PBL and Cloud Macrophysics in CAM - CGD · PBL and Cloud Macrophysics in CAM ... 350 Strong LW ......

48
PBL and Cloud Macrophysics in CAM Sungsu Park CGD.NCAR CAM Tutorial Jul. 28. 2009

Transcript of PBL and Cloud Macrophysics in CAM - CGD · PBL and Cloud Macrophysics in CAM ... 350 Strong LW ......

PBLandCloudMacrophysicsinCAM

SungsuPark

CGD.NCAR

CAMTutorial

Jul.28.2009

OUTLINE

I.  ParameterizaKonofSymmetricTurbulence(i.e.,PBLScheme)•  DryTurbulenceScheme(CAM3PBL)

•  MoistTurbulenceScheme(CAM4PBL)

II.  CloudMacrophysics•  NetCondensaKonRateofWaterVaporintoCloudLiquid(Q)•  CloudFracKon(a)

•  VerKcalOverlapofCloudFracKon

DEFINITIONS

 ModelNames

•  CAM3.5:CAM3.0+Revised Deep Convection +etc.

•  CAM4 :CAM3.5+All New Atmospheric Physics (~CAMUW )

I.ParameterizaKonofSymmetricTurbulenceinCAM

∂A ∂t

= − V ⋅ ∇A + Q A −

∂∂z

′ w ′ A

AdiabaKcMixingbyTurbulences

SymmetricTurbulence

(PBLScheme~SymmetricTurbulenceScheme)

AsymmetricTurbulence

(ConvecKonScheme~AsymmetricTurbulenceScheme)

′ w ′ A = (wu − w ) ⋅ (Au − A )

Au − A = −ΓA ⋅ l

′ w ′ A = −l ⋅ l ⋅ ∂u ∂z

⋅ S ⋅ ΓA

SingleSmall‐ScaleTurbulence

ΓA ≡ ∂A ∂z

l

z €

A

wu − w ≈ uu − u ⋅ S = l ⋅ ∂u ∂z

⋅ S

KA

′ w ′ A = −KA ⋅ ΓA − γA( )

Non‐LocalTerm

′ w ′ A = −l ⋅ l ⋅∂ u∂z

⋅ S ⋅ ΓA

′ w ′ A = l ⋅V ( ′ w ′ θ v )o,( ′ w ′ u )o; e( ) ⋅ S ⋅ ΓA , e ≡ 0.5 ⋅ ( ′ u 2 + ′ v 2 + ′ w 2)

∂∂t

′ w ′ A = −∂∂z

′ w ′ w ′ A + ... , ′ w ′ w ′ A = −l ⋅V ( e) ⋅ S ⋅ ∂∂z

′ w ′ A

A(t + Δt,z =1)A(t + Δt,z = 2)A(t + Δt,z = 3)A(t + Δt,z = 4)

=

c11 c12 c13 c14c21 c22 c23 c24c31 c32 c33 c34c41 c42 c43 c44

A(t,z =1)A(t,z = 2)A(t,z = 3)A(t,z = 4)

∂∂t

′ w ′ w ′ A = −∂∂z

′ w ′ w ′ w ′ A + ... , ′ w ′ w ′ w ′ A = −l ⋅V ( e) ⋅ S ⋅ ∂∂z

′ w ′ w ′ A

CAM3DryTurbulenceSchemewithNon‐LocalTerm

CAM4MoistTurbulenceScheme

HigherOrderClosure

TransilientTheory

′ w ′ A = −KA ⋅∂A ∂z

− γA

KA = l ⋅V ⋅ SA

γA

l

′ w ′ θ v( )o≤ 0

u*

k ⋅ z ⋅ 1− z h( )2

lc

u*3 + 0.6 ⋅ w*

3( )1/ 3

lc ⋅∂ u

∂z

Sm

V

Sh

1+10 ⋅ Ri ⋅ 1+ 8 ⋅ Ri( )( )−1 , Ri > 0€

1−18 ⋅ Ri( )1 2 , Ri ≤ 0

φm,u−1

φh,u−1€

1

Prz= 0.1h−1

u*

φm,s−1

φh,s−1

γ h

γ h

0

z = 0.1⋅ h

z = h

V

Sm

Sh

u*,u*θ*,u*q*[ ]

