Parallel Staging • Multistaging Rocket...

21
Rocket Performance Principles of Space Systems Design Rocket Performance The rocket equation Mass ratio and performance Structural and payload mass fractions • Multistaging Optimal Delta-V distribution between stages Trade-off ratios Parallel Staging Modular Staging © 2001 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Transcript of Parallel Staging • Multistaging Rocket...

  • Rocket PerformancePrinciples of Space Systems Design

    Rocket Performance

    • The rocket equation• Mass ratio and performance• Structural and payload mass fractions• Multistaging• Optimal Delta-V distribution between stages• Trade-off ratios• Parallel Staging• Modular Staging

    © 2001 David L. Akin - All rights reservedhttp://spacecraft.ssl.umd.edu

  • Rocket PerformancePrinciples of Space Systems Design

    Derivation of the Rocket Equation

    • Momentum at time t:

    • Momentum at time t+∆t:

    • Some algebraic manipulation gives:

    • Take to limits and integrate:

    M mv=

    M m m v v m v Ve= − + + −( )( ) ( )∆ ∆ ∆

    m v mVe∆ ∆= −

    dmm

    dvVeV

    V

    m

    m

    initial

    final

    initial

    final

    = −

    ∫∫

  • Rocket PerformancePrinciples of Space Systems Design

    The Rocket Equation

    • Alternate forms

    • Basic definitions/concepts– Mass ratio

    – Nondimensional velocity change“Velocity ratio”

    ∆V Vm

    mV re

    final

    initiale= −

    = −ln ln( )r

    m

    mefinal

    initial

    V

    Ve≡ =−

    ∆VVe

    rm

    mor

    mm

    final

    initial

    initial

    final

    ≡ ℜ =

  • Rocket PerformancePrinciples of Space Systems Design

    Rocket Equation (First Look)

    1

    0.001

    0.01

    0.1

    1

    0 1 2 3 4 5 6 7 8

    Velocity Ratio, (∆V/Ve)

    Mas

    s Ra

    tio,

    (Mfi

    nal/

    Min

    itia

    l)

    Typical Rangefor Launch to

    Low Earth Orbit

  • Rocket PerformancePrinciples of Space Systems Design

    Sources and Categories of Vehicle Mass

    • Payload• Propellants• Inert Mass

    – Structure– Propulsion– Avionics– Mechanisms– Thermal– Etc.

  • Rocket PerformancePrinciples of Space Systems Design

    Basic Vehicle Parameters

    • Basic mass summary

    • Inert mass fraction

    • Payload fraction

    • Parametric mass ratio

    m initial mass

    m payload mass

    m propellant mass

    m inert mass

    L

    p

    i

    0 =

    =

    =

    =δ = = + +mm

    mm m m

    i i

    L p i0

    r = +λ δ

    λ = =+ +

    mm

    mm m m

    L L

    L p i0

    m m m mL p i0 = + +

  • Rocket PerformancePrinciples of Space Systems Design

    Rocket Equation (including Inert Mass)

    0.001

    0.01

    0.1

    1

    0 1 2 3 4 5 6 7 8

    0.000.050.100.150.20

    Velocity Ratio, (∆V/Ve)

    Payl

    oad

    Frac

    tion

    , (M

    payl

    oad/

    Min

    itia

    l) Typical Rangefor Launch toLow Earth Orbit

    Inert MassFraction δ

  • Rocket PerformancePrinciples of Space Systems Design

    The Rocket Equation for Multiple Stages

    • Assume two stages

    • Assume Ve,1=Ve,2=Ve

    ∆V Vm

    mV re

    final

    initiale1 1

    1

    11 1= −

    = −,

    ,

    ,,ln ln( )

    ∆V Vm

    mV re

    final

    initiale2 2

    2

    22 2= −

    = −,

    ,

    ,,ln ln( )

    ∆ ∆V V V r V r V r re e e1 2 1 2 1 2+ = − − = −ln( ) ln( ) ln( )

  • Rocket PerformancePrinciples of Space Systems Design

    Continued Look at Multistaging

    • Converting to masses

    • Keep in mind that mfinal,1~minitial,2

    • r0 has no physical significance!

    ∆ ∆V V V r r Vm

    m

    m

    me efinal

    initial

    final

    initial1 2 1 2

    1

    1

    2

    2

    + = − = −

    ln( ) ln ,

    ,

    ,

    ,

    ∆ ∆V V V r r Vm

    mV re e

    final

    initiale1 2 1 2

    2

    10+ = − = −

    = −ln( ) ln ln( ),

    ,

  • Rocket PerformancePrinciples of Space Systems Design

    Multistage Vehicle Parameters

    • Inert mass fraction

    • Payload fraction

    • Payload mass/inert mass ratio

    δ δ λ00 1

    1

    1

    = =

    ∑ ∏∑=

    =

    m

    mi j

    j

    j

    j

    n stages,

    ll

    λδ

    0

    0

    λ λ00 1

    = ==

    ∏mm

    Li

    i

    n stages

  • Rocket PerformancePrinciples of Space Systems Design

    Effect of Staging

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0 0.5 1 1.5 2 2.5

    1 stage2 stage3 stage4 stage

    Payl

    oad

    Frac

    tion

    , (M

    payl

    oad/

    Min

    itia

    l)

