Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia...

34
Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy

Transcript of Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia...

Page 1: Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia Pan, Pieter Abbeel, Ken Goldberg UC Berkeley EECS.

Planning Curvature and Torsion ConstrainedRibbons for Intracavitary Brachytherapy

Sachin Patil, Jia Pan, Pieter Abbeel, Ken GoldbergUC Berkeley EECS

Page 2: Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia Pan, Pieter Abbeel, Ken Goldberg UC Berkeley EECS.

Cancer Sites

Page 3: Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia Pan, Pieter Abbeel, Ken Goldberg UC Berkeley EECS.

Brachytherapy

Internal radiation therapy – Radioactive source travels in catheters to tumor vicinity

Intracavitary Brachytherapy

Page 4: Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia Pan, Pieter Abbeel, Ken Goldberg UC Berkeley EECS.

Intracavitary Brachytherapy

Limitations of current treatment options:

Lack of proximity to tumor Insufficient radiation to tumor volume

Undesirable radiation exposure to healthy tissue

Patient discomfort, no personalization

Page 5: Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia Pan, Pieter Abbeel, Ken Goldberg UC Berkeley EECS.

Tumor Coverage

Standard approach New approach

Multiple dose locations desired

proximal to tumor

Page 6: Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia Pan, Pieter Abbeel, Ken Goldberg UC Berkeley EECS.

3D Printing

Stratasys uPrint SE Plus

3D Systems ProJET HD 3000

3D Printed Implant

[Garg et al. 2013]

Page 7: Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia Pan, Pieter Abbeel, Ken Goldberg UC Berkeley EECS.

Customized 3D Printed Implants

CT Scan

3DModel

Channel Planning

3D Print

[Garg et al. 2013]

Page 8: Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia Pan, Pieter Abbeel, Ken Goldberg UC Berkeley EECS.

Channel ConstraintsCurvature constraints:

Finite dimensions of radioactive seed

Limited flexibility of catheters

Extraction of support material

Page 9: Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia Pan, Pieter Abbeel, Ken Goldberg UC Berkeley EECS.

Independent Channels

Infeasible for larger number of dose locations

Mutually collision free

Constraints on local/cumulative curvature

Page 10: Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia Pan, Pieter Abbeel, Ken Goldberg UC Berkeley EECS.

Ribbons

Page 11: Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia Pan, Pieter Abbeel, Ken Goldberg UC Berkeley EECS.

Ribbons

Improved arrangement Improved coverage

How do we create these implants?

Page 12: Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia Pan, Pieter Abbeel, Ken Goldberg UC Berkeley EECS.

Ribbon Kinematic Model

Consider ribbon cross-section:

Orient ribbon cross-section along binormal of Frenet-Serret frame [Frenet 1847; Serret 1851]

Page 13: Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia Pan, Pieter Abbeel, Ken Goldberg UC Berkeley EECS.

Ribbon Kinematic Model

Frenet-Serret equations:

Some manipulation yields:

Page 14: Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia Pan, Pieter Abbeel, Ken Goldberg UC Berkeley EECS.

Ribbon Kinematic Model

This gives the following model: Planning parameters:

: speed : curvature : torsion

Page 15: Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia Pan, Pieter Abbeel, Ken Goldberg UC Berkeley EECS.

Why Frenet-Serret Frame?

Different curvatures, lengths: Difficult to plan for

Same curvatures, lengths: Easier to plan for

Page 16: Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia Pan, Pieter Abbeel, Ken Goldberg UC Berkeley EECS.

Problem Specification

Input:

Implant volume conforming to patient anatomy from CT/MR scans

Dose dwell segment poses

Parameters of catheter and radioactive source channel width, curvature and torsion limits

Page 17: Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia Pan, Pieter Abbeel, Ken Goldberg UC Berkeley EECS.

Problem Specification

Objective: Compute ribbons such that:

Curvature and torsion constrained

Optimal – minimize energy

Mutually collision-free

Page 18: Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia Pan, Pieter Abbeel, Ken Goldberg UC Berkeley EECS.

Related Work Planning rigid body motions in SE(3)

without obstacles: Zefran et al. 1998; Belta et al. 2004; Goemans et al. 2005; Biggs et al. 2008; Cripps et al. 2012; etc.