θv

′ w ′ θ v( )o> 0

1stOrderNon‐LocalClosureforDryTurbulence:CAM3

u*,u*θ*,u*q*[ ]

l€

e

k ⋅ z( )−1 + η ⋅ lc( )−1[ ]−1

Sm

V

Sh

z = h

Δz

Sm

Sh

We €

Sm

Sh

1

1€

k ⋅ z( )−1 + η ⋅ lc( )−1[ ]−1

e€

θv

1.5OrderLocalClosureforMoistTurbulence:CAM4

DryStablePBL:GABLS

DryConvecKvePBL

DryConvecKvePBL

u* = ′ w ′ u ( )o

2

w* = (g /θv ) ⋅ ′ w ′ θ v( )o⋅ h[ ]

1/ 3

w* = 2.5 ⋅ (g /θv ) ⋅ ′ w ′ θ v( )(z)0

h

∫ ⋅ dz

1/ 3

e = 6 ⋅ le⋅ (g /θv ) ⋅ ′ w ′ θ v − ′ w ′ u ⋅ ∂u

∂z

+ 24 ⋅

lh⋅ e − e( )

ComparisonofTurbulenceVelocity

CAM3DryTurbulence

CAM4MoistTurbulence

CAM4handleselevatedsourcesofturbulentenergy.CriKcalforsimulaKngmoistturbulenceassociatedwithclouds.

[Nicholls1984,Quart.J.R.Met.Soc.]

LWRadiaKveFluxatthetopofCloud

Cloud

PBL

[Wm‐2]

LW LWZ[m]

270 350

StrongLWcoolingisconfined

atthestratocumulustop.

TURBULENCEGENERATEDBYBOUNDARYHEATING

Warmairrises&

Coldairsinks

PotenKalenergyisconvertedtokineKcenergy

Turbulenceisgenerated

SurfaceWarmingor

TopCoolingMBLTop

MBLBase

TurbulenceisgeneratedbyMBLtopLWcoolingdrivenbystratocumulus

TURBULENCEGENERATEDBYCONDENSATIONHEATING

UnsaturatedPerturbaKon

TheperturbedairparcelwillreturntoitsoriginalposiKon

Turbulenceisdissipated

SaturatedPerturbaKon

TheperturbedairparcelwillconKnueitsoriginalmoKon

Turbulenceisgenerated

TurbulenceisgeneratedbycondensaKon‐evaporaKonheaKng,whichisinturncontrolledbycloudfracKonwithinthegrid.

Cloud‐topLWcooling

Cloud‐RadiaKon‐TurbulenceInteracKons

• SustainSaturatedPBLTop• Deeper,Drier,Well‐MixedmeanPBL

Entrainment

CondensaKon‐EvaporaKon

Cloud‐ToppedPBL:DYCOMS

FogAmount.JJA.

ObservaKon

CAM35

CAM4

SUMMARY

IncontrasttothedryturbulenceschemeinCAM3,themoistturbulenceschemeinCAM4takesintoaccountof

elevatedsourcesofTKEassociatedwithclouds.

CAM4successfullysimulatescloud‐toppedPBLaswellasdryPBL.

II.CloudMacrophysicsinCAM

WHATISCLOUD?

CLOUD:Thesumofvolumeelementscontainingcondensates.5keyproperKes:a,LWC,IWC,N(rl),N(ri)

Liquid

liquiddroplet

icecrystal

volumeelement

vaporflux

vaporpressure

CLI :Heterogeneous(Immersion)freezing Bergeron‐FindeisendeposiKonfreezingCLS :AccreKonofcloudliquidbysnow Bergeron‐FindeisenconversionCLR:Autoconversionofcloudliquidintorain AccreKonofcloudliquidbyrainCIS :Autoconversionofcloudiceintosnow AccreKonofcloudicebysnowCRS :AccreKonofrainbysnow Heterogeneousfreezing Homogeneousfreezing

CSED,L :SedimentaKonofcloudliquidCSED,I :SedimentaKonofcloudiceEL :EvaporaKonofsedimentedcloudliquidEI :EvaporaKonofsedimentedcloudiceER :EvaporaKonofrainES :EvaporaKonofsnowQL :NetcondensaKonintocloudliquidQI :NetcondensaKonintocloudice

CLOUDLIQUID

CLOUDICE

RAIN SNOW

CLI

CRS

CLS CIR=0CLR CIS

QL QI

ER ES

CSED,LEL CSED,I EI

Self‐CollecKon Self‐CollecKon

CondensateSystem(a)

ATc,Aqt

WhatdoesCloudMacrophysicsdo?

