Optics lecture 2016 - University of Oxford · Wave Optics Propagation, interference and diffraction...

26
Wave Optics Propagation, interference and diffraction of waves Axel Kuhn, Oxford 2016 Paul Ewart’s lecture notes and problem sets: https://www2.physics.ox.ac.uk/research/ combustion-physics-and-non-linear-optics/teaching Intro 1 Brooker, Modern Classical Optics Hecht, Optics Klein and Furtak, Optics Smith, King & Wilkins, Optics and Photonics Born and Wolf, Principles of Optics Wave Optics – Literature Intro 2

Transcript of Optics lecture 2016 - University of Oxford · Wave Optics Propagation, interference and diffraction...

Page 1: Optics lecture 2016 - University of Oxford · Wave Optics Propagation, interference and diffraction of waves Axel Kuhn, Oxford 2016 Paul Ewart’s lecture notes and problem sets:

Wave Optics Propagation, interference and diffraction of waves

Axel Kuhn, Oxford 2016

Paul Ewart’s lecture notes and problem sets:

https://www2.physics.ox.ac.uk/research/combustion-physics-and-non-linear-optics/teaching

Intro

1

Brooker, Modern Classical Optics Hecht, OpticsKlein and Furtak, OpticsSmith, King & Wilkins, Optics and PhotonicsBorn and Wolf, Principles of Optics

Wave Optics – Literature

Intro

2

Page 2: Optics lecture 2016 - University of Oxford · Wave Optics Propagation, interference and diffraction of waves Axel Kuhn, Oxford 2016 Paul Ewart’s lecture notes and problem sets:

Wave Optics – Outline

What’s it all about?Revision of geometrical opticsPropagation of waves Fourier methods

➙ Fresnel-Kirchhoff integral, theory of imaging

Diffraction-based optical instruments ➙ 2-slit, grating, Michelson and Fabry-Perot Interferometer

Dielectric surfaces and boundaries ➙ multilayer (anti)reflection coatings

Polarized Light

Intro

3-1

Wave Optics – Outline

What’s it all about?Revision of geometrical opticsPropagation of waves Fourier methods

➙ Fresnel-Kirchhoff integral, theory of imaging

Diffraction-based optical instruments ➙ 2-slit, grating, Michelson and Fabry-Perot Interferometer

Dielectric surfaces and boundaries ➙ multilayer (anti)reflection coatings

Polarized Light

Intro

3-2

Page 3: Optics lecture 2016 - University of Oxford · Wave Optics Propagation, interference and diffraction of waves Axel Kuhn, Oxford 2016 Paul Ewart’s lecture notes and problem sets:

What’s it all about?

Imaging Visualization (projection, lithography)SpectroscopyMatter-wave propagation & imagingLasers and applicationsModern devices(opto-electronics, display technology, optical coatings, telecommunication, consumer electronics)

Intro

4

Astronomical observatory, Hawaii, 4200m above sea level.

What’s it all about?

Intro

5

Page 4: Optics lecture 2016 - University of Oxford · Wave Optics Propagation, interference and diffraction of waves Axel Kuhn, Oxford 2016 Paul Ewart’s lecture notes and problem sets:

Hubble space telescope, 2.4 m mirror

What’s it all about?

Intro

6

Classical Optics – Relevance

7

Page 5: Optics lecture 2016 - University of Oxford · Wave Optics Propagation, interference and diffraction of waves Axel Kuhn, Oxford 2016 Paul Ewart’s lecture notes and problem sets:

Optical Microscope

fruit

fly

What’s it all about?

Intro

8

CD/DVD player optical pickup system

What’s it all about?

Intro

9

Page 6: Optics lecture 2016 - University of Oxford · Wave Optics Propagation, interference and diffraction of waves Axel Kuhn, Oxford 2016 Paul Ewart’s lecture notes and problem sets:

What’s it all about?

photo lithography

cutting & welding

Intro

10

Coherent Light ➙ Laser Physics

spectroscopymetrology (clocks)quantum opticsquantum computinglaser nuclear ignitionmedical applicationsengineeringtelecommunication

What’s it all about?

