kr7 319,4 243,0 MGN 2 kr8 264,0 134,2 MGN kr7 319,4 244,3 MGN kr8 264,0 131,6 MGN 0 kr7 349,5 148,5 MGN 0 kr8 274,0 114,0 GR/PG 0 kr7 349,5 143,7 MGN 0 kr8 274,0 119,8 GR/PG 0 kr7 381,8 130,9 MGN 2 kr8 320,5 122,20 2 kr7 381,8 151,6 MGN 2 kr8 320,5 04,60 2 kr7 408,4 118,2 MGN 2 kr8 350,5 169,00 kr7 408,4 136,1 MGN kr8 350,5 157,00 2 kr7 437,5 162,2 MGN 2 kr8 377,2 94,00 112,72 kr7 437,5 143,1 MGN kr8 377,2 111,00 133,13 0 kr7 467,7 126,5 MGN 0 kr8 408,0 110,40 132,47 0 kr7 467,7 149,4 MGN 0 kr8 408,0 126,40 151,77 0 kr7 495,6 120,9 MGN 0 kr8 437,5 158,00 189,72 BAN 2 kr7 495,6 124,8 MGN 0 kr8 437,5 175,60 210,80 BAN 2 kr7 525,0 82,5 MGN 0 kr8 467,0 114,00 136,91 GNE 2 kr7 525,0 97,1 MGN 0 kr8 467,0 106,60 127,81 GNE 2 kr7 561,0 126,3 MGN 1 kr8 496,0 112,60 135,13 IRR 0 kr7 561,0 114,8 MGN 1 kr8 496,0 125,20 150,22 IRR 0 kr7 566,6 191,6 GR/PG 0 kr8 525,5 134,40 161,31 IRR 0 kr7 566,6 152,7 GR/PG 0 kr8 525,5 141,00 169,30 IRR 0 kr7 593,8 107,8 R/PG 0 kr8 555,0 115,20 138,24 IRR 0 kr7 593,8 127,6 R/PG 0 kr8 555,0 115,80 138,90 IRR 0 kr7 40,5 119,4 TON kr9 585,0 149,40 179,29 IRR 0 kr7 40,5 108,9 TON kr9 585,0 128,40 153,99 IRR 0 kr7 70,0 133,9 SGN kr9 614,5 102,20 122,70 BAN 2 kr7 70,0 78,2 SGN kr9 614,5 90,60 108,73 BAN 2 kr7 100,3 91,5 SGN kr9 644,5 87,60 105,18 IRR 0 kr7 100,3 148,5 SGN kr9 644,5 77,00 MGN IRR 0 kr7 130,0 93,0 SGN kr9 666,5 133,60 GRAN MAS 0 kr7 130,0 76,4 SGN kr9 666,5 133,60 GRAN MAS 0 kr7 160,0 120,4 kr9 696,0 112,60 SGN BAN 2 kr7 160,0 98,9 kr9

37

Hole data of the uniaxial compressive strength based on the point load index (coeff. 20) Appendix 1

th

CS Pa) Rockty l.

e In ity

8,5 150,7 GR/PG

Leng(m)

U(M pe Fo

Typ Fol.

tens Hole ID

18 kr9 188,5 172,7 GR/PG

5,0 225,6 MGN 5,0 180,8 MGN 5,5 100,6 GR 5,5 111,7 GR 3,5 5,9 G 3,5 1,5 G 3,5 0,6 MGN 3,5 5,8 MGN 2,0 5,2 MGN 2,0 2,1 MGN ,5 7,4 G ,5 1,3 G

0,0 8,2 MGN 510,0 86,9 MGN

0,0 3,7 MGN 0,0 5,0 MGN 9,5 21,3 MGN 9,5 31,3 MGN

5,6 113,20 SGN 5,6 112,00 SGN 3,5 9,83 SGN 3,5 127,63 SGN 2,8 ,94 MGN 2,8 ,76 MGN ,1 ,54 MGN ,1 ,74 MGN ,9 ,14 MGN ,9 ,12 MGN ,2 6,79 MGN ,2 8,41 MGN ,5 0,7 G ,5 2,7 G ,0 5,6 MGN ,0 0,8 MGN ,5 0,6 GR

kr9 27 kr9 27 kr9 30 kr9 30 kr9 36 11 GR/P kr9 36 11 GR/P kr9 39 11 kr9 39 12 kr9 45 8 kr9 45 10 kr9 480 12 GR/P kr9 480 13 GR/P kr9 51 8 kr9

kr9 57 11 kr9 57 12 kr9 59 1 kr9 59 1 kr9

ph1 ph1

3 12 ph1 3 ph1 6 78 ph1 6 89 ph1 94 77 ph1 94 78 ph1

123 80 ph1 123 66 ph1 151 10 ph1 151 11 ph1 188 15 GR/P kr9 188 17 GR/P kr9 275 22 kr9 275 18 kr9 305 10 kr9

38

39

Hole data of the uniaxial compressive strength based on the point load index (coeff. 24) Appendix 2

Appendix 2

Hole data of the uniaxial compressive strength based on the point load index (coeff. 24)

Rock type key:

AFB/MDB Amphibolite/Metadiabase GR Granite HGN Hornblende gneiss MGN Mica gneiss PG Pegmatite SGN Veined gneiss TON Tonalite

Hole ID key:

kr1 OL-KR1 kr2 OL-KR2 …

Foliation type:

GNE Gneissic BAN Banded SCH Schistose MAS Homogeneous and isotropic IRR Nonhomogeneous and isotropic

Foliation intensity:

0 No foliation 1 Weak 2 Fair 3 Strong

40

Hole data of the uniaxial compressive strength based on the point load index (coeff. 24) Appendix 2

Length (m)

UCS (MPa) Rocktype Fol.

Type Fol.

Intensity Hole ID Length (m)

UCS (MPa) Rocktype Fol.

Type Fol.

