Pdc manual

78
Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE 1 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE Experiment No:1 LINEAR WAVE SHAPING AIM : a) To observe the response of RC Low pass circuit for a square wave input for different time constants i) RC>>T ii) RC = T iii) RC<<T and to determine rise time for RC<<T. b) To observe the response of RC High pass circuit for a square input for different time constants i) RC>>T ii) RC = T iii) RC<<T and to determine percentage tilt for RC = T . Components Required : 1. Resistors - 10k? , 100 k? , 1M? 2. Capacitor - 0.01? F Apparatus Required : 1. Bread Board. 2. CRO (1Hz- 20MHz) 3. Function Generator(1Hz-1MHz) 4. Connecting Wires. THEORY: LINEAR WAVE SHAPING The process where by the form of a non-sinusoidal signal is altered by transmission through a linear network is called “ LINEAR WAVE SHAPING”. a) RC Low Pass Circuit : The resistor in series arm and capacitor in the shunt arm, The resulting circuit is called Low pass circuit Figure 1: RC Low Pass Circuit. The circuit passes low frequencies readily but attenuates high frequencies because the reactance of the capacitor decreases with increasing frequency. At very high frequencies the capacitor acts as a virtual short circuit and the output falls to zero. This circuit also works as integrating circuit. A circuit in which the output voltage is proportional to the integral of the input voltage is known as integrating circuit. The condition for integrating circuit is RC value must be much greater than the time period of the input wave (RC>>T) Let V i = alternating input voltage. V 0 R C V i

Transcript of Pdc manual

Page 1: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

1 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Experiment No:1

LINEAR WAVE SHAPING

AIM : a) To observe the response of RC Low pass circuit for a square wave input for different time constants

i) RC>>T ii) RC = T iii) RC<<T and to determine rise time for RC<<T.

b) To observe the response of RC High pass circuit for a square input for different time constants

i) RC>>T ii) RC = T iii) RC<<T and to determine percentage tilt for RC = T .

Components Required : 1. Resistors - 10k? , 100 k? , 1M? 2. Capacitor - 0.01? F

Apparatus Required : 1. Bread Board. 2. CRO (1Hz- 20MHz) 3. Function Generator(1Hz-1MHz) 4. Connecting Wires.

THEORY: LINEAR WAVE SHAPING The process where by the form of a non-sinusoidal signal is altered by transmission through a linear network is called “LINEAR WAVE SHAPING”.

a) RC Low Pass Circuit : The resistor in series arm and capacitor in the shunt arm, The resulting circuit is called Low pass circuit

Figure 1: RC Low Pass Circuit.

The circuit passes low frequencies readily but attenuates high frequencies because the reactance of the capacitor decreases with increasing frequency. At very high frequencies the capacitor acts as a virtual short circuit and the output falls to zero. This circuit also works as integrating circuit. A circuit in which the output voltage is proportional to the integral of the input voltage is known as integrating circuit. The condition for integrating circuit is RC value must be much greater than the time period of the input wave (RC>>T) Let Vi = alternating input voltage.

V0

R

C Vi

Page 2: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

2 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

i = resulting current Applying Kirchoff’s Voltage Law to RC low pass circuit (fig.1).

???T

oi dti

CiRV .

1

Multiplying throughout by C, we get

???T

oi dtiiRCCV .

As RC >> T, the term ?T

o

dti. may be neglected

? iRCCVi ? Integrating with respect to T on both sides, we get

? ??T T

i dtiRCdtCV0 0

..

? ??T t

i dtVRC

dtiC 0 0

.1

.1

??T

dtiC

V0

0 .1

? ??t

i dtVRC

V0

0 .1

The output voltage is proportional to the integral of the input voltage. EXPECTED GRAPH:

Vi

t

t

t

RC<T

RC>>T

(0.9)V0 (0.1)V0

V0

tr

RC=T V0

0

Page 3: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

3 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Page 4: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

4 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

b) High Pass Circuit.

The Capacitor in series arm and resistor in the shunt arm, the resulting circuit is called High pass circuit

Figure: 2. RC High Pass Circuit. The higher frequency components in the input signal appears at the output with less attenuation than the lower frequency components because the reactance of the capacitor decreases with increase in frequency. This circuit works as a differential circuit. A circuit in which the output voltage is proportional to the derivative of the input voltage is known as differential circuit. The condition for differential circuit is RC value must be much smaller then the time period of the input wave (RC<<T). Applying Kirchoff’s Voltage Law to RC high pass circuit (fig.2)

? ??T

oi iRdti

CV .1 .

Divide throughout by R

? ??T

o

i idtiRCR

V.1 .

As RC << T, the above equation is modified as

??T

o

i dtiRCR

V.

1

Differentiating above equation with respect to T.

iRC

Vdtd

R i .11 ?

iRVdtdRC i ?

iRV ?0

C

R V0 Vi

Page 5: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

5 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Therefore iVdtdRCV ?0 . iV

dtdV ?0

EXPECTED GRAPHS: DESIGN:

1. Choose T = 1msec. 2. Select C = 0.01 ? F. 3. For RC = T; select R. 4. For RC >> T; select R. 5. For RC << T; select R. 6. If RC << T, the High pass circuit works as a differentiator. 7. If RC >> T, the Low pass circuit works as an integrator.

PROCEDURE:

1. Connect the circuit as shown in the figure1 &2. 2. Connect the function generator at the input terminals and CRO at the output

terminals of the circuit. 3. Apply a square wave signal of frequency 1KHz at the input. (T = 1 msec.) 4. Observe the output waveform of the circuit for different time constants. 5. Calculate the rise time for low pass filter and tilt for high pass filter and compare

with the theoretical values. 6. For low pass filter select rise time (tr) = 2.2 RC (theoretical). The rise time is

defined as the time taken by the output voltage to rise from 0.1 to 0.9 of its final value.

7. % tilt = ( T/2RC ) ? 100 ( theoretical) % tilt = [ ( V1 – V1? ) / ( V / 2 ) ] ? 100 ( practical)

Vi

t

t

t

RC=T

RC<<T

V1 V1

1 V

V0

V0

V0

RC>>T V1

t

V0

Page 6: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

6 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

QUESTIONS: 1. What is meant by linear wave shaping? 2. Derive the expression for the generalized single time constant transient of a series RC circuit? 3. Derive the expression for the Rise time and % of tilt? CONCLUSION: Low pass filter:

Conclusions can be made on theoretical and practical values of rise time and output waveforms of the Linear wave shaping circuits are identical or not when compared with the theoretical wave forms.

High pass filter:

Conclusions can be made on theoretical and practical values of % tilt and output waveforms of the Linear wave shaping circuits are identical or not when compared with the theoretical wave forms.

Page 7: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

7 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Experiment No:2

NON LINEAR WAVE SHAPING - CLIPPERS AIM : To study the clipping circuits for different reference voltages and to verify the responses. Components Required:

1. Resistors - 1K? 2. IN4007 Diode – 2No.

Apparatus Required : 1. Bread board.

2. CRO (1Hz- 20MHz) 3. Function Generator(1Hz-1MHz) 4. Power supply(0-30V) 5. Connecting wires.

THEORY: The non-linear semiconductor diode in combination with resistor can function as clipper circuit. Energy storage circuit components are not required in the basic process of clipping. These circuits will select part of an arbitrary waveform which lies above or below some particular reference voltage level and that selected part of the waveform is used for transmission. So they are referred as voltage limiters, current limiters, amplitude selectors or slicers. There are three different types of clipping circuits. 1) Positive Clipping circuit. 2) Negative Clipping. 3) Positive and Negative Clipping ( slicer ).

In positive clipping circuit positive cycle of Sinusoidal signal is clipped and negative portion of sinusoidal signal is obtained in the output of reference voltage is added, instead of complete positive cycle that portion of the positive cycle which is above the reference voltage value is clipped. In negative clipping circuit instead of positive portion of sinusoidal signal, negative portion is clipped. In slicer both positive and negative portions of the sinusoidal signal are clipped.

Page 8: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

8 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

VR+ V?

I. Positive Clipping

Figure:1 Figure: 2(a). Input waveform Figure: 2(b)Output waveform. Vi is a input sinusoidal signal as shown in the figure 2(a) . For positive portion of the sinusoidal the diode IN4007 gets forward biased. The output voltages in the voltage across the diode under forward biased which is cut-in-voltage of the diode. Therefore the positive portion above the cut-in-voltage is clipped or not observed in the output (V0) as shown in figure 2(b). II. Positive Clipping with Positive Reference Voltage

Figure:3. Figure:4(a). Input waveform Figure:4(b). Output waveform.

The input sinusoidal signal (Vi ) in figure 4(a) can make the diode to conduct when its instantaneous value is greater than VR. Up to that voltage (VR) the diode is open circuited and the output voltage is same as the input voltage. After that voltage (VR) the output voltage is VR plus the cut-in-voltage (V? ) of the diode as shown in figure 4(b).

IN 4007

1 KO

VR

Vi V0

Vi

t V?

V0

t

Vi

t

V0

t

IN 4007

1 KO

V0 Vi

Page 9: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

9 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

III. Positive Clipping with Negative Reference Voltage

Figure: 5. Figure:6(a). Input waveform Figure:6(b) Output waveform. In this circuit the diode conducts the output voltage is same as input voltage. The diode conducts at a voltage less by VR from cut-in-voltage called as V?. For voltage less than V?, the diode is open circuited and output is same as input voltage. IV Negative Clipping Circuit

Figure:7.