Intro

11

Page 7: Optics lecture 2016 - University of Oxford · Wave Optics Propagation, interference and diffraction of waves Axel Kuhn, Oxford 2016 Paul Ewart’s lecture notes and problem sets:

Geometrical Optics – Revision

Fermat’s principle (shortest path)reflection & refractionspherical & thin lensesparaxial approximationlensmaker’s formulacombining lensesprincipal planesoptical instrumentsAperture and field stopsPinhole camera ➙ wave optics

Geometric

12

Fermat‘s PrincipleLight propagating between two points follows a path, or paths, for which the time taken is an extremum (minimum)

Ignoring the wave nature of light

Basic theory for optical instruments

Geometrical Optics – Revision

Geometric

13

Page 8: Optics lecture 2016 - University of Oxford · Wave Optics Propagation, interference and diffraction of waves Axel Kuhn, Oxford 2016 Paul Ewart’s lecture notes and problem sets:
Page 9: Optics lecture 2016 - University of Oxford · Wave Optics Propagation, interference and diffraction of waves Axel Kuhn, Oxford 2016 Paul Ewart’s lecture notes and problem sets:
Page 10: Optics lecture 2016 - University of Oxford · Wave Optics Propagation, interference and diffraction of waves Axel Kuhn, Oxford 2016 Paul Ewart’s lecture notes and problem sets:
Page 11: Optics lecture 2016 - University of Oxford · Wave Optics Propagation, interference and diffraction of waves Axel Kuhn, Oxford 2016 Paul Ewart’s lecture notes and problem sets:
Page 12: Optics lecture 2016 - University of Oxford · Wave Optics Propagation, interference and diffraction of waves Axel Kuhn, Oxford 2016 Paul Ewart’s lecture notes and problem sets:

focussing with spherical surfaces

parallel bundles↓

image sphere

object sphere↓

image sphere

Geometrical Optics – Revision

Geometric

14

axis

Focal point

Focal point

u v

thin lens formula

Geometrical Optics – Revision

1u

+1v

=1f

Geometric

15

Page 13: Optics lecture 2016 - University of Oxford · Wave Optics Propagation, interference and diffraction of waves Axel Kuhn, Oxford 2016 Paul Ewart’s lecture notes and problem sets:
Page 14: Optics lecture 2016 - University of Oxford · Wave Optics Propagation, interference and diffraction of waves Axel Kuhn, Oxford 2016 Paul Ewart’s lecture notes and problem sets:
Page 15: Optics lecture 2016 - University of Oxford · Wave Optics Propagation, interference and diffraction of waves Axel Kuhn, Oxford 2016 Paul Ewart’s lecture notes and problem sets:
Page 16: Optics lecture 2016 - University of Oxford · Wave Optics Propagation, interference and diffraction of waves Axel Kuhn, Oxford 2016 Paul Ewart’s lecture notes and problem sets:

Geometrical Optics – InstrumentsPr

inci

pal p

lane

s

Geometric

16-1

location of equivalent thin lens

Geometrical Optics – Instruments

Prin

cipa

l pla

nes

Geometric

16-2

Page 17: Optics lecture 2016 - University of Oxford · Wave Optics Propagation, interference and diffraction of waves Axel Kuhn, Oxford 2016 Paul Ewart’s lecture notes and problem sets:

location of equivalent thin lens

Prin

cipa

l pla

nes

Geometrical Optics – Instruments

Geometric

17

u v

lenssystem

1u

+1v

=1f

thin lens equation applies with u and vmeasured from the two principal planes

Geometrical Optics – Instruments

Prin

cipa

l pla

nes

Geometric

18

Page 18: Optics lecture 2016 - University of Oxford · Wave Optics Propagation, interference and diffraction of waves Axel Kuhn, Oxford 2016 Paul Ewart’s lecture notes and problem sets:
Page 19: Optics lecture 2016 - University of Oxford · Wave Optics Propagation, interference and diffraction of waves Axel Kuhn, Oxford 2016 Paul Ewart’s lecture notes and problem sets:

Objective magnification = v/u Eyepiece magnifies real image of object

Com

poun

d m

icro

scop

eGeometrical Optics – Instruments

Geometric

19

angular magnification = β/α

Astro

nom

ical

tele

scop

e

Geometrical Optics – Instruments

Geometric

20-1

Page 20: Optics lecture 2016 - University of Oxford · Wave Optics Propagation, interference and diffraction of waves Axel Kuhn, Oxford 2016 Paul Ewart’s lecture notes and problem sets:

angular magnification = β/α

Astro

nom

ical

tele

scop

eGeometrical Optics – Instruments

Geometric

20-2

angular magnification = β/α = fo/fE

Astro

nom

ical

tele

scop

e

Geometrical Optics – Instruments

Geometric

20-3

Page 21: Optics lecture 2016 - University of Oxford · Wave Optics Propagation, interference and diffraction of waves Axel Kuhn, Oxford 2016 Paul Ewart’s lecture notes and problem sets:

angular magnification = β/α

1.3.4 Telescope (Galilean)

!"!#

!

!Figure 1.6

"#$%&'(!)'$#*+*,'-*.#/!! $ " !!" " ! %!!# !!!