Planning using physically-based models of curves/ribbons:Moll et al. 2006; Bretl et al. 2014; etc.

Planning for bevel-tip steerable needles:Alterovitz et al. 2006,2007; Hauser et al. 2009; Xu et al. 2009; Duindam et al. 2010; Van den Berg et al. 2010; Patil et al. 2012; etc.

Page 19: Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia Pan, Pieter Abbeel, Ken Goldberg UC Berkeley EECS.

Planning Challenges

Nonholonomic system Collision avoidance

Page 20: Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia Pan, Pieter Abbeel, Ken Goldberg UC Berkeley EECS.

Planning Approach

Two steps:

Sequential: Rapidly-exploring random trees (RRT) in SE(3) state space

Simultaneous: Local optimization using sequential quadratic programming (SQP)

Page 21: Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia Pan, Pieter Abbeel, Ken Goldberg UC Berkeley EECS.

RRT Planner

a

b

Sample random point in R3

Find nearest tree node that contains sample within reachable set

Connect

Add new node and edge to tree

Repeat till goal found or maximum

iterations exceeded

Collision detection

a

entry

dose dwell segment

For each dose dwell segment:

[Patil et al. 2012; Garg et al. 2013]

Page 22: Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia Pan, Pieter Abbeel, Ken Goldberg UC Berkeley EECS.

RRT Limitations

Non-smooth ribbons; unnecessary twists

No notion of optimality

Page 23: Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia Pan, Pieter Abbeel, Ken Goldberg UC Berkeley EECS.

(Simultaneous) Local OptimizationOptimization variables:

Minimize energy (rotational strain) :

subject to

Entry / initial pose constraint

Kinematic constraints

Bounds on curvature/torsion

Collision constraints

[Schulman et al. 2013]

Page 24: Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia Pan, Pieter Abbeel, Ken Goldberg UC Berkeley EECS.

Optimization on SE(3)SE(3) is not a vector space:

Locally parameterize SE(3) through its tangent space se(3)

Page 25: Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia Pan, Pieter Abbeel, Ken Goldberg UC Berkeley EECS.

Optimization on SE(3)1) Seed trajectory:

2) Solve: where and

3) Compute new trajectory:

[Saccon et al. 2013]

Page 26: Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia Pan, Pieter Abbeel, Ken Goldberg UC Berkeley EECS.

RRT + Local Optimization

Two steps:

Sequential: Rapidly-exploring random trees (RRT) in SE(3) state space

Simultaneous: Local optimization using sequential quadratic programming (SQP)

Page 27: Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia Pan, Pieter Abbeel, Ken Goldberg UC Berkeley EECS.

RRT + Local Optimization

Page 28: Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia Pan, Pieter Abbeel, Ken Goldberg UC Berkeley EECS.

Intracavitary Brachytherapy Scenario

RRT: Collision-free ribbons; unnecessary twists

RRT + Local optimization: final solution

Page 29: Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia Pan, Pieter Abbeel, Ken Goldberg UC Berkeley EECS.

Intracavitary Brachytherapy Scenario

46% improvement in coverage (metric as defined by Garg et al. 2013)

Limited to 18 channels Can include up to 36 channels

Page 30: Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia Pan, Pieter Abbeel, Ken Goldberg UC Berkeley EECS.

Performance

[single 3.5 Ghz Intel i7 processor]

Page 31: Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia Pan, Pieter Abbeel, Ken Goldberg UC Berkeley EECS.

Address global optimality of solutions [Bento et al. NIPS 2013s]

Automatic computation of dose dwell segments

Clinical studies (UC San Francisco Medical Center)

Future Work

Page 32: Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia Pan, Pieter Abbeel, Ken Goldberg UC Berkeley EECS.

Ribbons – Planning Applications

Page 33: Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia Pan, Pieter Abbeel, Ken Goldberg UC Berkeley EECS.

Source available at: https://github.com/panjia1983/channel_backward

Thank You

Contact: [email protected]@berkeley.edu

Page 34: Planning Curvature and Torsion Constrained Ribbons for Intracavitary Brachytherapy Sachin Patil, Jia Pan, Pieter Abbeel, Ken Goldberg UC Berkeley EECS.

Narrow Passage Scenario

No probabilistic completeness guarantees