Intensity Hole ID

44,0 N kr1 769,0 137,2 SGN kr1 144,4 MG44,0 N kr1 795,0 191,8 MGN kr1 52,0 152,8 MGN kr1 795,0 195,3 MGN kr1 52,0 1 77,0 1 77,0 kr1 851,0 181,4 SGN kr1

104,0 168,6 MGN kr1 851,0 134,0 SGN kr1 104,0 187,9 MGN kr1 877,0 119,2 SGN kr1 119,0 52,2 GR/PG kr1 877,0 102,1 SGN kr1 119,0 157,2 GR/PG kr1 903,0 116,3 SGN kr1 119,0 kr1 SGN kr1 139,0 921,0 138,1 GR/PG kr1 139,0 kr1 174,0 kr1 kr1 174,0 kr1 174,0 kr1 198,0 kr1 14 kr1 198,0 kr1 15 1 198,0 kr1 977,0 153,1 MGN kr1 270,0 kr1 GN kr1 270,0 kr1 GN kr1 297,0 141,8 MGN kr1 kr10 297,0 N kr1 kr10 326,0 kr1 kr10 326,0 kr1 kr10 343,0 kr1 kr10 343,0 144,0 GR/PG kr1 71,0 146,8 MGN kr10 368,0 196,6 MGN kr1 102,0 135,7 MGN kr10 368,0 208,3 MGN kr1 102,0 124,9 MGN kr10 419,0 85,1 MGN kr1 131,5 159,5 GR/PG kr10 419,0 90,1 MGN kr1 131,5 97,7 GR/PG kr10 443,0 160,0 GR/PG kr1 160,0 215,4 MGN kr10 443,0 110,9 GR/PG kr1 160,0 148,6 MGN kr10 443,0 78,4 GR/PG kr1 190,0 154,2 MGN kr10 485,0 185,1 GR/PG kr1 190,0 87,1 MGN kr10 485,0 226,5 GR/PG kr1 219,5 186,1 GR/PG kr10 533,0 116,0 MGN kr1 219,5 69,4 GR/PG kr10 533,0 139,0 MGN kr1 248,5 152,9 MGN kr10 559,0 148,4 MGN kr1 248,5 192,2 MGN kr10 559,0 116,4 SGN kr1 309,5 128,8 MGN kr10 559,0 170,9 SGN kr1 309,5 173,5 MGN kr10 585,0 123,3 SGN kr1 337,7 180,1 GR/PG kr10 585,0 153,8 SGN kr1 337,7 123,8 GR/PG kr10 612,0 155,8 MGN kr1 366,5 140,7 MGN kr10 637,0 170,6 MGN kr1 366,5 221,5 MGN kr10 637,0 142,5 MGN kr1 396,0 161,3 MGN kr10 664,0 177,6 MGN kr1 396,0 115,4 MGN kr10 664,0 198,7 MGN kr1 426,0 180,8 PG kr10 691,0 180,3 MGN kr1 426,0 171,3 PG kr10 691,0 145,0 MGN kr1 456,0 136,0 MGN kr10 717,0 127,1 SGN kr1 456,0 179,0 MGN kr10 717,0 149,3 SGN kr1 545,0 112,2 MGN kr10 744,0 118,9 SGN kr1 545,0 113,5 MGN kr10 744,0 97,3 SGN kr1 575,0 181,1 MGN kr10 769,0 123,2 SGN kr1 575,0 143,9 MGN kr10

186,6 MG

180,3 MGN kr1 825,0 112,4 SGN kr 220,3 MGN kr1 825,0 118,5 SGN kr 224,9 MGN

143,3 GR/PG 903,0 92,5 81,6 GR/PG kr1

204,6 GR/PG kr1 921,0 131,1 GR/PG 198,0 GR/PG 938,0 153,6 TON 149,7 GR/PG kr1

kr1 938,0 144,5 TON

178,6 GR/PG 91,2 GR/PG

963,0 141,5 GR/PG 963,0 9,2 GR/PG

95,1 GR/PG 977,0 1,5 MGN kr159,5 GR/PG

187,4 MGN 218,8 MGN

1000,0 160,1 M 1000,0 182,2 M 41,0 153,1 GR/PG

141,2 MG 41,0 150,7 GR/PG 42,5 65,5 GR/PG 93,6 GR/PG

190,3 GR/PG 42,5 118,3 GR/PG 185,9 GR/PG 71,0 149,7 MGN

41

Hole data of the uniaxial compressive strength based on the point load index (coeff. 24) Appendix 2

Fol.

G G

Length (m)

UCS (MPa) Rocktype Type

Fol. Intensity Hole ID Length

(m) UCS

(MPa) Rocktype Fol. Type

Fol. Intensity Hole ID

605,0 126,7 R/PG kr10 820,0 86,1 R/PG kr11 605,0 105,1 G 183,1 MGN

SGN SGN MGN SGN MGN MGN MGN MGN MGN PG SGN PG SGN GR/PG

GR/PG GR/PG GR/PG MGN MGN MGN MGN GR/PG MGN GR/PG MGN MGN MGN MGN MGN SGN MGN SGN MGN SGN

GR/PG SGN GR/PG MGN MGN MGN MGN GR/PG TON GR/PG TON GR/PG TON GR/PG TON SGN PG SGN PG SGN PG SGN PG SGN

TON SGN TON MGN

GR/PG MGN GR/PG GR/PG SGN GR/PG SGN TON MGN TON MGN MGN SGN MGN SGN TON PG TON PG TON PG TON PG TON

MGN TON MGN MGN SGN MGN SGN MGN

760,0 166,4 G G 552,4 129,8

790,0 107,8 552,4 100,1 790,0 584,4 820,0 G 584,4

R/PG kr10 849,5 kr11 42,5 115,6 SGN kr11 849,5 160,9 MGN kr11 42,5 107,8 kr11 879,5 122,9 kr11 71,5 118,3 kr11 879,5 124,5 kr11 71,5 113,6 kr11 909,0 108,3 kr11

101,0 75,0 kr11 909,0 146,0 kr11 101,0 71,2 kr11 939,0 191,7 kr11 161,0 128,5 kr11 939,0 171,5 kr11 161,0 131,1 kr11 968,0 106,5 kr11 183,0 184,0 kr11 968,0 120,7 kr11 183,0 202,6 kr11 997,5 145,3 kr11 208,0 97,9 kr11 997,5 133,1 kr11 208,0 130,3 kr11 40,9 117,4 kr12 238,5 119,6 kr11 40,9 114,7 kr12 238,5 119,6 kr11 67,0 170,9 kr12 268,5 153,8 kr11 67,0 191,5 kr12 268,5 165,8 kr11 98,6 88,1 kr12 297,5 142,5 kr11 98,6 94,3 kr12 297,5 126,5 kr11 156,7 168,4 kr12 308,5 185,9 kr11 156,7 134,9 kr12 308,5 172,6 kr11 185,3 226,6 kr12 332,7 132,3 kr11 185,3 187,9 kr12 332,7 130,5 kr11 192,7 150,2 kr12 360,0 132,3 kr11 192,7 166,6 kr12 360,0 129,4 kr11 216,8 116,3 kr12 388,0 132,5 kr11 216,8 143,6 kr12 388,0 132,0 kr11 226,5 127,4 kr12 416,0 141,1 kr11 226,5 120,7 kr12 416,0 158,4 kr11 256,1 110,7 kr12 436,0 165,8 kr11 256,1 101,6 kr12 436,0 148,7 kr11 284,9 104,1 kr12 460,5 122,7 kr11 284,9 137,1 kr12 460,5 96,5 kr11 313,0 65,7 kr12 521,0 114,7 kr11 313,0 69,0 kr12 521,0 132,0 kr11 344,4 168,4 kr12 550,0 115,2 kr11 344,4 162,0 kr12 550,0 107,8 kr11 373,9 165,1 kr12 580,5 105,0 kr11 373,9 140,9 kr12 580,5 95,0 kr11 401,5 178,6 kr12 610,5 116,5 kr11 401,5 192,6 kr12 610,5 131,1 kr11 408,4 198,4 kr12 640,0 120,5 kr11 408,4 187,1 kr12 640,0 122,9 kr11 437,3 121,6 kr12 670,0 120,3 kr11 437,3 160,9 kr12 670,0 143,6 kr11 466,0 114,3 kr12 700,0 107,0 kr11 466,0 149,1 kr12 700,0 85,0 kr11 495,8 132,9 kr12 730,0 126,9 kr11 495,8 124,9 kr12 730,0 120,3 kr11 525,4 158,9 kr12

