Part III: Models of synaptic plasticity

64
rt III: Models of synaptic plasticity BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002 Chapters 10-12 aboratory of Computational Neuroscience, LCN, CH 1015 Lausann Swiss Federal Institute of Technology Lausanne, EPFL

description

Swiss Federal Institute of Technology Lausanne, EPFL. Laboratory of Computational Neuroscience, LCN, CH 1015 Lausanne. Part III: Models of synaptic plasticity. BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002 Chapters 10-12. - PowerPoint PPT Presentation

Transcript of Part III: Models of synaptic plasticity

Page 1: Part III: Models of synaptic plasticity

Part III: Models of synaptic plasticity

BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002

Chapters 10-12

Laboratory of Computational Neuroscience, LCN, CH 1015 Lausanne

Swiss Federal Institute of Technology Lausanne, EPFL

Page 2: Part III: Models of synaptic plasticity

Chapter 10: Hebbian Models

BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002

Chapter 10

-Hebb rules-STDP

Page 3: Part III: Models of synaptic plasticity

Hebbian Learning

pre jpost

iijw

When an axon of cell j repeatedly or persistently takes part in firing cell i, then j’s efficiency as oneof the cells firing i is increased

Hebb, 1949

k

- local rule- simultaneously active (correlations)

Page 4: Part III: Models of synaptic plasticity

Hebbian Learning in experiments (schematic)

posti

ijwEPSP

pre j

no spike of i

post

u

spikes of i

u

pre j i

ijw

Page 5: Part III: Models of synaptic plasticity

Hebbian Learning in experiments (schematic)

posti

ijwEPSP

pre j

no spike of i

EPSP

pre j

posti

ijw no spike of i

pre j

posti

ijwBoth neuronssimultaneously active

Increased amplitude 0 ijw

u

Page 6: Part III: Models of synaptic plasticity

Hebbian Learning

Page 7: Part III: Models of synaptic plasticity

Hebbian Learning

item memorized

Page 8: Part III: Models of synaptic plasticity

Hebbian Learning

item recalled

Recall:Partial info

Page 9: Part III: Models of synaptic plasticity

Hebbian Learning

pre jpost

iijw

When an axon of cell j repeatedly or persistently takes part in firing cell i, then j’s efficiency as oneof the cells firing i is increased

Hebb, 1949

k

- local rule- simultaneously active (correlations)

Page 10: Part III: Models of synaptic plasticity

Hebbian Learning: rate model

pre jpost

iijw

k

- local rule- simultaneously active (correlations)

posti

prej

corrij aw

dt

d 2

activity (rate)

Page 11: Part III: Models of synaptic plasticity

Hebbian Learning: rate modelpre jpost

iijw

k

posti

prej

corrij aw

dt

d 2

cawdt

d posti

prej

corrij 2

)(2 posti

prej

corrij aw

dt

d

))((2 posti

prej

corrij aw

dt

d

pre

poston off on offon offon off

+ +

+ 0 0 0

- -

+ 00 -

+ - - -

Page 12: Part III: Models of synaptic plasticity

Rate-based Hebbian Learning

pre jpost

iijw

k

- local rule- simultaneously active (correlations)

),;( posti

prejijij wFw

dt

d

...2110 posti

prej

corrposti

postprej

preij aaaaw

dt

d

Taylor expansion

Page 13: Part III: Models of synaptic plasticity

Rate-based Hebbian Learning

pre jpost

iijw

),;( posti

prejijij wFw

dt

d

...2110 posti

prej

corrposti

postprej

preij aaaaw

dt

d

a = a(wij)

a(wij) wij

Page 14: Part III: Models of synaptic plasticity

Rate-based Hebbian Learningpre jpost

iijw

k

...2110 posti

prej

corrposti

postprej

preij aaaaw

dt

d

222 ][ post

ipostpost

iprej

corrij aaw

dt

d

0][ 22 post

iposta

Oja’s rule

Page 15: Part III: Models of synaptic plasticity

Spike based model

Page 16: Part III: Models of synaptic plasticity

Spike-based Hebbian Learning

pre jpost

iijw

k

- local rule- simultaneously active (correlations)