Figure:8 (a). Input waveform Figure:8 (b). Output waveform.

V? -VR

IN 4007

1 KO

VR

Vi V0

IN 4007

1 KO

Vi V0

Vi

t

V0

t

Vi

t

-V?

V0

t

Page 10: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

10 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Vi V0

For this portion of the input sinusoidal signal (Vi), the diode gets reverse biased and it is open. Then the output voltage is same as input voltage. For the negative portion of the signal the diode gets forward biased and the output voltage is the cut-in-voltage (-V? ) of the diode. Then the input sinusoidal variation is not seen in the output. Therefore the negative portion of the input sinusoidal signal (Vi) is clipped in the output signal ( V0 ). V. Negative Clipping with Negative Reference Voltage

Figure:9

Figure:10(a). Input waveform. Figure:10(b) Output waveform. In this circuit, the diode gets forward biased for the input sinusoidal voltage is less than (–VR). For input voltage greater than (–VR), the diode is non-conducting and it is open. Then the output voltage is same as input voltage. VI. Negative Clipping with Positive Reference Voltage

Figure:11.

IN 4007

1 KO

VR

Vi V0

IN 4007

1 KO

VR

Vi

t

-VR-V?

V0

t

Page 11: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

11 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Figure:12(a) Input waveform Figure:12(b) Output waveform. For input sinusoidal signal voltage less than VR, the diode is shorted and the output voltage is fixed ar VR. For input sinusoidal voltage greater than VR the diode is reverse biased and open circuited. Then the output voltage is same as input voltage. VII. Slicer Vi V0

Figure:13.

Figure:14(a). Input waveform Figure14(b). Output waveform. DESIGN:

1. For positive clipping at ‘V’ volts reference select VR = V. 2. For negative clipping at ‘V’ volts reference select VR = V. 3. For clipping at two independent levels at V1&V2 reference voltages select VR1 = V1, VR2 = V2 and VR2 = VR1.

IN 4007

1 KO

VR1

IN 4007

VR2

Vi

t VR-V?

V0

t

Vi

t V?+VR

V?-VR

V0

t

Page 12: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

12 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

PROCEDURE:

1. Connect the circuit as shown in the figure 1. 2. Connect the function generator at the input terminals and CRO at the output terminals of the circuit. 3. Apply a sine wave signal of frequency 1KHz, Amplitude greater than the reference

voltage at the input and observe the output waveforms of the circuits. 4. Repeat the procedure for figure 3, 5, 7, 9, 11 and 13.

QUESTIONS:

1. What is a clipper? Describe (i) Positive clipper (ii) Biased clipper (iii) Combination clipper.

2. Discuss the differences between shunt and series clipper. CONCLUSION:

Conclusion can be made on theoretical and practical values of cut in voltage of diode and also made on theoretical and practical output wave forms for different reference voltages

Page 13: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

13 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Experiment No:3

NON LINEAR WAVE SHAPING – CLAMPERS AIM : To study the clampling circuits for different reference voltages and to verify the responses.

Components Required:

1. Resistors - 1k? 2. IN4007 Diode 3. Capacitor -10? F

Apparatus Required:

1. Bread board 2. Function generator (1Hz – 1Mz) 3. CRO (1Hz- 20MHz) 4. Power supply (0-30V) 5. Connecting Wires.

THEORY: Clamping Circuit “A clamping circuit is one that takes an input waveform and provides an output that is a faithful replica of its shape but has one edge tightly clamped to the zero voltage reference point”. There are various types of Clamping circuits, which are mentioned below:

1. Positive Clamping Circuit.

2. Negative Clamping Circuit.

3. Positive Clamping with positive reference voltage.

4. Negative Clamping with positive reference voltage.

5. Positive Clamping with negative reference voltage.

6. Negative Clamping with negative reference voltage.

Page 14: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

14 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Negative Clamping Circuit

Figure:1 The input signal is a sinusoidal which begins at t=0. The capacitor C is charged at t = 0. The waveform across the diode at various instant is studied. During the first quarter cycle the input signal rises from zero to the maximum value Vm. The diode being ideal, no forward voltage may appear across it. During this first quarter cycle the capacitor voltage VA = Vi. The voltage across C rises sinusoidally, the capacitor is charged through the series combination of the signal source and the diode. Throughout this first quarter cycle the output V0 has remained zero. At the end of this quarter cycle there exists across the capacitor a voltage VA = Vm. After the first quarter cycle, the peak has been passed and the input signal begins to fall, the voltage VA across the capacitor is no longer able to follow the input voltage. For in order to do so, it would be required that the capacitor discharge, and because of the diode, such a discharge is not possible. The capacitor remains charged to the voltage VA = Vm, and, after the first quarter cycle the output is V0 = Vi – Vm. During succeeding cycles the positive excursion of the signal just barely reaches zero. The diode need never again conduct, and the positive extremity of the signal has been clamped to zero. The average value of the signal is –Vm. Positive Clamping Circuit:

Figure:2 It is also called as negative peak clamper, because this circuit clamps at the negative peaks of a signal. Let the input signal be Vi = Vm sin? t. When Vi goes negative, diode gets forward biased and conducts. The capacitor charges to voltage Vm, with polarity as shown. Under steady state condition, the positive clamping circuit is given as,

Vi V0

VA

C

D

+ - +

-

Vi V0

Vm

C

D

+ - +

-

+

-

Page 15: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

15 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

mi VVV ??0

)(0 mi VVV ??? Eq.1 During the negative half cycle of Vi, the diode conducts and C charges to –Vm volts, i.e., the negative peak value. The capacitor cannot discharge since the diode cannot conduct in the reverse direction. Thus the capacitor acts as a battery of –Vm volts and the output voltage is given by equation.1 above. It is seen for figure 2, that the negative peaks of the input signal are clamped to zero level. Peak-to-peak amplitude of output voltage 2Vm, which is the same as that of the input signal. Negative Clamping with Positive Reference Voltage

Figure:2 Since VR is in series with the output of negative clamping circuit, now the average value of the output becomes (-Vm + VR ). Similarly, the average of i) Negative clamping with negative reference voltage is (-Vm + VR ). ii) Positive clamping is +Vm. iii) Positive clamping with positive reference voltage is Vm + VR. iv) Positive clamping with negative reference voltage is Vm - VR. Clamping Circuit Theorem: It states that for any input waveform the ratio of the areas under the output voltage curve in forward direction to that in the reverse direction is equal to the ratio (Rf / R).

R

R

A

A f

r

f ? .

Where Af = area of the output wave in forward direction. Ar = area of the output wave in reverse direction. Rf and R are forward and reverse resistances of the diode.

Vi V0

C

D

VR

Page 16: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

16 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

I. Negative Clamping

Figure:3

Figure:4 (a).Input waveform Figure:4 (b) Output waveform. II. Negative Clamping with Positive Reference Voltage.

Figure:5

IN 4007

1 KO Vi V0

10? F

C

D R

IN 4007

1 KO

Vi V0

10? F

C

D R

VR

t

Vi VR t

V0

Vi

t

Vm

-Vm

V0

t

-2Vm

Page 17: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

17 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Figure:6 (a).Input waveform Figure:6 (b) Output waveform. III. Negative Clamping with Negative Reference Voltage.

Figure:7

Figure:8 (a).Input waveform Figure:8 (b) Output waveform. IV. Positive Clamping.

figure:9

IN 4007

1 KO Vi V0

10? F

C

D R

t t

V0 Vi

-VR

IN 4007

1 KO

Vi V0

10? F

C

D R

VR

V0 t

Vi

t

2Vm

Vm

-Vm

Page 18: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

18 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Figure:10 (a).Input waveform Figure:10 (b) Output waveform.

Page 19: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

19 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

IN 4007

1 KO

Vi V0

10? F

C

D R

VR

V. Positive Clamping with Negative Reference Voltage.

Figure: 11

Figure:12 (a).Input waveform Figure:12 (b) Output waveform. VI. Positive Clamping with Positive reference Voltage.

Figure: 13

Figure:14 (a).Input waveform Figure:14 (b) Output waveform.

IN 4007

1 KO

Vi V0

10? F

C

D R

VR

t

Vi

VR t

V0

t

Vi

t

V0 -VR

Page 20: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

20 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

PROCEDURE:

1. Connect the circuit as shown in the figure 3. 2. Connect the function generator at the input terminals and CRO at the output terminals of the circuit. 3. Apply a sine wave greater than the reference voltage, and signal of frequency 1kHz at

the input and observe the output waveforms of the circuits in CRO. 4. Repeat the above procedure for the different circuit diagram as shown inf figure 5, 7,

9, 11 and 13. QUESTIONS:

1. Explain the operation of a clamping circuit for a square wave input. 2. Differentiate the clippers with clampers. 3. Give the applications of clampers.