R/PG kr11 525,4 162,2 MGN kr12 760,0 143,6 R/PG kr11 MGN kr12

MGN kr11 MGN kr12 107,4 MGN kr11 93,0 MGN kr12 118,5 R/PG kr11 87,7 MGN kr12

42

Hole data of the uniaxial compressive strength based on the point load index (coeff. 24) Appendix 2

Fol. (m) Intensity

Length (m)

UCS (MPa) Rocktype Type

Fol. Intensity Hole ID Length UCS

(MPa) Rocktype Fol. Type

Fol. Hole ID

617,0 200,4 MGN kr12 41,1 120,2 SGN kr14 617,0 175,3 MGN 158,5 SGN

G GR/PG GR/PG MGN GR/PG MGN GR/PG MGN GR/PG MGN SGN MGN SGN MGN MGN SGN MGN SGN SGN SGN SGN SGN SGN SGN SGN SGN GR/PG SGN GR/PG SGN GR/PG MGN GR/PG MGN MGN

GR/PG MGN GR/PG PG/GR GR/PG PG/GR GR/PG GR/PG GR/PG MGN MGN MGN MGN SGN SGN G SGN G SGN TON TON TON TON G TON G TON GTON GTON G TON G TON SGN SGN SGN SGN MGN MGN MGN SGN

498,3 221,8 187,4

11,2 221,8 11,2 239,1 41,1 239,1

kr12 68,7 kr14 641,4 136,5 R/PG kr12 68,7 148,3 SGN kr14 641,4 106,7 kr12 96,8 105,0 kr14 673,1 148,2 kr12 96,8 101,9 kr14 673,1 164,9 kr12 126,6 129,5 kr14 701,9 148,9 kr12 126,6 143,9 kr14 701,9 127,4 kr12 155,5 80,4 kr14 731,0 170,4 kr12 155,5 68,6 kr14 731,0 146,7 kr12 185,1 139,0 kr14 762,0 90,3 kr12 185,1 154,9 kr14 762,0 96,1 kr12 242,9 82,6 kr14 790,1 113,8 kr12 242,9 92,1 kr14 790,1 117,4 kr12 272,2 85,5 kr14 10,5 60,6 kr13 272,2 111,4 kr14 10,5 69,9 kr13 276,9 122,6 kr14 47,4 128,5 kr13 276,9 123,6 kr14 47,4 122,9 kr13 306,1 123,6 kr14 63,6 163,4 kr13 306,1 101,9 kr14 63,6 144,9 kr13 333,6 95,8 kr14 78,6 160,0 kr13 333,6 92,3 kr14 78,6 157,6 kr13 363,2 167,6 kr14

123,8 103,6 kr13 363,2 188,3 kr14 123,8 105,0 kr13 374,5 145,8 TON kr14 137,8 132,2 kr13 374,5 113,6 TON kr14 137,8 128,2 kr13 402,9 108,5 SGN kr14 164,8 136,3 kr13 402,9 107,7 SGN kr14 164,8 150,0 kr13 432,0 167,6 TON kr14 192,7 120,2 kr13 432,0 140,7 TON kr14 192,7 98,9 kr13 461,5 121,2 MGN kr14 225,2 134,4 kr13 461,5 105,0 MGN kr14 225,2 121,4 kr13 489,3 146,8 R/PG kr14 255,4 112,6 kr13 489,3 155,1 R/PG kr14 255,4 129,5 kr13 511,0 132,6 SGN kr14 287,4 123,6 kr13 511,0 146,6 SGN kr14 287,4 103,6 kr13 32,0 173,9 GR/PG kr15 315,5 124,3 kr13 32,0 151,0 GR/PG kr15 315,5 140,7 kr13 46,0 131,2 R/PG kr15 344,4 142,2 kr13 46,0 154,9 R/PG kr15 344,4 129,0 kr13 75,3 162,7 R/PG kr15 377,0 153,9 kr13 75,3 147,8 R/PG kr15 377,0 181,5 kr13 103,7 208,9 R/PG kr15 405,9 178,6 kr13 103,7 205,7 R/PG kr15 405,9 203,5 kr13 117,0 131,4 SGN kr15 413,8 88,4 kr13 117,0 129,2 SGN kr15 413,8 77,0 kr13 144,2 114,3 SGN kr15 443,0 150,7 kr13 144,2 97,7 SGN kr15 443,0 122,9 kr13 171,2 151,7 MGN kr15 471,8 108,2 kr13 171,2 156,8 kr15 471,8 131,2 kr13 200,4 116,8 kr15

172,7 GR/PG kr13 200,4 116,0 SGN kr15 498,3 160,7 GR/PG kr13 SGN kr15

109,2 SGN kr14 212,8 SGN kr15 113,8 SGN kr14 117,9 SGN kr15 104,8 SGN kr14 103,2 SGN kr15

43

Hole data of the uniaxial compressive strength based on the point load index (coeff. 24) Appendix 2

ng(m)

Fol. Intensity

G

Length (m)

UCS (MPa) Rocktype Fol.

Type Fol.

Intensity Hole ID Le th UCS (MPa) Rocktype Fol.