• CondensaKonrateofwatervaporintocloudliquid(Q)

• CloudfracKon(a)

• VerKcaloverlapofcloudfracKon

I.BULKSATURATIONADJUSTMENT

a(U)

ˆ U =1

in‐cloudcondensaKon

clearskyevaporaKon

changeofcloudfracKon

Aqv>0

ˆ Q cloud > 0 , ˜ Q clear ≥ 0 , ∂a∂t

> 0

Aql>0

ˆ Q cloud = 0 , ˜ Q clear < 0 , ∂a∂t

= 0

AT>0

ˆ Q cloud < 0 , ˜ Q clear = 0 , ∂a∂t

< 0

II.PDF‐basedSATURATIONADJUSTMENT

Δqt

Aqt>0

Q > 0 , ∂a∂t

> 0

AT>0

Q < 0 , ∂a∂t

< 0

BULKvsPDF‐basedApproach

a(U) =U −Uc

1−Uc

2

Δqtqs,w

=1−Uc

a(U) = ...

0.88 0.9 0.92 0.94 0.96 0.98 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RH vs a

RH

a

CAM35

CAM40

0.88 0.9 0.92 0.94 0.96 0.98 10

2

4

6

8

10

RH vs G of PDF

RH

G

Uclr =U − a1− a

=(1−Uc ) a +Uc − a

1− a

Uclr(a→1) =1+Uc

2

Uclr =U − a1− a

= ......

Uclr(a→1) =1

ConsistencybetweenCloudFracKonandIn‐CloudLWC

•  Forcethelayeratp=900[hPa],T=280[K],qv=6.84[gkg‐1],ql=0.16[gkg‐1],a=0.6,∆p=20[hPa]withvariousexternalforcingsoftemperature(AT)andwatervapor(Aqv)

•  Examine‘Q’and‘∆avs∆ql,cloud’.

•  TestforBulkandPDF‐basedapproachwithahalfwidthoftotalspecifichumidity=0.1*qs(T,p)correspondingtoUc=0.9.

ConvecKon

RadiaKon

PBLProcess

Dynamics

Macro‐Microphysics

ConvecKons CAM3 CAM35

EquilibriumCAM35=CAM4

3DifferentConfiguraKonsofBulkSaturaKonAdjustments

!!" !# !$ !% !& " & % $ # !"!!"

!#

!$

!%

!&

"

&

%

$

#

!"

!%

!'

!&

!&

!!

!!

"

"

!

!

&

&

'

'

%(

$

)*+'"

!!" !# !$ !% !& " & % $ # !"!!"

!#

!$

!%

!&

"

&

%

$

#

!"

!%

!'

!&

!&

!!

!!

"

"

!

!

&

&

'

'

%(

$

)*+'(

!!" !# !$ !% !& " & % $ # !"!!"

!#

!$

!%

!&

"

&

%

$

#

!"

!(

!%

!'

!'

!&

!&

!!

!!

"

"

!

!

&

&

'

'

%(

,-./0/12/.34)*+'(

!!" !# !$ !% !& " & % $ # !"!!"

!#

!$

!%

!&

"

&

%

$

#

!"

!%

!'

!&

!&

!!

!!

"

"

!

!

&

&

'%

(

54647487!!49:;4<=44>2/:?7.0:24@AB

*>464C49:;

!!4<

*-D

4647487!!49:;!!4< I

III

II

IV

!!" !# !$ !% !& " & % $ # !"!!"

!#

!$

!%

!&

"

&

%

$

#

!"

"'%

"'(

"'(

"'$

"'$"')

*+,-./012345,6'//715268-+21/9:0

;7/</=/.2>

!!/?

;@A

/</8/B8!!/.2>!!/?

!!" !# !$ !% !& " & % $ # !"!!"