    Velocity Ratio, (∆V/Ve)

    Inert Mass Fraction δ=0.2

  • Rocket PerformancePrinciples of Space Systems Design

    Effect of ∆∆∆∆V Distribution

    -0.200

    0.000

    0.200

    0.400

    0.600

    0.800

    1.000

    0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

    lambda0delta0lamd0/del0

    1st Stage Delta-V (m/sec)

    1st Stage: LOX/LH2 2nd Stage: LOX/LH2

  • Rocket PerformancePrinciples of Space Systems Design

    Lagrange Multipliers

    • Given an objective function

    subject to constraint function

    • Create a new objective function

    • Solve simultaneous equations

    y f x= ( )

    z g x= ( )

    y f x g x z= + −[ ]( ) ( )λ

    ∂∂

    yx

    = 0∂∂λ

    y= 0

  • Rocket PerformancePrinciples of Space Systems Design

    Optimum ∆∆∆∆V Distribution Between Stages

    • Maximize payload fraction (2 stage case)

    subject to constraint function

    • Create a new objective function

    ➥Very messy for partial derivatives!

    λ λ λ δ δ0 1 2 1 1 2 2= = − −( )( )r r

    ∆ ∆ ∆V V Vtotal = +1 2

    λ δ δ0 1 2 1 21

    1

    2

    2= − − + + −[ ]− −

    ( )( )e e K V V VV

    V

    V

    VTotal

    e e

    ∆ ∆

    ∆ ∆ ∆

  • Rocket PerformancePrinciples of Space Systems Design

    Optimum ∆∆∆∆V Distribution (continued)

    • Use substitute objective function

    • Create a new constrained objective function

    • Take partials and set equal to zero

    ln( ) ln( ) ln( )

    ln( ) ln( )

    λ δ δ0 1 1 2 2

    1 1 2 2

    = − + −

    + + +[ ]r r

    K V V r V rTotal e e∆

    max( ) max ln( )λ λ0 0⇔ [ ]

    ∂ λ∂

    ln( )01

    0r

    =∂ λ

    ∂ln( )0

    2

    0r

    =∂ λ

    ∂ln( )0 0

    K=

  • Rocket PerformancePrinciples of Space Systems Design

    Optimum ∆∆∆∆V Special Cases

    • “Generic” partial of objective function

    • Case 1: δ1=δ2 Ve1=Ve2

    • Case 2: δ1≠δ2 Ve1=Ve2

    • More complex cases have to be done numerically

    ∂ λ∂ δ

    ln( )0 1 0r r

    KVri i iei

    i

    =−

    + =

    r r V V1 2 1 2= ⇒ =∆ ∆

    r r11

    2

    2δ δ=

  • Rocket PerformancePrinciples of Space Systems Design

    Trade-off Ratios

    ∂∂

    mm

    Vm m

    Vm m

    L

    i k V

    e jj f jj

    k

    ef

    N

    Total,

    ,, ,

    ,, ,

    ∆ =

    =

    =

    =

    − −

    ∑001

    01

    1 1

    1 1l

    l ll

    ∂∂

    mm

    Vm

    Vm m

    L

    p k V

    e jjj

    k

    ef

    N

    Total,

    ,,

    ,, ,

    ∆ =

    =

    =

    =

    ∑001

    01

    1

    1 1l

    l ll

  • Rocket PerformancePrinciples of Space Systems Design

    Trade-off Ratios (continued)

    ∂∂

    mV

    m

    m

    Vm m

    L

    e k V

    k

    f kj

    k

    ef

    N

    Total,

    ,

    ,

    ,, ,

    ln

    ∆ =

    =

    =

    =

    ∑0

    0

    1

    01

    1 1l

    l ll

  • Rocket PerformancePrinciples of Space Systems Design

    Parallel Staging

    • Multiple dissimilarengines burningsimultaneously

    • Frequently a result ofupgrades to operationalsystems

    • General case requires“brute force” numericalperformance analysis

  • Rocket PerformancePrinciples of Space Systems Design

    Parallel-Staging Rocket Equation

    • Momentum at time t:

    • Momentum at time t+∆t:(subscript “b”=boosters; “c”=core vehicle)

    M mv=

    M m m m v v

    m v V m v Vb c

    b e b c e c

    = − − +

    + − + −

    ( )( )

    ( ) ( ), ,

    ∆ ∆ ∆

    ∆ ∆

  • Rocket PerformancePrinciples of Space Systems Design

    Modular Staging

    • Use identical modules toform multiple stages

    • Have to cluster modules onlower stages to make up fornonideal ∆V distributions

    • Advantageous fromproduction and developmentcost standpoints