Type Hole ID

266,6 113,3 SGN kr15 117,6 130,9 R/PG kr18 266,6 118,7 SGN 132,0 SGN

MGN TON TON

G G G G

GG

GGGG

GR/PG

MGN

MGN

TON

GG

G 117,6 127,5 G G

kr15 16,5 kr19 295,5 123,5 GR/PG kr15 16,5 156,7 SGN kr19 295,5 133,7 GR/PG kr15 100,0 97,1 SGN kr19 324,1 100,0 SGN kr15 100,0 103,2 SGN kr19 324,1 96,9 SGN kr15 133,9 157,9 MGN kr19 352,2 121,1 MGN kr15 133,9 157,4 MGN kr19 352,2 117,7 MGN kr15 192,8 96,6 MGN kr19 360,8 106,1 TON kr15 192,8 98,3 MGN kr19 360,8 127,6 TON kr15 218,8 145,8 kr19 389,9 191,8 kr15 218,8 156,9 MGN kr19 389,9 172,2 kr15 250,5 186,5 MGN kr19 391,7 166,4 R/PG kr15 250,5 184,8 MGN kr19 391,7 70,0 R/PG kr15 281,2 145,8 SGN kr19 421,3 153,5 R/PG kr15 281,2 191,3 SGN kr19 421,3 146,0 R/PG kr15 306,3 94,0 SGN kr19 455,3 153,3 MGN kr15 306,3 95,9 SGN kr19 455,3 157,2 MGN kr15 335,4 175,1 MGN kr19 484,9 120,4 R/PG kr15 335,4 157,6 MGN kr19 484,9 130,0 R/PG kr15 361,9 134,2 SGN kr19 514,6 172,9 MGN kr15 361,9 147,0 SGN kr19 514,6 172,9 MGN kr15 449,8 131,0 SGN kr19 24,9 129,0 SGN kr16 449,8 143,1 SGN kr19 24,9 115,3 SGN kr16 479,6 131,0 SGN kr19 44,8 139,7 SGN kr16 479,6 146,0 SGN kr19 44,8 121,7 SGN kr16 508,9 124,7 SGN kr19 62,8 183,7 R/PG kr16 508,9 125,4 SGN kr19 62,8 231,1 R/PG kr16 538,1 93,7 SGN kr19 91,9 135,6 R/PG kr16 538,1 88,1 SGN kr19 91,9 157,8 R/PG kr16 47,0 207,0 MGN kr2

123,0 164,6 SGN kr16 47,0 237,7 MGN kr2 123,0 150,5 SGN kr16 145,0 136,1 GR/PG kr2 158,0 146,1 SGN kr16 145,0 187,6 kr2 158,0 136,8 SGN kr16 181,0 205,6 MGN kr2 11,4 157,6 HGN kr17 181,0 209,2 MGN kr2 11,4 154,1 HGN kr17 202,0 164,7 MGN kr2 25,8 171,7 MGN kr17 202,0 170,9 kr2 25,8 158,5 MGN kr17 242,0 122,8 GR/PG kr2 46,6 166,1 MGN kr17 242,0 153,2 GR/PG kr2 46,6 175,4 MGN kr17 281,0 157,1 kr2 72,6 96,2 MGN kr17 281,0 122,9 MGN kr2 72,6 98,9 MGN kr17 302,0 138,3 kr2

102,9 206,2 MGN kr17 302,0 193,8 TON kr2 102,9 178,3 MGN kr17 323,0 175,0 TON kr2 130,0 105,0 MGN kr17 323,0 157,4 TON kr2 130,0 131,7 MGN kr17 341,0 128,2 TON kr2 16,4 139,5 SGN kr18 341,0 172,2 TON kr2 16,4 138,5 SGN kr18 361,0 193,3 TON kr2 43,9 95,8 R/PG kr18 361,0 171,9 TON kr2 43,9 83,5 R/PG kr18 382,0 133,3 TON kr2 54,6 138,3 MGN kr18 382,0 164,8 TON kr2 54,6 145,6 MGN kr18 403,0 127,4 MGN kr2 84,0 196,2 GR kr18 403,0 150,4 MGN kr2 84,0 170,3 GR kr18 422,0 110,2 R/PG kr2

R/PG kr18 422,0 233,8 R/PG kr2

44

Hole data of the uniaxial compressive strength based on the point load index (coeff. 24) Appendix 2

G

Length (m)

UCS (MPa) Rocktype Fol.

Type Fol.

Intensity Hole ID Length (m)

UCS (MPa) Rocktype Fol.

Type Fol.

Intensity Hole ID

442,0 198,2 R/PG kr2 306,5 137,1 TON kr20 442,0 170,5 G

G G

569,5 125,0 139,2

100,5 156,4 89,9 171,2

197,5 169,3 116,8 182,1 118,8 AFB/MDB 198,3 103,1 AFB/MDB 49,6 126,0 54,7 221,1 92,7 189,5 108,5 192,6 200,0 222,6 G 214,8 216,2 G 152,1 206,4 G 161,5 192,9 G 132,9 175,1 117,4 176,3 153,8 MAS 218,6 190,1 MAS 189,7 176,0 BAN 192,8 138,0 BAN 183,6 113,1 BAN 104,7 99,0 BAN 142,4 191,5 BAN

1008,5 160,0 G 188,9 BAN 1008,5 184,5 G 140,5 BAN 1038,0 198,4 137,1 BAN 1038,0 137,8 144,6 IRR

140,7 118,4 IRR 132,9 147,5 MAS 124,2 160,3 MAS 131,2 128,8 BAN 152,1 124,2 BAN 139,5 147,5 BAN 135,6 140,5 BAN 143,8 99,3 BAN 132,7 121,1 BAN 110,7 181,4 BAN 171,0 163,0 BAN 162,7 137,5 BAN 156,4 144,1 BAN 224,7 121,8 BAN 140,2 114,5 BAN 157,6 112,1 131,0 142,1

R/PG kr2 334,4 169,8 TON kr20 482,0 200,0 GR/PG kr2 334,4 133,4 TON kr20 482,0 177,4 GR/PG kr2 363,6 139,0 MGN kr20 502,0 169,1 MGN kr2 363,6 149,2 MGN kr20 502,0 160,2 MGN kr2 445,6 198,8 GRAN kr20 507,5 202,2 SGN kr2 445,6 189,4 GRAN kr20 507,5 151,2 SGN kr2 474,9 122,3 SGN kr20 513,0 189,2 R/PG kr2 474,9 150,1 SGN kr20 513,0 158,7 R/PG kr2 33,5 123,5 MGN kr21