!#

!$

!%

!&

"

&

%

$

#

!"

"'$

"'$

"')

C@-5+5D15-E/*;FG(

!!" !# !$ !% !& " & % $ # !"!!"

!#

!$

!%

!&

"

&

%

$

#

!"

"'%"'(

"'(

"'$

"'$

*;FG(

!!" !# !$ !% !& " & % $ # !"!!"

!#

!$

!%

!&

"

&

%

$

#

!"

"'!

"'&

"'&

"'G

"'G

"'%

"'%

"'(

"'(

"'$

"'$

"')

"')

"'#

"'#

"'H

"'H

!

!

*;FG"

III

III IV

!!"# !!"$ !!"% ! !"% !"$ !"#!!"&

!!"%

!!"'

!

!"'

!"%

!"&

()*&!

+

++

+++

+,

!!"# !!"$ !!"% ! !"% !"$ !"#!!"&

!!"%

!!"'

!

!"'

!"%

!"&

()*&-

+

++

+++

+,

!!"# !!"$ !!"% ! !"% !"$ !"#!!"&

!!"%

!!"'

!

!"'

!"%

!"&

./0121341056()*&-

+

++

+++

+,

!!"# !!"$ !!"% ! !"% !"$ !"#!!"&

!!"%

!!"'

!

!"'

!"%

!"&

!67668966!6+:!;2<0=6>?("66@417:A02746BCD

!676E6F47;G1<:6H

!6+:!;2<0=6>?(6E6A6IA!'6H

+

++

+++

+,

Toolargein‐cloudLWCcomparedtocloudfracKon

VerKcalCloudOverlap

x

x

MaximumOverlap

Δz

a1 = 0.5

a2 = 0.5

amax,overlap = 0.5

x

x

MinimumOverlap

amin,overlap = 0

x

x

RandomOverlap

aran,overlap = 0.25

aoverlap = λ ⋅ amax,overlap + (1− λ) ⋅ aran ,overlap

λ = exp(−Δz /2000)

Cloud

TopInterface

BaseInterface

PrecipitaKon

MaximumOverlap

:Aerosol :CloudDroplet :PrecipitaKonDroplet

ParameterizaKonof’CloudOverlapStructure’

hasdirectinfluenceson

ProducKonofPrecipitaKon

EvaporaKonofPrecipitaKon

DeposiKonofAerosolAerosolIndirectEffect

RadiaKon

etc.(wetchemistry…)

ClearSky

PrecipitaKon

MinimumOverlap

•  Cumulus

•  RH(RelaKveHumidity)Stratus

•  KH(Klein‐Hartmann)Stratus

as,KH = f (S) , S ≡θv (700) −θv (1000)

3CloudTypesinCAM3

ac = f (M) , M : ConvecKveUpdratMassFlux

as,RH = f (RH) , RH : Grid‐MeanRelaKveHumidity

:Cumulus

:RHStratus

:RHStratus+Cumulus

:RHStratus+KHStratus

:KHStratus :KHStratus+Cumulus

:Cumulus

:RHStratus=Stratus

HorizontalGeometryofCloudsinCAM

CAM35 CAM4

VerKcalCloudOverlapinCAM

• RadiaKon(SWandLW)• Combine‘cumulus’and‘stratus’into‘onesinglecloud’ineachlayer.• MaximumoverlapineachofthreeregionsrepresenKngthelower,middle,anduppertroposphereandrandomoverlapbetweentheseregions.

• ConvecKon(deepandshallowconvecKons)• WheneverconvecKveprecipitaKonfluxisposiKve,convecKveprecipitaKonareais1.

• StraKformMicrophysics• StratusismaximallyoverlappedwithstraKformprecipitaKonarea.

• WetDeposiKonofAerosol• UseaddiKonaloverlappingassumpKonsdifferentfromtheabove….

WeneedtouseaunifiedverKcalcloudoverlapstructureforallschemesbyconsideringdifferentverKcaloverlappingnaturesofcumulusandstratus.

• Cumulusisnothorizontallyoverlappedwithstratusinasinglelayer.

• CumulushasitsownLWCdifferentfromtheLWCofstratus.CumulusandstratushavedifferentradiaKveproperKes.