CONCLUSION:

Conclusion can be made on theoretical and practical values of cutin voltages of diode and also conclude on theoretical and practical output wave forms for different reference voltages

Page 21: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

21 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Page 22: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

22 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Page 23: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

23 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

C

B

E

QRB

IB RL

IC

VBB IE VCC

Experiment No:4

TRANSISTOR AS A SWITCH AIM : To design and observe the performance of a transistor as a switch. Components Required:

1. Resistors 2. LED 3. 2N2369 Transistor

Apparatus Required :

1. Bread board 2. Function generator 1Hz- 1MHz 1No. 3. CRO 1Hz -20MHz 1No. 4. Power supply 0-30V 1No.

THEORY: Figure:1 Figure:2

Figure:3

Fig.1. Transistor as a switch. Fig.2 Pin configuration of transistor 2N2369. Fig.3 Output characteristics with load line(d.c)

The transistor Q can be used as a switch to connect and disconnect the load RL from the source VCC. When a transistor is saturated , it is like a closed switch from the collector to the emitter. When a transistor is cut-off, it is like an open switch.

I

L

CC

RV

IB > IB(sat)

IB = IB(sat)

IB =0 Cut-off

Saturation

VC VCE 0

Page 24: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

24 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

L

CECCC R

VVI

??

CCCE V V ? Cut-off and Saturation : The point at which the load line intersects the IB = 0 curve is known as cut-off. At this point, base current is zero and collector current is negligible small i.e., only leakage current ICEO exists. At cut-off, the emitter diode comes out of forward bias and normal transistor action is lost. VCE(sat) ̃VCC The intersection of the loadline and the IB = IB(sat) is called saturation. At this point base current is IB(sat) and the collector current is maximum. At saturation, the collector diode comes out of reverse bias, and normal transistor action is again lost.

L

CCsatC R

VI ?)(

In figure:3 IB(sat) represents the amount of base current that just produces saturation. If base current is less than IB(sat), the transistor operates in the active region somewhere between saturation and cut-off. If base current is greater than IB(sat), the collector current approximately

equalsC

CC

RV

. The transistor appears like a closed switch.

BBBEBB RIVV ??

B

BEBBB R

VVI

?? .

If base current (IB) is zero, the transistor operates at the lower end of the loadline and the transistor appears like an open switch. CIRCUIT DIAGRAM:

Pin Configuration 2N2369 Figure 4. DESIGN :

2N2369

VCC +12V

RC

RB IB

IC

1KO

LED 0 or 5 V

Page 25: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

25 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Ic max = 5mA, VBE = 0.7V,VCE (sat) = 0.2V,Vcc = 12V. Rc min= VCC / Ic max ICS = (VCC – VCE (sat) ) / Rc IB = ICS/ hfe=(Vi-VBE)/RB

RB = ( Vi – VBE ) / IB PROCEDURE :

1. Connect the circuit as shown in the figure 4. 2. Connect 12V power supply to VCC and 0V to the input terminals. 3. Measure the voltage (1) across collector – to – emitter terminals, (2) across collector

– to – base terminals and (3) Base – to – emitter terminals. 4. Connect 5V to the input terminals. 5. Measure the voltage (1) across collector – to – emitter terminals, (2) across collector

– to – base terminals and (3) Base – to – emitter terminals. 6. Observe that the LED glows when the input terminals are supplied with 0 volts. The

LED will NOT glow when the input voltage is 5V. 7. Remove the load (1K? and LED ) and DC power supply(connected between RB and

Gnd.). Now connect a function generator to the input terminals. 8. Apply Square wave of 1Khz, V(p-p) is 10V 9. Observe the waveforms at the input terminals and across collector and ground. 10. Plot the waveform on a graph sheet. Note the inversion of the signal from input to

output. EXPECTED WAVE FORMS:

Input Output

OBSERVATIONS:

VBE VCE VCB When transistor is ON

When transistor is OFF

Vi > VBE

V0

t

t VCE (SAT)

VCC

Page 26: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

26 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

QUESTIONS:

1. Discuss the advantages of an electronic switch over a mechanical or electro mechanical switch.

2. What is a switching circuit? 3. Explain the terms collector leakage current and saturation collector current.

CONCLUSION: Conclusions can made on what are the conditions required to operate the transistor as a switch and also made on junction voltages of the transistor when it is ‘ON’ and ‘OFF’ also conclude what happens if we apply high voltage to the transistor.

Page 27: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

27 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Experiment No:5

STUDY OF LOGIC GATES AIM : To study the various logic gates by using discrete components. Component Required :

1. Resistors - 1k? -1, 10 k? -2 2. IN4007 Diodes – 2 no 3. Transistor 2N2369

Apparatus Required:

1. Power supply 0-30V 2. Bread board 3. Connecting wires 4. Multimeter

THEORY: TRUTH TABLE

A B Y 0 0 0

0 1 0

1 0 0

1 1 1 AND GATE: The AND gate as a high output when all the inputs are high the figure 1 shows one way to build the AND gate by using diodes. Case 1: When both A and B are low then the diodes are in the saturation region then the supply

from VCC will flow to the diodes then the output is low. Case 2: When A is low and B is high then diode D1 will be in the saturation region and D2 will

be in the Cut-off region, then the supply from VCC will flow through diode D1 then the output will be low.

Case 3: When A is high, B is low the diode D1 will be in the Cut-off region and diode D2 will be in saturation region then the supply from VCC will flow through the diode D2, therefore the output will be low.

Case 4: When both the A and B are high then the two diodes will be in Cut-off region therefore the supply from VCC will flow through Vout then Vout is high.

A

B Y=A.B

SYMBOL

Page 28: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

28 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

OR GATE: TRUTH TABLE

A B Y 0 0 0

0 1 1

1 0 1

1 1 1 An OR gate has two or more inputs but only one output signal. It is called OR gate because the output voltage is high if any or all the inputs are high. The figure 2 shows one way to build OR gate (two inputs) by using diodes. Case 1: When A and B are low then the two diodes D1 and D2 are in Cut-off region. Then the

Vout is low. Case 2: When A is low and B is high then the diode D1 is in Cut-off region and diode D2 is in

saturation region, then the Vout is high. Case 3: When A is high and B is low then the diode D2 is in saturation region and diode D1 is in

Cut-off region, then the Vout is high. Case 4: When both A and B are high the diodes D1 and D2 are in saturation region then the

output Vout is high. NOR GATE: TRUTH TABLE Symbol NOR gate is referred to a NOT OR gate because the output is BAY ?? . Read this as Y = NOT A OR B or Y = compliment of the A OR B. the circuit is in an OR gate followed by a NO gate OR inverter. The only to get high output is to have both inputs low.

A B Y

0 0 1

0 1 0

1 0 0

1 1 0

A

B Y = A + B

SYMBOL

A

B

Y = A + B BAY ??

A

B BAY ??

Page 29: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

29 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

A

B

Y = A.B BAY .?

A

B BAY .?

NAND GATE: TRUTH TABLE Symbol NAND gate is referred to as NOT AND GATE because the output is BAY .? read this as Y = NOT A AND B or Y = Compliment of A AND B. By this gate the output is low when all the inputs are high. NOT GATE: TRUTH TABLE

A Y

0 1

1 0 The Inverter or NOT gate is with only one input and only one output. It is called inverter because the output is always opposite to the input. The figure5 shows the one way to build inverter circuit by using transistor (CE mode) when the Vin is low then the transistor will be in the Cut-off region. Then the supply from VCC will flow to Vout. Then the Vout is high. When Vin is high then the transistor is in the saturation region then the supply from VCC will flow through the transistor to the ground, then the Vout is low. CIRCUIT DIAGRAM : Figure 1 Figure 2

A B Y

0 0 1

0 1 1

1 0 1

1 1 0

A Y= A

Symbol

D1 IN4007

D2 IN4007

10KO

Y A

B

OR GATE

D1 IN4007

D2 IN4007

10KO

Y A

B

AND GATE Vcc+5v

Page 30: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

30 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Figure 3

Figure 4

Figure 5

D1 IN4007

D2 IN4007

10KO Y

A

B

VCC +5V

NAND GATE

1KO

10KO

2N2369

Vcc+5v

1KO Y

2N2369 A NOT GATE

10KO

D1 IN4007

D2 IN4007

10KO

Y

A

B

NOR GATE

1KO

10KO

2N2369

Vcc+5v

Page 31: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

31 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

PROCEDURE:

1. Connect the circuit as shown in figure 1 2. Apply ‘0v’ to logic ‘0’ and 5V to logic ‘1’ using power supply. 3. Verify the truth tables of various gates for different conditions of inputs. 4. Repeat the steps 1&2 for figures 2, 3, 4 & 5.