SGN kr2 33,5 106,6 MGN kr21 569,5 117,1 SGN kr2 59,4 GRAN kr21 598,0 MGN kr2 59,4 GRAN kr21 598,0 MGN kr2 92,0 TON kr21 713,0 MGN kr2 92,0 TON kr21 713,0 MGN kr2 149,5 MGN kr21 742,0 kr2 149,5 MGN kr21 742,0 kr2 177,9 SGN kr21 744,0 GR/PG kr2 177,9 SGN kr21 744,0 GR/PG kr2 210,1 SGN kr21 762,5 TON kr2 210,1 SGN kr21 762,5 TON kr2 270,6 SGN kr21 777,0 R/PG kr2 270,6 SGN kr21 777,0 R/PG kr2 296,8 SGN kr21 807,0 R/PG kr2 296,8 SGN kr21 807,0 R/PG kr2 33,3 MGN kr22 867,0 MGN kr2 33,3 MGN kr22 867,0 MGN kr2 74,7 SGN 0 kr22 918,5 GR/PG kr2 74,7 SGN 0 kr22 918,5 GR/PG kr2 98,4 SGN 2 kr22 948,0 TON kr2 98,4 SGN 2 kr22 948,0 TON kr2 131,0 SGN 1 kr22 978,0 MGN kr2 131,0 SGN 1 kr22 978,0 MGN kr2 161,1 SGN 1 kr22

R/PG kr2 161,1 SGN 1 kr22 R/PG kr2 223,7 SGN 1 kr22

MGN kr2 223,7 SGN 1 kr22 MGN kr2 255,1 SGN 0 kr22

19,4 MGN kr20 255,1 SGN 0 kr22 19,4 MGN kr20 281,4 SGN 0 kr22 42,8 SGN kr20 281,4 SGN 0 kr22 42,8 SGN kr20 311,3 SGN 1 kr22 74,9 GRAN kr20 311,3 SGN 1 kr22 74,9 GRAN kr20 340,7 SGN 1 kr22

102,3 MGN kr20 340,7 SGN 1 kr22 102,3 MGN kr20 371,9 SGN 1 kr22 132,4 GRAN kr20 371,9 SGN 1 kr22 132,4 GRAN kr20 429,3 SGN 1 kr22 165,7 SGN kr20 429,3 SGN 1 kr22 165,7 SGN kr20 462,5 SGN 1 kr22 193,3 GRAN kr20 462,5 SGN 1 kr22 193,3 GRAN kr20 489,6 SGN 1 kr22 276,0 TON kr20 489,6 SGN 1 kr22 276,0 TON kr20 21,0 SGN kr23 306,5 TON kr20 21,0 SGN kr23

45

Hole data of the uniaxial compressive strength based on the point load index (coeff. 24) Appendix 2

Type UCS Hole ID

kr23 kr24

Length

(m) UCS

(MPa) Rocktype Fol. Fol. Intensity Hole ID Length

(m) (MPa) Rocktype Fol. Type

Fol. Intensity

41,0 130,0 SGN 544,4 173,83 GRAN 41,0 128,3 SGN kr23 PG

192,1 178,7 194,99

163,7 229,13 157,4 70,93 176,3 71,17 176,0 178,16 159,8 184,17 186,5 157,00

110,60 IRR 162,53 104,59 IRR 108,43 38,71 BAN 114,93 40,15 BAN 176,96 94,49 BAN 186,82

104,59 BAN 59,15 77,90 BAN 60,11 81,75 BAN 132,00

101,22 BAN 138,49 92,09 BAN 94,01

127,43 BAN 116,61 128,39 BAN 159,89 110,84 IRR 162,05

IRR 133,20 BAN 145,46 BAN 112,76 BAN 130,31 BAN 112,76 BAN 100,98 BAN 146,18 MAS 120,70 MAS 150,75 IRR 152,67 IRR 142,34 IRR 142,34 IRR 158,44 MAS 150,51 MAS 122,86 BAN 104,11 BAN 139,45 BAN 140,41 BAN 160,13 GNE 165,18 GNE 95,45 GNE 74,05 GNE 142,34 IRR MAS 111,08 IRR

7,0 104,59 kr25 69,8 155,2 SGN kr23 7,0 92,33 PG kr25 69,8 106,1 SGN kr23 32,3 123,58 MGN kr25

100,4 149,7 SGN kr23 32,3 126,71 MGN kr25 100,4 147,7 SGN kr23 68,8 146,42 MGN kr25 129,3 41,7 SGN kr23 68,8 135,36 MGN kr25 129,3 46,0 SGN kr23 101,5 122,38 MGN kr25 159,5 147,0 SGN kr23 101,5 148,59 MGN kr25 159,5 177,7 SGN kr23 136,4 139,45 GRAN kr25

SGN kr23 136,4 162,53 GRAN kr25 192,1 167,8 SGN kr23 157,6 SGN kr25 220,5 SGN kr23 157,6 SGN kr25 220,5 SGN kr23 192,3 MGN kr25 249,0 SGN kr23 192,3 MGN kr25 249,0 SGN kr23 223,5 GRAN kr25 282,0 SGN kr23 223,5 GRAN kr25 282,0 SGN kr23 252,0 GRAN kr25 28,1 GR/PG 0 kr24 252,0 GRAN kr25 28,1 GR/PG 0 kr24 279,5 MGN kr25 37,6 MGN 2 kr24 279,5 MGN kr25 37,6 MGN 2 kr24 308,1 SGN kr25 65,3 MGN 1 kr24 308,1 SGN kr25 65,3 MGN 1 kr24 341,0 MGN kr25 96,5 MGN 1 kr24 341,0 MGN kr25 96,5 MGN 1 kr24 374,3 MGN kr25

125,8 MGN 2 kr24 374,3 MGN kr25 125,8 MGN 2 kr24 398,2 MGN kr25 155,6 MGN 1 kr24 398,2 MGN kr25 155,6 MGN 1 kr24 430,0 SGN kr25 185,0 MGN 0 kr24 430,0 SGN kr25 185,0 114,69 MGN 0 kr24 459,8 PG kr25 215,7 128,63 MGN 1 kr24 459,8 PG kr25 215,7 96,41 MGN 1 kr24 490,1 MGN kr25 246,8 107,23 MGN 2 kr24 490,1 MGN kr25 246,8 83,19 MGN 2 kr24 522,9 PG kr25 276,4 74,53 MGN 2 kr24 522,9 PG kr25 276,4 78,86 MGN 2 kr24 549,6 PG kr25 319,6 99,06 MGN 0 kr24 549,6 PG kr25 319,6 110,84 MGN 0 kr24 580,0 MGN kr25 333,1 124,30 SGN 0 kr24 580,0 MGN kr25 333,1 145,46 SGN 0 kr24 33,5 SGN kr26 354,5 167,34 MGN 0 kr24 33,5 SGN kr26 354,5 150,03 MGN 0 kr24 64,0 GRAN kr26 400,8 136,08 GRAN 0 kr24 64,0 GRAN kr26 400,8 128,39 GRAN 0 kr24 96,0 MGN kr26 428,5 163,01 MGN 2 kr24 96,0 MGN kr26 428,5 152,67 MGN 2 kr24 20,0 SGN kr27 457,6 147,14 SGN 1 kr24 20,0 SGN kr27 457,6 142,82 SGN 1 kr24 49,9 SGN IRR 0 kr27 486,5 176,48 MGN 2 kr24 49,9 SGN IRR 0 kr27 486,5 177,92 MGN 2 kr24 77,5 MGN BAN 1 kr27 515,9 138,49 MGN 2 kr24 77,5 MGN BAN 1 kr27 515,9 136,81 MGN 2 kr24 104,6 MGN 0 kr27 544,4 183,21 GRAN 0 kr24 104,6 MGN 0 kr27