• CumulushasadifferentverKcaloverlappingstructurefromstratus:CumulusismaximallyoverlappedwithcumulusregardlessofverKcalseparaKondistance.

UnifiedCloudOverlappingScheme

•  HorizontalGeometry

–  ‘Cumulus’and‘Stratus’arenon‐overlapped

•  VerKcalGeometry

–  Cumulus:‘Maximally’overlapped

–  Stratus:‘Randomly’overlapped

OverlappingAreaBetween‘ConvecKvePrecipitaKonArea’and‘StratusCloudFracKon’

a sc =

iN

i= imin

imax

∑ P(i)PTOT

imin = max(0,max(N ⋅ ac − n ,0)− N ⋅ ar )

imax = min(N ⋅ as ,N ⋅ ac − max(n − N ⋅ am ,0))

P( i) = N ⋅asCi( ) ⋅ N ⋅ac

Pi( ) ⋅ N ⋅acCj( ) ⋅ N ⋅am

Pj( ) ⋅ N ⋅ac −iPN ⋅ac −j( ) ⋅ N −N ⋅ac −j

PN ⋅as −i( )[ ]j=jmin

jmax

⋅ N ⋅ar

PN ⋅ar( )

jmin = max(N ⋅(ac − ac )+ i,0)

jmax = min(N ⋅ ac ,N ⋅ am ,N ⋅(1− ac − as)+ i)

WesternPacificWarmPool(6.6oN,100oE).ANN.

0 0.1 0.2 0.3 0.4

100

200

300

400

500

600

700

800

900

Cloud Fractions

[ fraction ]

[ hP

a ]

Cumulus

Stratus

0 0.1 0.2 0.3

100

200

300

400

500

600

700

800

900

In!Cloud LWC+IWC

[ g kg!1

]

[ hP

a ]

Cumulus

Stratus

0 0.5 1

100

200

300

400

500

600

700

800

900

Precipitation Areas

[ fraction ]

[ hP

a ]

Convective

Stratiform

Mixed

CAM4

0 0.2 0.4 0.6

100

200

300

400

500

600

700

800

900

Precipitation Fluxes

[ mm day!1

]

[ hP

a ]

Convective

Stratiform

Mixed

Total

0 0.1 0.2 0.3 0.4

100

200

300

400

500

600

700

800

900

Production of Precipitation

[ g kg!1

day!1

]

[ hP

a ]

Convective

Stratiform

Total

0 0.02 0.04 0.06

100

200

300

400

500

600

700

800

900

Evaporation of Precipitation

[ g kg!1

day!1

]

[ hP

a ]

Convective

Stratiform

Mixed

Total

ToostrongevaporaKoninCAM!

SUMMARY

I.  ParameterizaKonofSymmetricTurbulence•  DryTurbulenceScheme(CAM3PBL)

•  MoistTurbulenceScheme(CAM4PBL)•  TreatmentofelevatedsourceofTKEassociatedwithcloudsuccessfulsimulaKonofcloud‐toppedPBLaswellasdrystableanddryunstablePBL

II.  CloudMacrophysics•  NetCondensaKonRateofWaterVaporintoCloudLiquid(Q)

•  BulkSaturaKonAdjustment•  PDF‐BasedSaturaKonAdjustment

•  CloudFracKon(a)•  QuadraKcformulaofa(U)•  a(U)fromthePDF‐basedapproach•  ConsistencybetweencloudfracKonandin‐cloudLWC

•  VerKcalOverlapofCloudFracKon•  Unifiedcloudoverlappingschemeforsimultaneoustreatmentofcumulusandstratus

ResponseofMSCtoincreasingSST

RadiaOvecooling&Entrainmentdrying

LCL

SEL

ColdSST

ReducedradiaOvecooling&Enhancedentrainmentdrying

ElevatedSEL

TurbulenceSuppression(decoupling)

WarmSST

TransiKonofMBLfromwell‐mixedstratocumulustothedecoupledstate.

Deepening‐DecouplingandDissipaKonofStratocumulus

ColdSST WarmSST

Cumulusdevelops

Morning MidAternoon

EPIC.2001.Oct.

Stratocumulus–SWRadiaKonDiurnalCycle