TRUTH TABLES

AND GATE OR GATE NAND GATE NOR GATE NOT GATE A B Y A B Y A B Y A B Y A Y 0 0 1 1

0 1 0 1

0 0 1 1

0 1 0 1

0 0 1 1

0 1 0 1

0 0 1 1

0 1 0 1

0 1

QUESTIONS:

1. Realize AND, OR, NOT gates using NAND & NOR gates 2. Why NAND & NOR gates are called universal gates.

CONCLUSION:

Conclusions can be made on theoretical and practical values of the truth tables for the given logic gates

Page 32: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

32 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Page 33: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

33 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Q

Q

S /R

FLIP-FLOP S

R

Experiment No:6

STUDY OF FLIP-FLOPS AIM: To verify the truth table of SR latch, J-K flip-flop,J-K master Slave flip- flop, T flip-flop and D flip-flop. Components Required:

1. IC 74LS00 2. IC 74LS10 3. IC 74LS04. 4. Digital Trainer Kit.

THEORY: RS FLOP-FLOP:

Consider the logic Symbol for RS flip-flop shown in Fig. Notice that the RS flip-flop has two inputs, labeled S and R. The two outputs are labeled Q and Q . Note that the outputs are always opposite, or complementary in the flip-flops. Fig. shows the timing diagram for an RS flip-flop. Notice that the output Q goes high whenever R goes low; and the output Q goes LOW whenever S goes LOW. The logic levels (0, 1) are on the left side of the wave forms. The output Q ‘holds’, whenever the both inputs are high. Fig. Logic symbol for RS FLIP-FLOP CLOCKED RS FLIP-FLOP (RST FLIP-FLOP):

We know that the flip-flops are synchronous bistable devices. The term synchronous indicates that the output changes its state only at a specified point on a triggering input called the ‘clock’; i.e. changes in the output occur in synchronization with the clock. By adding gates to the inputs of the basic circuit, the flip-flop can be made to respond to input levels during the occurrence of a clock pulse. Note that the clock signal is a square wave signal and the signal prevents the flip-flops from changing the states until the right time occurs. The clocked RS flip-flop using NAND gates are shown in Fig.

Page 34: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

34 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Q

Q

S

R

CLK

SET

CLOCK

RESET

Fig. Logic symbol for clocked RS FLIP-FLOP

INPUTS OUTPUTS

CLK R S Q Q

Mode of operation

0 0 0 0 1

0 0 1 1 0

0 1 0 1 0

NO CHANGE HOLD

1 1

0 1

1 0

1 0

0 1

SET RESET

1 1 1 Do not Use Prohibited D (DELAY) FLIP-FLOP: The D (Delay) flip-flop is used for storing the information. It is basically an RS flip-flop with an inverter in the R input. Fig. shows a clocked D flip-flop. NAND gates 1 and 2 from a basic RS flip-flop and gates 3 and 4 modify it into a clocked RS flip-flop. The D input is to the S input and its complement through gate 5 is applied to the R input. The D flip-flop is often called a ‘delay flip-flop’. The word ‘delay’ describes what happens to the data or information at input D. In other words, the data, i.e. 0 or 1 at the input D is delayed by one clock pulse from getting to output Q.

Modification of clocked RS Flip-Flop into D Flip-Flop Logic Symbol

Inputs Outputs

CLK D Q Q

0 0

0 1 No change

1 1

0 1

0 1

1 0

Q

Q

S

R

CLK

D

Q

Q

D

CLK

Page 35: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

35 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Q

Truth Table JK FLIP-FLOP: The JK flip-flop has the features of all other flip-flops, and hence it can also be considered as ‘Universal’ flip-flop. This JK flip-flop is a refinement of the RS flip-flop. The indeterminate state (when R=S=1) of the RS type is defined in the JK type. In that condition the state of the output is changed; i.e. the complement of the previous state is available. In other words, if the previous state of the output Q is 0; it becomes 1; and vice versa. This can be written as nQQn ?? 1 . The logic diagram of a clocked JK flip-flop is shown in Fig. Inputs J and K behave like inputs S and R to set and reset the flip-flop. Note that in a JK flip-flop, the letter j is for set and the letter K is for reset. Fig. shows the logic symbol for JK flip-flop and it’s truth table is shown in the Fig. Note that the RS flip-flop is converted into JK flip-flop by making QJS ?? and

QKR ?? Logic Symbol

Inputs Outputs CLK

J

K

Q

0 0 0 0 1

0 0 1 1 0

0 1 0 1 0

No Change ( HOLD)

1 1

0 1

1 0

0 1

1 0

1 1 1 Toggle

Q

Q

J

K

CLK

Page 36: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

36 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

J – K MASTER-SLAVE FLIP-FLOP: In the operation of a JK flip-flop, it is very difficult to satisfy the requirements, which should be fulfilled to avoid the ‘racing condition’, when both the data inputs are at High. The practical approach to overcome this problem is to use ‘Master-slave JK flip-flop’. The Logic diagram of a master-slave JK flip-flop is shown in Fig. which contains two clocked flop-flops. One flip-flop serves as a MASTER and the other as a SLAVE; and overall circuit is known as ‘Master-Slave flip-flop’. Whenever the clock is HIGH, the master is active. According to the state of the data inputs, The output of the master is set or reset. At this stage, the slave is inactive and its output remains in the previous state. Whenever the input clock is LOW, then the master is inactive and the slave is active. Note that final output of the master-slave flip-flop is the output of the slave flip-flop. Hence the final output of the master-slave flip-flop is available at the end of a clock pulse. T (TOGGLE) FLIP-FLOP: The single input version of the JK flip-flop is ‘T (toggle) flip-flop’ and it is obtained from a JK flip-flop if both inputs are tied together. The name T comes from the ability of the flip-flop to ‘toggle’ or change the state. Generally T flip-flop IC’s are not available. It can be realized using JK, SR, or D flip-flop. Fig 1. shows the logic diagram of a clocked T flip-flop; which has only one input referred to as T-input.

Truth table

CLK I/P(T) O/P(Q) 0 1 0 1

0 0 1 1

Qn No change No change

Toggle

CLK

Q

Q

T T

CLK

Fig 1.Logic Symbol

MASTER FLIP-FLOP

SLAVEFLIP-FLOP

CLKJ

K

LOGIC DIAGRAM OF MASTER-SLAVE J-K FLIP-FLOP

Q

Q

Page 37: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

37 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

DATA

Clk

CIRCUIT DIAGRAMS:

S – R Flip Flop

J - K Flip Flop

T Flip flop D – Flip flip

1

2

4

5

Q

Q

S

R

Clk

SR Latch 12

13

10

9

11

8

3

6

J Q K Q

S Q R Q

DATA

Clk

S

– R

Lat

ch

3

5

4

9 10

11

6

8

Q

Q

J

K

Page 38: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

38 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

PROCEDURE:

1. Connect the circuit diagram as shown in the diagram. 2. Verify the truth table of the SR latch. 3. Connect the JK flip-flop circuit using 3-input NAND gates and verify the truth table. 4. Verify the truth table for T and D Flip-flops. 5. Verify the truth table for J-K MASTER-SLAVE FLIP-FLOP

QUESTIONS:

1. What is a sequential logic circuit? How is it different from a combinational system? 2. What is a binary? What is a flip-flop? 3. Explain the meaning of set and reset? 4. Explain the need of flip-flop? 5. What basic purpose does all flip-flops serve? 6. Is it possible to toggle a SR flip-flop? Explain? 7. Explain the meaning of race – around problem? How does it affect the behavior of a flip-

flop? 8. Explain how the race – around problem is overcome in the JK Master Slave flip flop 9. Explain how a shift register can be constructed from SR flip-flop?

CONCLUSION:

Conclusions can be made on theoretical and practical values of the truth tables for the given logic gates and also check whether all the gates are working or not .

J

K

CL

Q

Q MASTER

SLAVE

J-K MASTER-SLAVE FLIP-FLOP

7410

7410

7400

7400

7400

7400

7400

7400

7400

Page 39: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

39 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Experiment No:7

SAMPLING GATES

AIM: To observe the output of the Unidirectional diode gate for different Control Input Voltages APPARATUS: 1. Resistors 1k? -2

2. Capacitor - 10? F 3. 1N4007 Diode 4. Bread board 5. CRO (1Hz-20MHz) 6. Function generator (1Hz-1MHz)- 2

THEORY: Unidirectional Diode Gates:

At point A receives both the signal Vs and the control input Vc we observe here that while the input signal Vs is capacitively connected to A, the control input Vc is directly coupled. The net signal at point A can be determined by employing superposition theorem .A careful inspection indicates that the input signal Vs is passing through a high pass filter and the control input Vc is passing through a low pass filter to reach point A

It can be seen that the input to the sampling gates has a low duty cycle pulse train. The width of the control pulse is large compared to input pulse width .The diode in the sampling circuit is less reverse biased when the control input rises to its higher voltage level –V2. However the diode is forward biased only during the narrow input signal Vs reaches point A. The input pulse that lies with in the duration of the control pulse is transmitted through the diode as output .The effect of the level –V2 on the output of the gate waveform can be seen in fig 2 .In fig 2.a we have –V2 = -5V and for a 10V input pulse; a 5V pulse appears as output. Operation in this manner is advantageous when the bottom line of the input signal has a noise signal surrounding it This would enable us to choose a noise threshold appears at the output .When used in this manner , the circuit is referred to as a threshold gate .In fig 2-b –V2 = 0 and the entire input pulse is transmitted to the output , whereas in fig 2-c –V2 is positive and the signal appears super imposed on a 5V pedestal

We have to remind the reader that the waveforms shown above are unrealistic as they do

not take the effects of the high pass filter and the low pass filter mentioned at the beginning of this section .We are quite aware of the fact that R1C1 networks constitutes an integrator to the control input Vc .As a consequence , the control input at A would be rising exponentially and exponentially falling at a similar rate .The rates and fall are controlled by the time constant R1C1

The above discussion makes it clear that this form of a sampling gate is not particularly

suitable for selecting a portion of a continuous waveform .However when the input signal is a short pulse whose duration is clearly smaller than the width of the control input , the performance of the gate is acceptable .