0 Prebefore post

posti

prej tt

Page 17: Part III: Models of synaptic plasticity

Spike-based Hebbian Learning

pre jpost

iijw

k

causal rule‘neuron j takes part in firing neuron’ Hebb, 1949

0 Prebefore post

posti

prej tt

prejt

EPSP

)( posti

prejij ttWw

Page 18: Part III: Models of synaptic plasticity

Spike-time dependent learning window

pre jpost

iijw

0

Prebefore post

posti

prej tt

prejt

posti

prej tt

posti

prej tt 0

0

Temporal contrast filter

)( posti

prejij ttWw

Page 19: Part III: Models of synaptic plasticity

Spike-time dependent learning window

pre jpost

iijw

prejt

postit

Prebefore post

Zhang et al, 1998review:Bi and Poo, 2001

Page 20: Part III: Models of synaptic plasticity

Spike-time dependent learning: phenomenol. model

pre jpost

iijw

Prebefore post

prejt

posti

prej tt 0

o

post

t

pre

t

posti

prej

tt

ij bbbttWwprej

prej

posti

prej

)(,

Page 21: Part III: Models of synaptic plasticity

spike-based Hebbian Learning

pre j

post i

ijw),;( post

iprejijij uuwFw

dt

d

dsstusbdsstusbbwdt

d posti

postprej

preij )()()()( 110

...')'()()',(2 dsdsstustussb posti

prej

corr

Page 22: Part III: Models of synaptic plasticity

spike-based Hebbian Learningpre j

post i

ijw

)()( fjf

prej tttu

)()( 110f

ipost

f

fj

pre

fij ttbttbbw

dt

d

...),(2,

kj

fi

corr

kj

ttttb

BPAP

)()( fif

posti tttu

Translation invariance

W(tif-tj

k )

Learning window

Page 23: Part III: Models of synaptic plasticity

Detailed models

BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002

Chapter 10

Page 24: Part III: Models of synaptic plasticity

Detailed models of Hebbian learning

pre j

post i

ijw

i at restingpotential

Page 25: Part III: Models of synaptic plasticity

Detailed models of Hebbian learning

pre j

post i

ijw

i at restingpotential

NMDAchannel

Page 26: Part III: Models of synaptic plasticity

Detailed models of Hebbian learning

pre j

post i

ijw

i at highpotential

BPAP

NMDA channel : - glutamate binding after presynaptic spike - unblocked after postsynaptic spike

elementary correlation detector

Page 27: Part III: Models of synaptic plasticity

Mechanistic models of Hebbian learningpre j

post i

ijw

BPAP

prejt

badt

dwij

)( prej

a

tta

dt

da

prea

)( posti

a

ttb

dt

db

post

b

w

)( postj

prejij ttWw

Page 28: Part III: Models of synaptic plasticity

Mechanistic models of Hebbian learningpre j

post i

ijw

BPAP

prejt

][ dcbadt

dwij

4-factor modelpre

post

sophisticated 2-factor

][ babadt

dw qqij

)( postj

prejij ttWw

Prebefore post

posti

prej tt 0

Abarbanel et al. 2002

Gerstner et al. 1998Buonomano 2001

Page 29: Part III: Models of synaptic plasticity

Mechanistic models of Hebbian learningpre j

post i

ijw

BPAP

prejt

badt

dwij

)( prej

a

tta

dt

da

prea

)( posti

a

ttb

dt

db

post

b

w

)( postj

prejij ttWw

1 pre, 1 post

Page 30: Part III: Models of synaptic plasticity

Mechanistic models of Hebbian learning

pre j

post i

ijw

BPAP

Dynamics of NMDA receptor (Senn et al., 2001)

Prebefore post

posti

prej tt 0

prejt

Page 31: Part III: Models of synaptic plasticity

Which kind of model?