46

Hole data of the uniaxial compressive strength based on the point load index (coeff. 24) Appendix 2

Type Hole ID

GNE kr27 BAN kr28

Length (m)

UCS (MPa) Rocktype Fol. Fol.

Intensity Hole ID Length (m)

UCS (MPa) Rocktype Fol.

Type Fol.

Intensity139,6 107,71 TON 1 400,2 105,58 SGN 1 139,6 139,21 TON GNE kr27 433,0 147,23 MGN IRR

BAN 433,0 142,63 IRR BAN IRR IRR IRR IRR BAN IRR BAN IRR BAN IRR BAN IRR MAS

307,1 144,74 SGN IRR MAS IRR MAS IRR MAS IRR GNE IRR GNE IRR BAN

G MAS BAN G MAS

127,43 132,9 109,6

GG

GG

138,27

104,61

77,73

151,10 GG

1 0 kr28 169,8 61,55 SGN 1 kr27 MGN 0 kr28 169,8 117,57 SGN 1 kr27 457,5 124,95 MGN 0 kr28 197,7 105,79 MGN 0 kr27 457,5 146,98 MGN 0 kr28 197,7 126,47 MGN 0 kr27 490,6 136,09 SGN 1 kr28 226,1 91,12 MGN 0 kr27 490,6 175,80 SGN 1 kr28 226,1 98,10 MGN 0 kr27 519,1 223,50 SGN 2 kr28 256,0 161,57 MGN 0 kr27 519,1 183,79 SGN 2 kr28 256,0 155,56 MGN 0 kr27 552,1 111,15 GRAN 0 kr28

0 kr27 552,1 115,75 GRAN 0 kr28 307,1 162,05 SGN 0 kr27 582,0 128,34 GRAN 0 kr28 322,6 107,71 MGN 0 kr27 582,0 96,38 GRAN 0 kr28 322,6 93,53 MGN 0 kr27 608,3 161,03 MGN 1 kr28 350,5 157,00 MGN 0 kr27 608,3 179,67 MGN 1 kr28 350,5 137,77 MGN 0 kr27 635,6 110,18 MGN 1 kr28 375,3 156,76 R/PG 0 kr27 635,6 90,32 MGN 1 kr28 375,3 166,86 R/PG 0 kr27 41,0 200,5 MGN kr3 404,4 MGN BAN 1 kr27 41,0 MGN kr3 404,4 130,07 MGN BAN 1 kr27 60,0 MGN kr3 451,6 100,26 MGN IRR 0 kr27 60,0 121,1 MGN kr3 451,6 103,39 MGN IRR 0 kr27 82,0 135,2 MGN kr3 462,9 131,52 MGN BAN 1 kr27 82,0 142,2 MGN kr3 462,9 142,82 MGN BAN 1 kr27 102,0 38,8 MGN kr3 491,5 197,39 MGN MAS 0 kr27 102,0 69,6 MGN kr3 491,5 213,98 MGN MAS 0 kr27 121,0 201,0 MGN kr3 521,4 74,29 MGN BAN 1 kr27 121,0 72,4 MGN kr3 521,4 95,21 MGN BAN 1 kr27 162,0 164,2 R/PG kr3 549,7 127,19 MGN IRR 0 kr27 162,0 123,7 R/PG kr3 549,7 114,20 MGN IRR 0 kr27 201,0 99,9 MGN kr3 31,0 96,38 MGN IRR 0 kr28 201,0 195,6 MGN kr3 31,0 109,94 MGN IRR 0 kr28 241,0 127,0 MGN kr3 71,5 97,59 MGN BAN 1 kr28 241,0 167,9 MGN kr3 71,5 49,64 MGN BAN 1 kr28 261,0 141,7 MGN kr3

102,1 77,49 MGN IRR 0 kr28 261,0 116,4 MGN kr3 102,1 93,71 MGN IRR 0 kr28 283,0 141,2 MGN kr3 130,2 101,70 PG IRR 0 kr28 283,0 153,1 MGN kr3 130,2 124,22 PG IRR 0 kr28 299,0 198,0 R/PG kr3 160,2 103,40 MGN IRR 0 kr28 299,0 142,8 R/PG kr3 160,2 141,41 MGN IRR 0 kr28 322,0 124,2 MGN kr3 189,1 130,03 MGN IRR 0 kr28 322,0 140,5 MGN kr3 189,1 MGN IRR 0 kr28 342,0 155,8 MGN kr3 220,9 103,88 MGN IRR 0 kr28 342,0 166,6 MGN kr3 220,9 94,92 MGN IRR 0 kr28 380,0 190,8 GR/PG kr3 252,4 80,78 MGN IRR 0 kr28 380,0 198,1 GR/PG kr3 252,4 MGN IRR 0 kr28 401,0 147,1 MGN kr3 278,0 95,65 GRAN IRR 0 kr28 401,0 129,6 MGN kr3 278,0 139,24 GRAN IRR 0 kr28 421,0 76,5 MGN kr3 311,8 MGN IRR 0 kr28 421,0 119,3 MGN kr3 311,8 98,80 MGN IRR 0 kr28 441,0 107,9 MGN kr3 341,6 MGN IRR 0 kr28 441,0 134,0 MGN kr3 341,6 189,60 MGN IRR 0 kr28 460,0 156,7 R/PG kr3 374,0 129,55 MGN IRR 0 kr28 460,0 158,6 R/PG kr3 374,0 117,93 MGN IRR 0 kr28 480,0 167,2 MGN kr3 400,2 187,18 SGN BAN 1 kr28 480,0 145,2 MGN kr3

47

Hole data of the uniaxial compressive strength based on the point load index (coeff. 24) Appendix 2

G

Length (m)

UCS (MPa) Rocktype Fol.