Page 40: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

40 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Fig.1 Unidirectional Diode Gate

Fig .2 Effect of control voltage on the output waveform

CIRCUIT DIAGRAM

Unidirectional Diode Gate

Signal input

control input

R1 RL V0

C1

Signal input

control input

R1 RL V0

C1

Signal input

Output Output Output

Pedestal

Gating input

5V

0V

-5V

-15V

-V2

-V1

- V2

-V2

10V 15V

a) Output waveform when –V2 is negative

b) Output waveform when –V2 is zero

c) Output waveform when –V2 is positive

Page 41: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

41 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Procedure:

1. Connect the circuit as shown in the circuit diagram. 2. Connect the signal generator at the signal input with a frequency of 10KHz , 10Vp-p . 3. Connect the another signal generator at the control input with a frequency of 1KHz ,

-10Vp-p . 4. Vary the control input voltage and observe the output for different control input voltages

say 0V, -5V & -10V MODEL GRAPH:

Questions:

1. What is sampling gate? 2. Sketch the simple diode Unidirectional sampling gates that functions as a coincidence

gate 3. Write some applications of sampling gate? 4. Write short notes on four diode bi- directional diode sampling gate?

Signal input

Output Output Output

Pedestal

Gating input

5V

0V

-5V

-15V

-V2

-V1

-V2

-V2

10V 15V

a) Output waveform when –V2 is negative

b) Output waveform when –V2 is zero

c) Output waveform when –V2 is positive

Page 42: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

42 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Page 43: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

43 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Experiment No:8

ASTABLE MULTIVIBRATOR

AIM : a) To design an Astable Multivibrator to generate clock pulse for a given frequency and obtain the wave forms and test its performance.

COMPONENTS REQUIRED: 1. Resistors

2. Capacitors 0.1 ? f 2 No.s 3. Transistors 2N2369 2 No.s

APPARATUS : 1. CRO 1Hz-20MHz 1No. 2. Power supply 0-30V 1 No 3. Bread board 4. Connecting wires

THEORY: An Astable multivibrator has two quasi-stable states, and it keeps on switching between these two states, by itself, No external triggering signal is needed. The astable multivibrator cannot remain indefinitely in any of these two states. The two amplifiers of an astable multivibrator are regeneratively cross-coupled by capacitor. Principle: A collector-coupled astable multivibrator using n-p-n transistor in figure 1. The working of an astable multivibrator can be studied with respect to the figure1.

Figure:1 Let it be assumed that the multivibrator is already in action and is oscillating i.e., switching between the two states. Let it be further assumed that at the instant considered, Q2 is ON and Q1 is OFF. i) Since Q2 is ON, capacitor C2 charges through resistor RC1. The voltage across C2 is VCC.

RC1 RC2 R2 R1

C2 C1

2N2369 2N2369

VCC 12V

Q1 Q2

A B

C D

Page 44: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

44 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

ii) Capacitor C1discharges through resistor R1, the voltage across C1 when it is about to start discharging is VCC.(Capacitor C1 gets charged to VCC when Q1 is ON). As capacitor C1 discharges more and more, the potential of point A becomes more and more positive (or less and less negative), and eventually VA becomes equal to V?, the cut in voltage of Q1. For VA > V?, transistor Q1 starts conducting. When Q1 is ON Q2 becomes OFF. Similar operations repeat when Q1 becomes ON and Q2 becomes OFF. Thus with Q1 ON and Q2 OFF, capacitor C1 charges through resistor RC2 and capacitor C2 discharges through resistor R2. As capacitor C2 discharges more and more , it is seen that the potential of point B becomes less and less negative (or more and more positive), and eventually VB becomes equal to V?, the cut in voltage of Q2. when VB > V?, transistor Q2 starts conducting. When Q2 becomes On, Q1 becomes OFF. It is thus seen that the circuit keeps on switching continuously between the two quasi-stable states and once in operation, no external triggering is needed. Square wave voltage are generated at the collector terminals of Q1 and Q2 i.e., at points C and D.

DESIGN:

IC max = 5 mA ; VCC = 12 V; VCE (SAT) = 0.2V

RC = (VCC - VCE(SAT)) / IC MAX

Let C = 0.1 ? f and R= 10K?

T = 0.69 (R1C1+R2C2) = 0.69(2RC) ( R1=R2 ; C1=C2)

=TON+TOFF

PROCEDURE:

1. Connect the circuit as shown in figure 1. 2. Observe the waveforms at VBE1, VBE2, VCE1, VCE2 and find frequency. 3. Vary C from 0.01 to 0.001? F and measure the frequency at each step. 4. Keep the DC- AC control of the Oscilloscope in DC mode.

?

Page 45: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

45 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

EXPECTED WAVEFORMS: Q1 OFF, Q2 ON Q1 OFF, Q2 ON

Q1 ON, Q2 OFF Q1 ON, Q2 OFF

Figure 2

OBSERVATIONS: TON (Theoritical) = 0.69RC = TOFF (Theoritical) = 0.69RC = T(TON + TOFF) (Theoritical) = 1.38RC = TON (practical) = TOFF (practical) = T(TON + TOFF) (practical) = QUESTIONS:

1. What is a switching circuit? 2. Justify that the Astable Multivibrator is a two stage RC coupled Amplifier using

negative feedback. How does it generate square wave. 3. What is the difference between a switching transistor and an ordinary transistor? 4. What is the effect of slew rate on the working of an Op-amp Multivibrator?

CONCLUSION: Conclusion can be made on time period of the output waveforms of the Astable multivibrator theoretically and practically and output waveforms of the multi vibrator are identical or not when compared with the theoretical wave forms.

VC1 t

VC2 t

VB1 t

VB2 t

VCE (SAT)

VCE (SAT)

VCC

V??

V??

VCC

I.R?C

Page 46: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

46 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Page 47: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

47 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Experiment No:9

MONOSTABLE MULTIVIBRATOR

AIM : To design a monostable multivibrator to generate clock pulse for a given frequency and obtain the waveforms and test its performance

Components Required:

1. Resistors 2. Capacitors. 3. Transistors 2N2369 2 No.s

Apparatus Required: 1. CRO 1Hz-20MHz 1 No. 2. Power supply 0-30V 1 No. 3. Bread board 4. Connecting wires

CIRCUIT DIAGRAM:

Figure-1 THEORY : ‘A monostable multivibrator has only one stable state, the other state being quasi-stable. Normally the multivibrator is in the stable state, and when an external triggering pulse is applied, it switches from the stable to the quasi-stable state. It remains in the quasi-stable state fro a short duration, but automatically reverts i.e. switches back to its original stable state, without any triggering pulse’.

RC1 RC2 R=10KO

R1

C=0.1? F

2N2369 2N2369

VCC = 6V

-VBB -1.5V

R2

Q1 Q2

Page 48: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

48 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Principle of operation A collector-coupled Monostable multivibrator of the two transistors Q1 and Q2, Q1 is normally OFF and Q2 is Normally ON. Resistor R1 and R2 are connected to the normally OFF transistor, and the capacitor C is connected to the normally ON transistor. It is seen from the circuit of the monostable multivibrator that, under normal conditions, the supply voltage VCC provides enough base drive to the transistor Q2 through resistor R, with the result that Q2 goes into saturation. With Q2 ON, Q1 goes OFF, as already studied in the context of binary operation. With Q2 ON and Q1 OFF, the capacitor finds a charging path. The voltage across the capacitor is VCC with polarity. It is obvious that in the stable state of the multivibrator, Q2 is ON and Q1 is OFF. If the negative triggering pulse is applied to the collector of Q1, it is transmitted to the base of Q2 through the capacitor, and hence makes the base of Q2 negative. Immediately Q2 goes OFF and Q1 becomes ON. However, this is only a quasi-stable state as is obvious form the following observation. With Q1 ON and Q2 OFF, the capacitor C finds a discharging path. As the capacitor discharges, it is seen that the potential at the base of the transistor Q2 becomes less and less negative, and after a time, we have VB = V?, the cut-in-voltage of Q2. As soon as VB crosses the level of V?, Q2 starts conducting and gets saturated. When Q2 becomes ON, Q1 becomes OFF. Thus the original stable state of the multivibrator is restored. [ In quasi-stable state: Q1 is ON and Q2 is OFF] The interval during which the quasi-stable state of the multivibrator persists i.e., Q2 remains OFF is dependent upon the rate at which the capacitor C discharges. This duration of the quasi-stable state is termed as delay time or pulse width or gate time. It is denoted as T. The wave forms of the voltage at base of the transistor Q2 and C (Collector of Q1) DESIGN:

VCE = 5.56v, VCC = 6v, VCE(sat) = 0.3v, VBE(sat), = 0.7v, IC = 6mA,VF = -0.3v Rc = (VCC–VCE(sat))/IC.

C

CsatBE

C

CCCE RR

RVRRRVV

??

??

1

)(

1

1

Find the values of R1 and R2 Theoretical gate width ‘T’ with Q1 in saturation = 0.69RC

PROCEDURE:

1. Connect the circuit as shown in figure. 2. With the help of a triggering circuit and using the condition T (trig) > T(Quasi) a pulse waveform is generated.

3. The output of the triggering circuit is connected to the base of the off transistor. 4. The Off transistor goes into ON state.

5. Observe the waveforms at VBE1, VBE2, VCE1, VCE2

6. Keep the DC- AC control of the Oscilloscope in DC mode. 7. Compare the theoretical and practical gate widths.

21

2)(

21

1

RRRV

RRRV

V satCEBBF ?