exp , if

exp , if

j ij i

j ij i

t tA t t

wt t

A t t

Descriptive Models

Optimal Models

Mechanistic Models

( ) ( ) ( ) ( )w a t b t a t b t

Song et al. 2000Gerstner et al. 1996

Abarbanel et al. 2002Senn et al. 2000

Chechik, 2003Hopfield/Brody, 2004Dayan/London, 2004

Shouval et al. 2000

Gütig et al. 2003

Page 32: Part III: Models of synaptic plasticity

Chapter 11: Learning Equations

BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002

Chapter 11

-rate based Hebbian learning-STDP

Page 33: Part III: Models of synaptic plasticity

Rate-based Hebbian Learning

pre jpost

iijw

),;( posti

prejijij wFw

dt

d

...2110 posti

prej

corrposti

postprej

preij aaaaw

dt

d

a = a(wij)

a(wij) wij

Page 34: Part III: Models of synaptic plasticity

Analysis of rate-based Hebbian Learning

ijw

prejij

posti w

txk

x1 xkx2

.2post

iprej

corrij aw

dt

d

Linear model

Analysis - separation of time scales, expected evolution

.2prek

prejik

corrij waw

dt

d

Correlationsin the input

Page 35: Part III: Models of synaptic plasticity

Analysis of rate-based Hebbian Learning

ijw

prejij

posti w

txk

x1 xkx2

Linear model

.2prek

prejik

corrij waw

dt

d

Correlationsin the input

.2 jkkcorr

j Cwawdt

d

supress index i

wCawdt

d corr 2

eigenvectors

nnn eeC

)exp()( 2 taetw ncorr

nn

Page 36: Part III: Models of synaptic plasticity

Analysis of rate-based Hebbian Learning

ijw

txk

x1 xkx2

wCawdt

d corr 2

)exp()( 2 taetw ncorr

nn

x1

12 xaw

dt

d postcorr

prej

posti

corrij aw

dt

d 2

)(tw

moves towards data cloud

w

Page 37: Part III: Models of synaptic plasticity

Analysis of rate-based Hebbian Learning

ijw

txk

x1 xkx2

wCawdt

d corr 2

)exp()( 2 taetw ncorr

nn

x1

12 xaw

dt

d postcorr

)(tw

becomes aligned with principal axis

w

Page 38: Part III: Models of synaptic plasticity

spike-based Hebbian Learning

pre j

post i

ijw),;( post

iprejijij uuwFw

dt

d

dsstusbdsstusbbwdt

d posti

postprej

preij )()()()( 110

...')'()()',(2 dsdsstustussb posti

prej

corr

Page 39: Part III: Models of synaptic plasticity

spike-based Hebbian Learningpre j

post i

ijw

)()( fjf

prej tttu

)()( 110f

ipost

f

fj

pre

fij ttbttbbw

dt

d

...),(2,

kj

fi

corr

kj

ttttb

BPAP

)()( fif

posti tttu

Translation invariance

W(tif-tj

k )

Learning window

Page 40: Part III: Models of synaptic plasticity

Analysis of spike-based Hebbian Learning

ijwvk

Linear model

vj1 vj

k

Analysis - separation of time scales, expected evolution

Correlationspre/post

.)()()(

)()( 110

dsstStSsW

tSatSaawdt

d

posti

prej

prej

preposti

postij

)()( fj

f

prej tttS

)(}{obPr fj

fjij

posti ttwt )()( post

ipost

posti tttS

)( fjtt

Point process

Average over doublystochastic process

Page 41: Part III: Models of synaptic plasticity

Analysis of spike-based Hebbian Learning

][ FPpost

ipost

idt

d

Rewrite equ.(i) fixed point equation for postsyn. rate

post

pre

FP aW

aa

1

10

wQwdt

d

.)()()( dssWQ prek

prejjk Covariance of input

(ii) input covariance

(plus extra terms)