Type Fol.

Intensity Hole ID Length (m)

UCS (MPa) Rocktype Fol.

Type Fol.

Intensity Hole ID

501,0 103,9 MGN kr3 860,9 168,5 R/PG MAS 0 kr4 501,0 74,1 MGN kr3 888,5 117,9 MGN IRR 0 kr4 54,0 111,6 G

G GG

TON

SGN 202,0 111,3

380,0 139,1 228,0 119,7 380,0 190,3 255,0 199,2 408,0 201,8 255,0 160,0 408,0 133,8 293,0 130,8 G434,0 154,7 293,0 173,5 G434,0 155,1 318,0 145,7 477,0 149,8 G 318,0 208,8 477,0 158,9 G 326,0 501,0 195,4 326,0 501,0 109,7 354,0 107,1 504,0 173,2 354,0 109,3 504,0 131,1 381,0 139,8 534,5 191,5 381,0 124,8 534,5 160,0 393,0 118,5 564,5 135,2 G 393,0 121,8 564,5 214,4 G 448,0 153,6 590,0 198,2 MGN 448,0 114,4 590,0 196,0 MGN 503,0 620,3 232,7 503,0 620,3 214,7 529,0 121,5 650,0 145,9 529,0 195,4 650,0 174,5 557,0 145,0 680,5 183,9 557,0 203,8 680,5 185,4 300,5 709,0 139,5 300,5 709,0 152,6 330,0 169,7 768,0 218,3 330,0 135,9 768,0 196,0 346,0 121,9 G787,3 203,7 G 346,0 106,3 G787,3 187,3 G 375,0 187,5 800,0 157,7 G 375,0 187,2 800,0 171,4 G 455,0 831,2 143,2 G 455,0 831,2 216,3 G 485,0 115,8 860,9 146,7 G 485,0 151,5

R/PG IRR 0 kr4 888,5 174,4 MGN IRR 0 kr4 54,0 113,4 R/PG IRR 0 kr4 897,7 218,0 R/PG MAS 0 kr4 77,0 61,9 MGN IRR 0 kr4 897,7 183,4 R/PG MAS 0 kr4 77,0 118,7 MGN IRR 0 kr4 40,0 115,6 MGN kr5

102,0 159,8 MGN IRR 0 kr4 40,0 143,0 MGN kr5 102,0 139,7 MGN IRR 0 kr4 66,0 204,4 MGN kr5 176,0 103,1 SGN BAN 2 kr4 66,0 198,8 MGN kr5 176,0 159,3 SGN BAN 2 kr4 117,0 72,3 MGN kr5 201,0 138,8 SGN IRR 0 kr4 117,0 111,0 MGN kr5 201,0 190,7 SGN IRR 0 kr4 152,0 194,5 TON kr5 226,0 142,0 MGN IRR 0 kr4 152,0 205,0 TON kr5 226,0 188,7 MGN IRR 0 kr4 163,0 130,4 TON kr5 277,0 172,3 SGN IRR 0 kr4 163,0 152,9 TON kr5 277,0 172,6 SGN IRR 0 kr4 176,0 165,6 kr5 306,0 219,5 MGN BAN 2 kr4 176,0 134,4 TON kr5 306,0 154,7 MGN BAN 2 kr4 202,0 92,5 TON kr5 331,0 133,2 IRR 0 kr4 TON kr5 331,0 116,1 SGN IRR 0 kr4 228,0 102,1 TON kr5

MGN IRR 0 kr4 TON kr5 MGN IRR 0 kr4 TON kr5 SGN IRR 0 kr4 TON kr5 SGN IRR 0 kr4 R/PG kr5 MGN IRR 0 kr4 R/PG kr5 MGN IRR 0 kr4 MGN kr5 R/PG IRR 0 kr4 MGN kr5 R/PG IRR 0 kr4 161,9 TON kr5 SGN IRR 0 kr4 150,4 TON kr5 SGN IRR 0 kr4 TON kr5 SGN IRR 0 kr4 TON kr5 SGN IRR 0 kr4 TON kr5 MGN BAN 2 kr4 TON kr5 MGN BAN 2 kr4 MGN kr5 R/PG IRR 0 kr4 MGN kr5 R/PG IRR 0 kr4 MGN kr5

MAS 0 kr4 MGN kr5 MAS 0 kr4 161,8 MGN kr5

MGN GNE 1 kr4 180,3 MGN kr5 MGN GNE 1 kr4 SGN kr5 MGN IRR 0 kr4 SGN kr5 MGN IRR 0 kr4 MGN kr5 MGN IRR 0 kr4 MGN kr5 MGN IRR 0 kr4 120,6 SGN kr6 MGN BAN 2 kr4 112,9 SGN kr6 MGN BAN 2 kr4 SGN kr6 MGN BAN 2 kr4 SGN kr6 MGN BAN 2 kr4 R/PG kr6 R/PG MAS 0 kr4 R/PG kr6 R/PG MAS 0 kr4 GR kr6 R/PG MAS 0 kr4 GR kr6 R/PG MAS 0 kr4 97,8 SGN kr6 R/PG MAS 0 kr4 105,5 SGN kr6 R/PG MAS 0 kr4 PG kr6 R/PG MAS 0 kr4 PG kr6

48

Hole data of the uniaxial compressive strength based on the point load index (coeff. 24) Appendix 2

Type UCS Hole ID

kr6 kr7

Length (m)

UCS (MPa) Rocktype Fol. Fol.

Intensity Hole ID Length (m) (MPa) Rocktype Fol.

Type Fol.