??

??

Page 49: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

49 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

VC2

t

VB2 t

VC1 t

VB1 t

I.R?C

EXPECTED WAVEFORMS: Q2 OFF, Q1 ON Q1 OFF, Q2 ON

Q2 ON, Q1 OFF

Figure 2

OBSERVATIONS: TON (Theoritical) = 0.69RC = TON (practical) = QUESTIONS:

1. Explain the operation of collector coupled Monostable Multivibrator? 2. Derive the expression for the gate width of a transistor Monostable Multivibrator? 3. Give the application of a Monostable Multivibrator.

CONCLUSION:

Conclusion can be made on time gate width ‘T’ of the monostable multivibrator theoretically and practically and output waveforms of the multi vibrator are identical or not when compared with the theoretical wave forms.

VCC

VCE (SAT)

VCE (SAT)

V??

V??

VCC

Page 50: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

50 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Page 51: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

51 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Experiment No:10

BISTABLE MULTIVIBRATOR

AIM: To design a fixed bias Bistable Multivibrator and to measure the stable state voltages before and after triggering.

COMPONENTS REQUIRED:

1. Resistors 2. Transistors 2N2369 1 No.

APPARATUS: 1. Bread board 2. Power supply 0-30V 1 No. 3. CRO 1Hz-20MHz 1 No. 4. Connecting wires 5. Digital Multimeter

THEORY: A bistable multivibrator has two stable output states. It can remain indefinitely in any one of the two stable states, and it can be induced to make an abrupt transition to the other stable state by means of suitable external excitation. It would remain indefinitely in this stable state, until it is again induced to switch into the original stable state by external triggering.

Bistable multivibrators are also termed as ‘Binary’s or Flip-flops’. A binary is sometimes referred to as ‘Eccles-Jordan Circuit’.

RC1 RC2 R1

Q2

+VCC

Q1

R2 R2

R1

-VBB

A B

C D

I I2

Figure 1

Page 52: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

52 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Principle of Operation of bistable multivibrator. Consider the circuit as shown in the figure.1. The transistor Q1 and Q2 are n-p-n transistors. They are coupled to each other as shown in figure 1. It is evident that the output of each transistor is coupled to the input of the other transistor. Since the transistors are identical, there quiescent currents would be the same, unless the loop gain is greater than unity. When I1 increases slightly, the voltage drop across the collector resistance RC1 increases. Since VCC is fixed, the voltage of point C decreases. This has the effect of decreasing the base current of Q2. This, in turn, decreases the collector current of Q2 viz. I2 decreases, the voltage drop I2RC2 decreases. Hence the voltage of point D increases. Due to increase of VD, the base current of Q1 increases. This increases the collector current of Q1 viz I1. Thus I1 further increases. I1RC1 drop further increases, VC further decreases, the base current of Q2 further decreases, with the result that I2 further decreases. Thus it can easily seen that if the collector current I1 increases even marginally, I2 would go on progressively decreasing and as a result, I1 would progressively increase. Eventually I2 would become practically zero, cutting off the transistor Q2, at the same time transistor Q1 would conduct heavily with the result that it would be driven into saturation. Thus Q2 becomes OFF and Q1 becomes ON. It can similarly be shown that if I2 increases even marginally similar sequence of operation would result and ultimately Q2 would be ON and Q1 OFF. Thus when Q1 is ON, Q2 is OFF and when Q1 is OFF Q2 is ON. CIRCUIT DIAGRAM:

Figure: 2

RC1

2.2KO RC2

2.2KO R1 15KO

2N2369 2N2369

VCC 12V

-VBB = -1.5V

R1 15KO

R2

100K

O

R2 1

00K

O Q1 Q2

Page 53: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

53 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

PROCEDURE:

1. Connect the circuit as shown in figure 2. 2. Observe the waveforms at VBE1, VBE2, VCE1, VCE2 using CRO & multimeter

3. Observe the voltages at VC1 and VC2. 4. If VC1= VCE(Sat) and VC2=VCC(Approximately) then Q1 is ‘ON’ and Q2 is ‘OFF’

Otherwise VC1= VCC (Approximately) and VC2= VCE(Sat) ) then Q1 is‘OFF’ and Q2 is‘ON’.

5. Observe which transistor is in ON state and which transistor is in OFF state. and observe the voltages VC1, VC2, VB1, and VB2.

6. Apply –ve triggering at the base of the ON transistor and observe the voltages VC1, VC2, VB1, and VB2.

EXPECTED WAVEFORMS: OBSERVATIONS: Before Triggering : When Q1 is ‘ON’ and Q2 is ‘OFF’ After Triggering: When Q1 is‘OFF’ and Q2 is‘ON’. QUESTIONS:

1. What is Multivibrator? Explain the principle on which it works? Why is it called a binary?

2. Explain the role of commutating capacitors in a Bistable Multivibrator? 3. Give the Application of a Binary.

VBE1 VBE2 VCE1 VCE2 Stable state Voltages

VBE1 VBE2 VCE1 VCE2 Stable state Voltages

t

Vol

tage

VC1

VC2

Before Triggering t

Vol

tage

VC1

VC2

After Triggering 0 0

Page 54: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

54 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

CONCLUSION: Conclusion can be made on which transistor is ‘ON’ and which transistor is ‘OFF’ before triggering and after triggering.

Page 55: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

55 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Experiment No: 11

SCHMITT TRIGGER

AIM: To design a Schmitt trigger and to observe the waveforms for a given UTP & LTP Values and test its performance.

COMPONENTS REQUIRED:

1. Resistors 2. Transistors 2N2369 – 2 3.

APPARATUS: 1. Bread board 2. Power supply (0-30V) 3. Signal generator(1Hz-1MHZ) 4. CRO(1Hz-20MHz) 5. Connecting Wires.

CIRCUIT DIAGRAM:

Figure:1

-

+

RB

RC1

R1

2N2369

RC2

R2 RE

Signal Generator

VCC = 12V

2N2369 Q1 Q2

V0 Vi

Page 56: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

56 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

THEORY: The most important application of Schmitt Trigger circuit are amplitude comparator and squaring circuit are amplitude comparator and squaring circuit. The circuit is used to obtain a square waveform from any arbitrary input waveform. The loop gain is to be less than unity. If Q2 is conducting there will be voltage drop across RZ which will elevate the emitter of Q1. Consequently if V is small enough in voltage, Q1 will be cut-off with Q1 conducting, the circuit amplifies and since the gain is positive, the output to rise, V2 continues to fall and Z2 continues to rise. Therefore a value of V will be reached where Q2 is turned OFF. At the point the output no longer responds to the input. Here the input signal is arbitrary except that it has large enough excursion to carry input beyond the limits of hysteresis range, VH = (V1 – V2). The output is a square wave whose amplitude is independent of the amplitude of the input waveform. DESIGN: Given UTP=5V,LTP=3V

IC2 = 5mA (Rc2 + RE) = VCC / IC2 U.T.P = VE2 = 5V VE2 = (RE ?VCC) / (Rc2+RE) I2 = 0.1? IC2 L.T.P = VE1 = 3V R2 = ER2i / I2 = VE1 / I2 = L.T.P / I2 Rc1 = {(RE? VCC) / VE1} –RE

IB2 = IC2 / hfe(min) (VCC - VE2) / (R1+Rc1))) = (VE2/R2)+IB2 RB = (hfe?RE) / 10 Find R1, R2, RE, Rc1and Rc2 from the above equations

PROCEDURE:

1. Connect the circuit as shown in figure 1 with designed values. 2. Apply VCC of 12V and an input frequency of 1KHz with an amplitude more than the

designed UTP. 3. Now note down the output wave forms 4. Observe that the output comes to ON state when input exceeds UTP and it comes to OFF

state when input comes below LTP 5. Observe the waveforms at VC1, VC2, VB2 and VE and plot graphs.

6. Keep the DC- AC control of the Oscilloscope in DC mode.

Page 57: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

57 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

MODEL GRAPHS: QUESTIONS:

1. Explain how a Schmitt trigger acts as a comparator? 2. Derive its expressions for UTP & LTP.

CONCLUSIONS:

Conclusion can be made on desined and practical values of U.T.P and L.T.P. and also made on output waveform of Schmitt trigger for the given sinusoidal input.

VC2

VC1

VB2

Input sine wave VMAX>UTP UTP

LTP

Schmitt Trigger output

Page 58: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

58 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Page 59: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

59 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Experiment No: 12

UJT RELAXATION OSCILLATOR

AIM : To obtain a saw tooth waveform using UJT and test its performance as an oscillator

APPARATUS :

1. Resistors 47k? , 100? 2. Capacitor - 0.1? F 3. 2n2646 UJT 4. Bread board 5. Power supply (0-30V)

6. CRO(1Hz-20MHz)

THOERY : ‘A Unijunction transistor (UJT), as the very implies, has only one p-n junction, unlike a

BJT which has two p-n junctions’. The equivalent circuit of the UJT is as shown in figure 1.

RB1 is the resistance between base B1 and the emitter, and it is basically a variable resistance, its value being dependent upon the emitter current IE. RB2 is the resistance between base B2 and the emitter, and the value is fixed. Consider the circuit as shown in figure 1. Let IE = 0. Due to the applied voltage VBB a current I results as shown.

