Pertemuan 3

25
Teknik Animasi 2D & 3D

description

Pertemuan 3. Teknik Animasi 2D & 3D. 2D Transformations. y. y. x. x. y. x. 2D Transformation. Given a 2D object, transformation is to change the object’s Position (translation) Size (scaling) Orientation (rotation) Shapes (shear) - PowerPoint PPT Presentation

Transcript of Pertemuan 3

Page 1: Pertemuan  3

Teknik Animasi 2D & 3D

Page 2: Pertemuan  3

x

yx

y

x

y

Page 3: Pertemuan  3

Given a 2D object, transformation is to change the object’s Position (translation)Size (scaling)Orientation (rotation)Shapes (shear)

Apply a sequence of matrix multiplication to the object vertices

Page 4: Pertemuan  3

We can use a column vector (a 2x1 matrix) to represent a 2D point x

y A general form of linear transformation

can be written as: x’ = ax + by + c

OR

y’ = dx + ey + f

X’ a b c xY’ = d e f * y1 0 0 1 1

Page 5: Pertemuan  3

Re-position a point along a straight line Given a point (x,y), and the translation

distance (tx,ty)

The new point: (x’, y’) x’ = x + tx y’ = y + ty (x,y)

(x’,y’)

OR P’ = P + T where P’ = x’ p = x T = tx y’ y ty

tx

ty

Page 6: Pertemuan  3

x’ = x + tx y’ y ty

Use 3 x 1 vector

x’ 1 0 tx x y’ = 0 1 ty * y1 0 0 1 1

Note that now it becomes a matrix-vector multiplication

Page 7: Pertemuan  3

How to translate an object with multiple vertices?

Translate individualvertices

Page 8: Pertemuan  3

Default rotation center: Origin (0,0)

Rotate counter clockwise

Rotate clockwise

Page 9: Pertemuan  3

(x,y)

(x’,y’)

(x,y) -> Rotate about the origin by

(x’, y’)

How to compute (x’, y’) ?

x = r cos () y = r sin ()

r

x’ = r cos () y = r sin ()

Page 10: Pertemuan  3

(x,y)

(x’,y’)

r

x = r cos () y = r sin ()

x’ = r cos () y = r sin ()

x’ = r cos ()

= r cos() cos() – r sin() sin()

= x cos() – y sin()

y’ = r sin ()

= r sin() cos() + r cos()sin()

= y cos() + x sin()

Page 11: Pertemuan  3

(x,y)

(x’,y’)

r

x’ = x cos() – y sin()

y’ = y cos() + x sin()

Matrix form?

x’ cos() -sin() x y’ sin() cos() y

=

3 x 3?

Page 12: Pertemuan  3

x’ cos() -sin() x y’ sin() cos() y

=

(x,y)

(x’,y’)

r

x’ cos() -sin() 0 x y’ sin() cos() 0 y1 0 0 1 1

=

Page 13: Pertemuan  3

Rotation

How to rotate an object with multiple vertices?

Rotate individualVertices

Page 14: Pertemuan  3

Scale: Alter the size of an object by a scaling factor (Sx, Sy), i.e.

x’ = x . Sx y’ = y . Sy

x’ Sx 0 xy’ 0 Sy y=

(1,1)

(2,2) Sx = 2, Sy = 2

(2,2)

(4,4)

Page 15: Pertemuan  3

(1,1)

(2,2) Sx = 2, Sy = 2

(2,2)

(4,4)

Not only the object size is changed, it also moved!! Usually this is an undesirable effect We will discuss later (soon) how to fix it

Page 16: Pertemuan  3

x’ Sx 0 xy’ 0 Sy y=

x’ Sx 0 0 x y’ = 0 Sy 0 * y1 0 0 1 1

Page 17: Pertemuan  3

Translation: x’ x tx y’ y ty

Rotation: x’ cos() -sin() x y’ sin() cos() y

Scaling: x’ Sx 0 x y’ 0 Sy y

= +

= *

= *

Page 18: Pertemuan  3

Translation:

Rotation:

Scaling:

x’ 1 0 tx x y’ = 0 1 ty * y1 0 0 1 1

x’ cos() -sin() 0 x y’ sin() cos() 0 * y1 0 0 1 1

=

x’ Sx 0 0 x y’ = 0 Sy 0 * y1 0 0 1 1

Page 19: Pertemuan  3

So that we can perform all transformations using matrix/vector multiplications

This allows us to pre-multiply all the matrices together

The point (x,y) needs to be represented as (x,y,1) -> this is called Homogeneous coordinates!

Page 20: Pertemuan  3

Y coordinates are unaffected, but x cordinates are translated linearly with y

That is: y’ = y x’ = x + y * h

x 1 h 0 xy = 0 1 0 * y1 0 0 1 1

Page 21: Pertemuan  3

Shearing in y

x 1 0 0 xy = g 1 0 * y1 0 0 1 1

A 2D rotation is three shears Shearing will not change the area of the

object Any 2D shearing can be done by a rotation,

followed by a scaling, and followed by a rotation

Interesting Facts:

Page 22: Pertemuan  3

Translation, Scaling, Rotation, Shearing are all affine transformation

Affine transformation – transformed point P’ (x’,y’) is a linear combination of the original point P (x,y), i.e.

x’ m11 m12 m13 x

y’ = m21 m22 m23 y 1 0 0 1 1

Any 2D affine transformation can be decomposed into a rotation, followed by a scaling, followed by a shearing, and followed by a translation.

Affine matrix = translation x shearing x scaling x rotation

Page 23: Pertemuan  3

Composing Transformation – the process of applying several transformation in succession to form one overall transformation

If we apply transform a point P using M1 matrix first, and then transform using M2, and then M3, then we have:

(M3 x (M2 x (M1 x P ))) = M3 x M2 x M1 x P

M

(pre-multiply)

Page 24: Pertemuan  3

Matrix multiplication is associative M3 x M2 x M1 = (M3 x M2) x M1 = M3 x (M2 x M1) Transformation products may not be commutative A x

B != B x A Some cases where A x B = B x A A B translation translation scaling scaling rotation rotation uniform scaling rotation

(sx = sy)

Page 25: Pertemuan  3

Example: rotation and translation are not commutative

Translate (5,0) and then Rotate 60 degree

OR

Rotate 60 degree and then translate (5,0)??

Rotate and then translate !!