Intensity514,5 125,1 SGN 696,0 166,42 SGN BAN 2 514,5 132,7 SGN kr6 kr7

kr6 kr7 kr6 kr7 kr6 kr7 kr6 BAN kr7 kr7 B kr7 kr7 GNE kr7 kr7 GNE kr7 kr7 IRR kr8

SGN BAN IRR BAN 2

T MAS BAN T MAS IRR

IRR IRR IRR G MAS BAN G MAS BAN GNE IRR 213,3 162,9 GNE

IRR 125,5 208,3 IRR 85,2 163,7 BAN

169,9 154,7 BAN 128,4 291,6 GNE 161,0 293,1 GNE 157,9 178,2 IRR 136,8 172,4 IRR 143,8 157,1 BAN 146,67 146,67 181,9 BAN 125,59 125,59 141,8 BAN 202,81 2 163,3 BAN 2 188,38 188,38 194,6 GNE 112,72 171,7 GNE 2 133,13 151,8 IRR 132,47 179,3 IRR 151,77 145,1 IRR 189,72 149,8 IRR 210,80 99,0 MAS 136,91 116,5 MAS 127,81 BAN 135,13 BAN 150,22 G MAS 161,31 G MAS 169,30 G MAS 138,24 G MAS 138,90 179,29 153,99 122,70 108,73 105,18 92,31 160,43 135,31 141,12

725,0 125,37 MGN BAN 2 544,7 89,9 SGN 725,0 105,18 MGN BAN 2 544,7 87,3 SGN 751,5 122,04 MGN IRR 0 600,0 110,8 SGN 751,5 123,37 MGN IRR 0 600,0 85,9 SGN 781,0 123,15 MGN 2 21,0 150,0 MGN BAN 2 781,0 133,58 MGN AN 2 21,0 140,6 MGN BAN 2 811,0 146,00 SGN 2 51,0 68,9 MGN BAN 2 811,0 149,55 SGN 2 51,0 147,4 MGN BAN 2 20,5 159,8 MGN 0 81,0 163,9 1 kr7 20,5 159,7 MGN 0 kr8 81,0 85,2 SGN BAN 1 kr7 77,0 129,0 MGN kr8

111,0 182,6 ONGN 0 kr7 77,0 169,8 MGN 2 kr8 111,0 139,2 ONGN 0 kr7 105,5 204,0 SGN 0 kr8 125,0 163,4 MGN 0 kr7 105,5 182,6 SGN 0 kr8 125,0 136,1 MGN 0 kr7 130,0 165,5 R/PG 0 kr8 159,0 150,7 MGN 2 kr7 130,0 168,3 R/PG 0 kr8 159,0 166,8 MGN 2 kr7 213,3 238,4 SGN 1 kr8 187,0 112,8 MGN 0 kr7 SGN 1 kr8 187,0 133,4 MGN IRR 0 kr7 241,0 230,1 TON 0 kr8 209,0 PG MAS 0 kr7 241,0 TON 0 kr8 209,0 PG MAS 0 kr7 250,5 MGN 2 kr8 232,0 MGN BAN 2 kr7 250,5 MGN 2 kr8 232,0 MGN BAN 2 kr7 319,4 MGN 2 kr8 264,0 MGN MAS 0 kr7 319,4 MGN 2 kr8 264,0 MGN MAS 0 kr7 349,5 MGN 0 kr8 274,0 GR/PG MAS 0 kr7 349,5 MGN 0 kr8 274,0 GR/PG MAS 0 kr7 381,8 MGN 2 kr8 320,5 GNE 2 kr7 381,8 MGN 2 kr8 320,5 GNE 2 kr7 408,4 MGN 2 kr8 350,5 02,81 BAN 2 kr7 408,4 MGN kr8 350,5 BAN 2 kr7 437,5 MGN 2 kr8 377,2 112,72 MAS 0 kr7 437,5 MGN kr8 377,2 133,13 MAS 0 kr7 467,7 MGN 0 kr8 408,0 132,47 MAS 0 kr7 467,7 MGN 0 kr8 408,0 151,77 MAS 0 kr7 495,6 MGN 0 kr8 437,5 189,72 BAN 2 kr7 495,6 MGN 0 kr8 437,5 210,80 BAN 2 kr7 525,0 MGN 0 kr8 467,0 136,91 GNE 2 kr7 525,0 MGN 0 kr8 467,0 127,81 GNE 2 kr7 561,0 151,6 MGN 1 kr8 496,0 135,13 IRR 0 kr7 561,0 137,8 MGN 1 kr8 496,0 150,22 IRR 0 kr7 566,6 229,9 R/PG 0 kr8 525,5 161,31 IRR 0 kr7 566,6 183,3 R/PG 0 kr8 525,5 169,30 IRR 0 kr7 593,8 129,4 R/PG 0 kr8 555,0 138,24 IRR 0 kr7 593,8 153,1 R/PG 0 kr8 555,0 138,90 IRR 0 kr7 40,5 143,3 TON kr9 585,0 179,29 IRR 0 kr7 40,5 130,7 TON kr9 585,0 153,99 IRR 0 kr7 70,0 160,7 SGN kr9 614,5 122,70 BAN 2 kr7 70,0 93,9 SGN kr9 614,5 108,73 BAN 2 kr7 100,3 109,8 SGN kr9 644,5 105,18 IRR 0 kr7 100,3 178,2 SGN kr9 644,5 MGN IRR 0 kr7 130,0 111,6 SGN kr9 666,5 GRAN MAS 0 kr7 130,0 91,6 SGN kr9 666,5 GRAN MAS 0 kr7 160,0 144,5 MGN kr9 696,0 SGN BAN 2 kr7 160,0 118,7 MGN kr9

49

Hole data of the uniaxial compressive strength based on the point load index (coeff. 24) Appendix 2

e TyFol.

Int188,5 180,8 GR/PG kr9

Length

(m) UCS

(MPa) Rocktyp Fol. pe ensity Hole ID

188,5 207,3 GR/PG 275,0 270,7 MGN 275,0 217,0 MGN 305,5 120,7 GR 305,5 134,0 GR

,1 GR/PG ,8 GR/PG kr9 ,7 MGN kr9 ,9 MGN

452,0 102,3 ,5

480,5 152,9 G 480,5 157,5 G kr9 510,0 105,8 kr9 510,0 104,3 570,0 136,5 570,0 150,0 kr9 599,5 145,6 kr9

5 ,5 kr9 1 ,84 ph1 1 ,40 ph1

1 ,80 ph1 1 ,15 ph1 73 ph1 1 ,71 ph1 05 ph1 49 ph1 17 ph1 34 ph1 1 ,15 ph1 1 ,10 ph1 ,8 G ,3 G ,7 ,0 ,7

kr9 kr9 kr9 kr9 kr9

363,5 139 kr9 363,5 133 393,5 132 393,5 150 kr9

MGN kr9 452,0 122 MGN kr9

GR/P kr9 GR/P MGN MGN kr9 MGN kr9 MGN MGN

599, 157 MGN 5,6 35 SGN 5,6 34 SGN

33,5 55 SGN 33,5 53 SGN 62,8 94, MGN 62,8 07 MGN 94,1 93, MGN 94,1 94, MGN

123,9 96, MGN 123,9 79, MGN 151,2 28 MGN 151,2 42 MGN 188,5 180 GR/P kr9 188,5 207 GR/P kr9 275,0 270 MGN kr9 275,0 217 MGN kr9 305,5 120 GR kr9