VBB

V1 VE

IE RB2

RB1

+

- Figure:1

Page 60: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

60 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

VP = V? + ? VBB

???

??? ?

?? 0,when

21

1E

BB

B IRR

R?

We have V1 = iRB1.

But 21 BB

BB

RRV

i?

?

? 121

1 BBB

BB RRR

VV ???

?????

??

BBBB

B VRR

R????

????

??

21

1

The ratio ????

????

? 21

1

BB

B

RRR

is termed as the intrinsic stand

off ratio and it is denoted as ? . ? BBVV ??1 . Form the equivalent circuit, it is evident that the diode cannot conduct unless the emitter voltage VE = V? + V1, where V? is the cutin voltage of the diode. This value of the emitter voltage which makes the diode conduct is termed as peak voltage, and it is denoted as VP. We have VE = V? + V1, or since V1 = ? VBB. It is obvious that if VE < VP, the UJT is OFF, and if VE < VP, the UJT is ON. Figure 3. shows the emitter characteristics of a UJT (plot of VE vs IE)

Figure 3.

RB2

RB1

VBB

V1 i

Figure 2.

0 IP IV IE

VV

VP

VE

Peak Point

Valley Point

Negative resistance

region

Page 61: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

61 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

RB2

RB1

R

C Vs

+

-

V or VBB

B2

B1

E

The main application of UJT is in switching circuits wherein rapid discharging of capacitor is very essential. Having understood the basic of UJT, we shall next study the working of UJT relaxation oscillator. Working of UJT relaxation oscillator (OR UJT sweep circuit)

Figure:4

The UJT sweep circuit shown in the figure 4 consists of a UJT, a capacitor and a resistor arranged as shown.

We studied that a UJT is OFF as long as VE < VP, the peak voltage. Hence initially when the UJT is OFF, the capacitor C charges through the resistance R from the supply voltage V. Let VS = capacitor voltage. It is seen that when the capacitor voltage VS rises to the value VP the UJT readily conducts. When the UJT becomes ON, the capacitor discharges and its voltage falls. When the voltage falls to the valley point VV, the UJT becomes OFF and the capacitor charges again to VP.

This cycle of charging and discharging of the capacitor C repeats, and as a result, a saw tooth wave form of voltage across C is generated. CIRCUIT DIAGRAM :

1. Emitter 2. Base1 3. Base2 Figure:5

VCC =12V R1

C

B2

B1

E 47k?

0.1? F

R2 100?

2N2646

Page 62: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

62 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

PROCEDURE: 1. Connect the circuit as shown in figure with designed values. 2. Note down the voltages and frequencies across C& R2 . 3. The time period of the output wave form is noted and is compared with theoretical

value T = R1 ? C[ ln {(VBB – VV) / (VBB – VP)}]

4. Plot the graphs of Vc and VR1.

EXPECTED WAVEFORMS: VC VR2

VP VV t t

QUESTIONS:

1. Describe some important applications of a UJT? 2. Is the name UJT appropriate? 3. Write short notes on UJT as a relaxation oscillator? 4. Discuss the concept of –ve resistance? 5. Define the intrinsic stand off ratio and explain its importance?

CONCLUSIONS:

Conclusion can be made on how the UJT works as a saw tooth generator, which components in a UJT circuit is used to generate the saw tooth wave form and also conclude on time period of the output wave form of UJT theoretically and practically and also made on if the output waveform of the UJ are identical with the theoretical wave forms or not.

Page 63: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

63 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Experiment No:13

BOOT STRAP SWEEP CIRCUIT AIM: To design a bootstrap sweep circui and test its performan . Components Required: 1. Resistors – 100k? , 5.6k? , 10 k? 2. Capacitors – 0.1? F, 10? F, 100? F 3. IN4007 Diode

4. 2N2369 Transistors – 2 Apparatus Required: 1. Bread board

2. Power supply(0V-30V) 3. CRO(1Hz-20MHz) 4. Signal generator(1Hz-1MHZ) 5. Connecting Wires.

CIRCUIT DIAGRAM

Figure DESIGN:

RCTV

V gCCS

??

? ?? ?)/1()/(

/)(RRh

VVCT

Bfe

CCSR ?

??

Sweep time = TS = RC

-VBB =-10V

10µF

VCC = 12V

100µF

0.1µF

100K? 5.6K?

10K?

IN4007

2N2369

V0 Vi

2N2369

Q1

Q2

Function generator

Page 64: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

64 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

THEORY: The input to Q1 is the gating waveform. Before the application of the gating waveform, at t = 0, transistor Q1 is in saturation. The voltage across the capacitor C and at the base of Q2 is VCE(sat). To ensure Q1 to be in saturation for t = 0, it is necessary that its current be at least equal to iCE / hFE so that Rb < hfeR. With the application of the gating waveform at t = 0, Q1 is driven OFF. The current iC1

now flow into C and assuming units gain in the emitter followerRC

tVV CC?0 . When the sweep

starts, the diode is reverse biased, as already explained above, the current through R is supplied by C1. The current VCC / R through C and R now flows from base to emitter of Q2.if the output V0 reaches the voltage VCC in a time TS / Tg, then from above we have TS = RC. If the sweep amplitude is less than VCC, then the maximum ramp voltage is given by

RC

TVV gCC

S ?

PROCEDURE: 1. Connect the circuit as shown in figure. 2. Apply the square wave or rectangular wave form at the input terminals. 3. Connect the CRO at output terminals now plug the power card into line switch on and

observe the power indication. 4. As mentioned in circuit practical calculation. Observe and record the output waveforms from

CRO and compare with theoretical values. EXPECTED WAVEFORMS :

Vi

Input

Vo Output

ts

tg

tr

Page 65: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

65 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Q1UESTIONS: 1. Describe the operation a single transistor Boot strap time base voltage waveform generator making use of its related circuit diagrams? 2. Explain the principle of working of Boot strap circuit? Conclusion: Conclusions can be made on swee4p time Ts and retrace time TR and sweep voltage Vs of the sweep waveform theoretically and practically and also made on if the output waveform of the Bootstrap are identical with the theoretical wave forms or not.

Page 66: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

66 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Page 67: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

67 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Experiment No:14 SYNCHRONIZATION OF A UJT RELAXATION OSCILLATOR

AIM : To obtain synchronization and frequency division of a UJT relaxation oscillator by

applying negative pulse at base 2 of UJT and plot the waveforms APPARATUS :

1. Resistors 47k? , 100? , 330? 2. Capacitor - 0.1? F, 10? F 3. 2n2646 UJT 4. Bread board 5. Power supply 0-30V 6. CRO (1Hz-20MHz) 7. Function generator (1Hz-1MHz)

THOERY ‘A Unijunction transistor (UJT), as the very implies, has only one p-n junction, unlike a

BJT which has two p-n junctions’. The equivalent circuit of the UJT is as shown in figure 1. RB1 is the resistance between base B1 and the emitter, and it is basically a variable resistance, its value being dependent upon the emitter current IE. RB2 is the resistance between base B2 and the emitter, and the value is fixed. Consider the circuit as shown in figure 1. Let IE = 0. Due to the applied voltage VBB a current I results as shown.

VBB

V1 VE

IE RB2

RB1

+

- Figure:1

Page 68: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

68 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

VP = V? + ? VBB

???

??? ?

?? 0,when

21

1E

BB

B IRR

R?

We have V1 = iRB1.

But 21 BB

BB

RRV

i?

?

? 121

1 BBB

BB RRR

VV ???

?????

??

BBBB

B VRR

R????

????

??

21

1

The ratio ????

????

? 21

1

BB

B

RRR

is termed as the intrinsic stand

off ratio and it is denoted as ? . ? BBVV ??1 . Form the equivalent circuit, it is evident that the diode cannot conduct unless the emitter voltage VE = V? + V1, where V? is the cutin voltage of the diode. This value of the emitter voltage which makes the diode conduct is termed as peak voltage, and it is denoted as VP. We have VE = V? + V1, or since V1 = ? VBB. It is obvious that if VE < VP, the UJT is OFF, and if VE < VP, the UJT is ON. Figure 3. shows the emitter characteristics of a UJT (plot of VE vs IE)

Figure 3.

RB2

RB1

VBB

V1 i

Figure 2.

0 IP IV IE

VV

VP

VE

Peak Point

Valley Point

Negative resistance

region

Page 69: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

69 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

The main application of UJT is in switching circuits wherein rapid discharging of capacitor is very essential. Having understood the basic of UJT, we shall next study the working of UJT relaxation oscillator.

Page 70: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

70 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

RB2

RB1

R

C Vs

+

-

V or VBB

B2

B1

E

Working of UJT relaxation oscillator (OR UJT sweep circuit)

Figure:4

The UJT sweep circuit shown in the figure 4 consists of a UJT, a capacitor and a resistor arranged as shown.