1.3.5 Telescope (Newtonian)

!

!%

!#

!Figure 1.7

"#$%&'(!)'$#*+*,'-*.#/!! $ " !!" " ! %!!# !!

! ! % !!*0!-12!+.,'&!&2#$-1!.+!-12!.342,-*52!)*((.(!'#6!7+.(!'!0812(*,'&!)*((.(!0%(+',29!2:%'&0!

1'&+!-12!('6*%0!.+!,%(5'-%(2;!

!

1.3.6 Compound Microscope

!" !#

!

!"

!Figure 1.8

!

<12!.342,-!'-!6*0-'#,2!&!+(.)!.342,-*52!=*-1!+.,'&!&2#$-1!!%!*0!*)'$26!'-!6*0-'#,2!';!>2'&!

*)'$2!*0!'-!+.,'&!&2#$-1!!#!+(.)!2?28*2,2!$*5*#$!'#$%&'(!)'$#*+*,'-*.#(!#$%!=12(2!$!!*0!-12!'#$&2!0%3-2#626!3?!-12!(2'&!*)'$2!*+!*-!='0!'-!-12!#2'(!8.*#-!.+!-12!2?2;!

!

Gal

ilean

tele

scop

eGeometrical Optics – Instruments

Geometric

21-1

angular magnification = β/α = fo/fE

1.3.4 Telescope (Galilean)

!"!#

!

!Figure 1.6

"#$%&'(!)'$#*+*,'-*.#/!! $ " !!" " ! %!!# !!!

1.3.5 Telescope (Newtonian)

!

!%

!#

!Figure 1.7

"#$%&'(!)'$#*+*,'-*.#/!! $ " !!" " ! %!!# !!

! ! % !!*0!-12!+.,'&!&2#$-1!.+!-12!.342,-*52!)*((.(!'#6!7+.(!'!0812(*,'&!)*((.(!0%(+',29!2:%'&0!

1'&+!-12!('6*%0!.+!,%(5'-%(2;!

!

1.3.6 Compound Microscope

!" !#

!

!"

!Figure 1.8

!

<12!.342,-!'-!6*0-'#,2!&!+(.)!.342,-*52!=*-1!+.,'&!&2#$-1!!%!*0!*)'$26!'-!6*0-'#,2!';!>2'&!

*)'$2!*0!'-!+.,'&!&2#$-1!!#!+(.)!2?28*2,2!$*5*#$!'#$%&'(!)'$#*+*,'-*.#(!#$%!=12(2!$!!*0!-12!'#$&2!0%3-2#626!3?!-12!(2'&!*)'$2!*+!*-!='0!'-!-12!#2'(!8.*#-!.+!-12!2?2;!

!

Gal

ilean

tele

scop

e

Geometrical Optics – Instruments

Geometric

21-2

Page 22: Optics lecture 2016 - University of Oxford · Wave Optics Propagation, interference and diffraction of waves Axel Kuhn, Oxford 2016 Paul Ewart’s lecture notes and problem sets:

Field stop

Apertures and Field Stops

limiting thefield-of-view

Aperture stop

limiting theIntensity

Geometric

22-1

Field stop

Apertures and Field Stops

limiting thefield-of-view

Aperture stop

limiting theIntensity

f/no. =

focal leng

th

entran

ce pupil dia

meter

Geometric

22-2

Page 23: Optics lecture 2016 - University of Oxford · Wave Optics Propagation, interference and diffraction of waves Axel Kuhn, Oxford 2016 Paul Ewart’s lecture notes and problem sets:
Page 24: Optics lecture 2016 - University of Oxford · Wave Optics Propagation, interference and diffraction of waves Axel Kuhn, Oxford 2016 Paul Ewart’s lecture notes and problem sets:
Page 25: Optics lecture 2016 - University of Oxford · Wave Optics Propagation, interference and diffraction of waves Axel Kuhn, Oxford 2016 Paul Ewart’s lecture notes and problem sets:
Page 26: Optics lecture 2016 - University of Oxford · Wave Optics Propagation, interference and diffraction of waves Axel Kuhn, Oxford 2016 Paul Ewart’s lecture notes and problem sets:

Camera Obscura

optimum pinhole size

contradicts expectations from geometrical optics

from Hecht, Optics

Geometric

23

Maxwell’s equations ⟼ waves

equivalence to matter waves

plane and spherical waves

energy flow / intensity

basic interference

Huygen’s principle

Fraunhofer diffraction & resolution limit

The Wave Nature of Light

EM waves

http://www2.physics.ox.ac.uk/

contacts/people/kuhn#fragment-2

24