Stable if01 postaW

Average over ensemble of rates

Rate stabilization

dssWW )(

Page 42: Part III: Models of synaptic plasticity

Analysis of spike-based Hebbian Learning

)( posti

posti tt

.)()( dsssW

(iii) extra spike-spike correlations

)( fjtt

pre j

)( s

)(sW

spike-spike correlations

Page 43: Part III: Models of synaptic plasticity

Spike-based Hebbian Learning

.)()( dsssW

- picks up spatio-temporal correlations on the time scale of the learning window W(s)

)( s

)(sW

)(sW

- non-trivial spike-spike correlations

- rate stabilization yields competition of synapses

ijw Synapses grow at the expense of others

Neuron stays in sensitive regime

Page 44: Part III: Models of synaptic plasticity

Chapter 12: Plasticity and Coding

BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002

Chapter 12

Page 45: Part III: Models of synaptic plasticity

Learning to be fast: prediction

BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002

Chapter 12

Page 46: Part III: Models of synaptic plasticity

Derivative filter and prediction

pre j Mehta et al. 2000,2002

Song et al. 2000

+

-

Page 47: Part III: Models of synaptic plasticity

Derivative filter and prediction

pre j Mehta et al. 2000,2002

Song et al. 2000

+

-

Postsynaptic firing shifts, becomes earlier

Page 48: Part III: Models of synaptic plasticity

Derivative filter and prediction

posti

prej dt

dw

derivative of postsyn. rate

pre j Mehta et al. 2000,2002

Song et al. 2000

+

-

Roberts et al. 1999Rao/Sejnowski, 2001Seung

Page 49: Part III: Models of synaptic plasticity

Learning spike patterns

BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002

Chapter 12

Page 50: Part III: Models of synaptic plasticity

Spike-based Hebbian Learning

pre jpost

iijw

k

causal rule‘neuron j takes part in firing neuron’ Hebb, 1949

0 Prebefore post

posti

prej tt

prejt

EPSP

)( posti

prejij ttWw

Page 51: Part III: Models of synaptic plasticity

Spike-based Hebbian Learning: sequence learning

pre

jpost

iijw

0 Prebefore post

posti

prej tt

prejt

EPSP

Strengthen the connection with the desired timing

Page 52: Part III: Models of synaptic plasticity

Subtraction of expectations: electric fish

BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002

Chapter 12

Page 53: Part III: Models of synaptic plasticity

Spike-based Hebbian Learning

suppressestemporal structure

experiment model

C.C. Bell et al.,Roberts and Bell

Novelty detector(subtracts expectation)

Page 54: Part III: Models of synaptic plasticity

Learning a temporal code: barn owl auditory system

BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002

Chapter 12

Page 55: Part III: Models of synaptic plasticity

Delay tuning in barn owl auditory system

Accuracy 1 degree

Temporal precision <5us

Page 56: Part III: Models of synaptic plasticity

Jeffress model

Accuracy 1 degree

Temporal precision <5us

Page 57: Part III: Models of synaptic plasticity

Jeffress model

Page 58: Part III: Models of synaptic plasticity

Delay tuning in barn owl auditory system

1

mst 5

Sound source

k

Tuning of delay lines

Jeffress, 1948Carr and Konishi, 1990

Gerstner et al., 1996

Page 59: Part III: Models of synaptic plasticity

Delay tuning in barn owl auditory system

Page 60: Part III: Models of synaptic plasticity

Delay tuning in barn owl auditory system

ca. 150 ca. 150

Page 61: Part III: Models of synaptic plasticity

Delay tuning in barn owl auditory system

Problem: 5kHz signal (period 0.2 ms) but distribution of delays 2-3 ms

Page 62: Part III: Models of synaptic plasticity

Spike-timing dependent plasticity: phenomenol. model

pre jpost

iijw

Prebefore post

prejt

posti

prej tt 0

)()(,

prej

pre

t

posti

prej

tt

ij ttbttWwprej

posti

prej

1ms

Page 63: Part III: Models of synaptic plasticity

Delay tuning in barn owl auditory system

Page 64: Part III: Models of synaptic plasticity

Conclusions (chapter 12)

-STDP is spiking version of Hebb’s rule

-shifts postsynaptic firing earlier in time

-allows to learn temporal codes