We studied that a UJT is OFF as long as VE < VP, the peak voltage. Hence initially when the UJT is OFF, the capacitor C charges through the resistance R from the supply voltage V. Let VS = capacitor voltage. It is seen that when the capacitor voltage VS rises to the value VP the UJT readily conducts. When the UJT becomes ON, the capacitor discharges and its voltage falls. When the voltage falls to the valley point VV, the UJT becomes OFF and the capacitor charges again to VP. This cycle of charging and discharging of the capacitor C repeats, and as a result, a saw tooth wave form of voltage across C is generated. Synchronization and frequency division of UJT: The synchronization principle of UJT is shown in fig (a) Synchronization to an external signal is possible because this signal may be introduced at the sync terminal in such a a manner as to change the peak voltage Vp .Thus in the UJT a negative pulse applied at B2 as shown in fig (b) will lower Vp ,whereas in the SCS , the thyristor and the thyraton a positive pulse applied at the gate , the base , or the grid will serve the same purpose The situation which results when synchronizing pulses are applied shown in fig c.The effect of the sync pulse is to lower for the duration of the pulse , the peak or break down voltage as indicated .A pulse train of regular space is shown starting at an arbitrary time t = 0 The first several pulses have no influence on the sweep generator , which continues to run unsynchronized .Eventually however the exact moment at which the negative resistance device goes ON is determined by the instant of occurrence of a pulse as is also each succeeding beginning of the ON interval .From the point on the sweep generator runs synchronously with the pulses In order that synchronization may result , it is necessary that each pulse shall occur at a time when it may serve to terminate the cycle prematurely .This requirement mean that the interval between pulses , Tp must be less than the natural period, To, of the sweep generator .in fig (d)the case in which Tp>To .Here synchronization of each cycle does not occur . The pulses do serve to establish that four sweep cycles shall occur during the course of 3 pulse periods, but synchronization of this type is normally of no value .Even if the requirement Tp<To is met ,

Page 71: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

71 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

synchronization cannot result unless the pulse amplitude is at least large enough to bridge the gap between the quiescent breakdown voltage Vc. In fig (e) have the case Tp is less than To as required but the pulses amplitude is too small and again synchronization does not result a) A sweep generator

1. Emitter 2. Base1 3. Base2 Fig (b)

c)an initially unsynchronized generator falls into synchronization shortly after the application of synchronizing pulses

Vc o/p

R1

B2

B1

E 47k?

0.1? F

R2 100?

2N2646

330?

10? F

VBB =12v

Vi Function generator

Vi S Vc C +

-

+

-

R

VYY

VC TP

t=T

Vv , valley or maintaining voltage

To

Page 72: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

72 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

d) illustrating that for synchronization to result ,Tp must less than To; e) illustrating failure of synchronization due to inadequate amplitude of sync pulses 2 1 2 1 2 1 2 f) frequency division by a factor of 2 in a sweep generator CIRCUIT DIAGRAM Vc o/p

R1

B2

B1

E 47k?

0.1? F

R2 100?

2N2646

330?

10? F

VBB =12v

Vi Function generator

TP

To

TP

To

Tp

Tp

Ts

To

VS

V1

Vs

Page 73: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

73 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

PROCEDURE:

1. Connect the circuit as shown in circuit diagram 2. Note down the voltage Vs and time period To across the capacitor ‘c’ without

giving external sync pulses 3. Now apply external negative sync pulses to the Base2 of UJT 4. Now adjust the amplitude and time period Tp in such a way Tp<To of the sync

pulses until synchronization is achieved 5. Now note down the sweep voltage Vs and time period if the sweep wave form

across capacitor ‘c’ 6. Now adjust the Amplitude and Time period Tp is such a way Tp<<To to achieve

frequency division of 2:1, 3:1, 4:1.

QUESTIONS:

1. Describe some important applications of a UJT? 2. Is the name UJT appropriate? 3. Write short notes on UJT as a relaxation oscillator? 4. Discuss the concept of –ve resistance? 5. Define the intrinsic stand off ratio and explain its importance? 6. Explain how synchronization is achieved using UJT? 7. What are the conditions to achieve frequency division using UJT?

Conclusion: Conclusions can be made on what are the conditions required to achieve for the synchronization and frequency division using UJT sweep generator.

Page 74: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

74 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Experiment No:15

STUDY OF LOGIC GATES USING INTEGRATED CIRCUITS

AIM : To study the various logic gates by using digital integrated circuits COMPONENTS:

1. IC 74LS00, 2. IC 74LS02, 3. IC 74LS04, 4. IC 74LS08, 5. IC 74LS10, 6. IC 74LS32, 7. IC 74LS86. 8. Digital IC trainer kit. 9. Patch cards

THEORY: The logical operations involved in Boolean algebra are OR, AND, NOT. These operations are involved in the design of digital systems. These functions are performed by an electronic circuit known as ‘gate’, such as OR gate, AND gate and NOT gate. These logic gates are the basic building blocks of digital systems. NOT gate: A NOT gate has only one input and one output. It performs a basic logic function called ‘inversion’ or ‘complementation’. In this logic function, when a High level is applied to this gate as input, a low level will appear on its output. When a low level is applied to its input, a High level will appear on its output. Thus in the logic function, the output of this gate is the ‘complement’ of the input.

AND gate: AND gate performs logical multiplication. The operation of this gate is such that the output is high only when all the inputs are high. When any of the inputs are low, the output is low. The AND gate is composed of two or more inputs and a single output. Fig shows the logic symbol for a AND gate with two inputs A and B, and the output Y.

A

B Y=A.B

SYMBOL

A Y= A

Symbol

Page 75: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

75 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

A

B

Y = A.B BAY .?

A

B BAY .?

OR gate: An OR gate has two or more inputs and one output. The operation of OR gate is such that a High on the output is produced when any of the inputs are High. The output is low only when all of the inputs are low. Fig. shows the logic symbol for an OR gate with two inputs A and B and the output Y. NAND gate: The term NAND is a contraction of NOT-AND and implies an AND function with an inverted (NOT) output. The operation of this gate can be analyzed, using an equivalent circuit shown in fig. Which has an AND gate followed by an inverter (NOT). If the inputs are A and B, then the output of AND gate is A.B and complement of this is BABA ??.

Symbol NOR gate: The term NOR is a contraction of NOT-OR and implies an OR function with an inverted (NOT) output. The operation of this gate can be analyzed using an equivalent circuit, shown in Fig. Which has an OR gate followed by an inverter (NOT). If the inputs are A and B, then the output of OR gate is A + B, and complement of this is NAND and NOR gates are very popular logic gates because they have a ‘Universal’ function, i.e., they can be used to construct an AND gate, an OR gate, a NOT gate or any combination of these functions. Hence NAND and NOR gates are known as ‘Universal gates’.

A

1Y = A + B

SYMBOL

A

B

Y = A + B BAY ??

A

B BAY ??

Page 76: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

76 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Symbol

Exclusive-OR gate: Exclusive-OR operation is not a basic operation. It can be performed by using either basic gates or Universal gates. Exclusive-OR gate, abbreviated as XOR or EX-OR. The output expression for the circuit is .BABAY ?? Fig. shows a standard symbol for EX-OR gate, Notice that the output is High only when the two inputs must be different to get a High output.

Symbol PIN CONFIGURATIONS: NAND GATE IC NOR GATE IC NOT GATE IC AND GATE IC 3-INPUT NAND GATE IC OR GATE IC

BBAY ??

A

VCC

Gnd

74LS02

8 14 13 12

7 3 4 5 6

11 10 9

1 2

VCC

Gnd

74LS32

8 14 13 12

7 3 4 5 6

11 10 9

1 2

VCC

Gnd

74LS00

8 14 13 12

7 3 4 5 6

11 10 9

1 2

VCC

Gnd

74LS08

8 14 13 12

7 3 4 5 6

11 10 9

1 2

VCC

Gnd

74LS86

8 14 13 12

7 3 4 5 6

11 10 9

1 2

VCC

Gnd

74LS04

8 14 13 12

7 3 4 5 6

11 10 9

1 2

VCC

Gnd

74LS10

8 14 13 12

7 3 4 5 6

11 10 9

1 2

Page 77: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

77 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

EX-OR GATE IC

Page 78: Pdc manual

Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

78 Pulse and Digital Circuits Lab MANUAL ONLY FOR REFERENCE

Tabular forms: AND Gate OR Gate NAND Gate NOR Gate EX-OR Gate A B Y A B Y A B Y A B Y A B Y 0 0 1 1

0 1 0 1

0 0 1 1

0 1 0 1

0 0 1 1

0 1 0 1

0 0 1 1

0 1 0 1

0 0 1 1

0 1 0 1

3 Input NAND gate NOT Gate

Digital circuit can be classified into two types. These are combinational and sequential

logic circuits. The logic circuits, in which their outputs at any instant of time may depend upon the inputs present at that time, are known as combinational logic circuits. The combinational logic circuit which includes memory elements in its feed back path is known as sequential logic circuits. The outputs in a sequential circuit are a function not only of inputs but also of the present state of the memory elements. Flip-Flops are the basic building blocks for the sequential logic circuits. The basic digital memory circuit is known as Flip-flop. It has two stable states which are known as the 1 state and the 0 state. It can be obtained by using NAND or NOR gates. PROCEDURE:

1. Place the IC on the bread board in the Digital Trainer Kit. 2. Connect the VCC and Ground to pin number 14 and & 7 respectively. 3. Verify the truth table by giving the inputs and observing the output for each gate in

the given IC QUESTIONS: 1. What are the Universal gates? 2. Design an AND gate using NAND gates? 3. Design an OR gate using NOR gates?

CONCLUSION:

Conclusions can be made on theoretical and practical values of the truth tables for the given logic gates and also check whether all the gates are working or not .

A B C Y A Y 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 1