On the Analysis of Parasitic Quantum Effects in Classical MOS Circuits

30
MOS-AK ESSCIRC 2004 20.09. Leuven (Belgium) On the Analysis of On the Analysis of Parasitic Quantum Parasitic Quantum Effects in Classical MOS Effects in Classical MOS Circuits Circuits Frank Felgenhauer Frank Felgenhauer , , Simon Fabel, Wolfgang Simon Fabel, Wolfgang Mathis Mathis Institute of Electromagnetic Institute of Electromagnetic Theory and Microwave Theory and Microwave Technique Technique University of Hannover, University of Hannover, Germany Germany

description

On the Analysis of Parasitic Quantum Effects in Classical MOS Circuits. Frank Felgenhauer , Simon Fabel, Wolfgang Mathis Institute of Electromagnetic Theory and Microwave Technique University of Hannover, Germany. Outline. Introduction Simulation Strategy Summary. Introduction. - PowerPoint PPT Presentation

Transcript of On the Analysis of Parasitic Quantum Effects in Classical MOS Circuits

Page 1: On the Analysis of Parasitic Quantum Effects in Classical MOS Circuits

MOS-AK ESSCIRC 2004 20.09. Leuven (Belgium)

On the Analysis of Parasitic On the Analysis of Parasitic QuantumQuantum

Effects in Classical MOS CircuitsEffects in Classical MOS CircuitsFrank FelgenhauerFrank Felgenhauer, ,

Simon Fabel, Wolfgang MathisSimon Fabel, Wolfgang Mathis

Institute of Electromagnetic Theory Institute of Electromagnetic Theory and Microwave Techniqueand Microwave Technique

University of Hannover, GermanyUniversity of Hannover, Germany

Page 2: On the Analysis of Parasitic Quantum Effects in Classical MOS Circuits

Felgenhauer Uni Hannover20.09.2004

MOS-AK ESSCIRC 2004

OutlineOutline

IntroductionIntroduction

Simulation StrategySimulation Strategy

SummarySummary

IntroductionIntroduction

Page 3: On the Analysis of Parasitic Quantum Effects in Classical MOS Circuits

Felgenhauer Uni Hannover20.09.2004

MOS-AK ESSCIRC 2004

IntroductionIntroduction

Exponential increase in gate leakageExponential increase in gate leakage– increased power consumptionincreased power consumption– degraded device performancedegraded device performance

Charge carrier quantization in the Charge carrier quantization in the channelchannel– loss of inversion chargeloss of inversion charge– loss of transconductanceloss of transconductance

Polysilicon-gate depletion effectsPolysilicon-gate depletion effects

Page 4: On the Analysis of Parasitic Quantum Effects in Classical MOS Circuits

Felgenhauer Uni Hannover20.09.2004

MOS-AK ESSCIRC 2004

Scaling into mesoscopic regimeScaling into mesoscopic regime– Increasing influence of qm-effectsIncreasing influence of qm-effects– Changing of device behaviorChanging of device behavior

Question:Question:– Validity of device modelsValidity of device models– Influence in classical circuitsInfluence in classical circuits

Page 5: On the Analysis of Parasitic Quantum Effects in Classical MOS Circuits

Felgenhauer Uni Hannover20.09.2004

MOS-AK ESSCIRC 2004

Quantum InterferenceQuantum Interference

Classical Classical CircuitCircuit

Including Including

qm-Effectsqm-Effects

Page 6: On the Analysis of Parasitic Quantum Effects in Classical MOS Circuits

Felgenhauer Uni Hannover20.09.2004

MOS-AK ESSCIRC 2004

OutlineOutline

IntroductionIntroduction

Simulation StrategySimulation Strategy

SummarySummary

Page 7: On the Analysis of Parasitic Quantum Effects in Classical MOS Circuits

Felgenhauer Uni Hannover20.09.2004

MOS-AK ESSCIRC 2004

Simulation StrategySimulation Strategy

Spice circuit modelsSpice circuit models

Circuit SimulationCircuit Simulation

Quantum-mechanical modeling Quantum-mechanical modeling and numerical simulationand numerical simulation

Qm-Effects in MOS devicesQm-Effects in MOS devicesQm-Effects in MOS devicesQm-Effects in MOS devices

Page 8: On the Analysis of Parasitic Quantum Effects in Classical MOS Circuits

Felgenhauer Uni Hannover20.09.2004

MOS-AK ESSCIRC 2004

QM-Effects in MOS DevicesQM-Effects in MOS Devices

Tunneling currentsTunneling currents Charge quantizationCharge quantization

Oxide

n+ Gatep Substrate

(or Soure/Drain extension)

EC

EC

TunnelingCurrent

a)

n(x)

b)

quantumclassical

Oxide p Substrate

Gate

Source Drain

Itc

Its Itd

Page 9: On the Analysis of Parasitic Quantum Effects in Classical MOS Circuits

Felgenhauer Uni Hannover20.09.2004

MOS-AK ESSCIRC 2004

MOSFETMOSFET– Tunneling Currents (channel – gate, edge Tunneling Currents (channel – gate, edge

direct tunneling)direct tunneling)– Charge quantizationCharge quantization

MOS CapacitorMOS Capacitor– Channel – gate tunnelingChannel – gate tunneling– Charge quantizationCharge quantization

Page 10: On the Analysis of Parasitic Quantum Effects in Classical MOS Circuits

Felgenhauer Uni Hannover20.09.2004

MOS-AK ESSCIRC 2004

Simulation StrategySimulation Strategy

Spice circuit modelsSpice circuit models

Circuit SimulationCircuit Simulation

Quantum-mechanical modeling Quantum-mechanical modeling and numerical simulationand numerical simulation

Qm-Effects in MOS devicesQm-Effects in MOS devices

Page 11: On the Analysis of Parasitic Quantum Effects in Classical MOS Circuits

Felgenhauer Uni Hannover20.09.2004

MOS-AK ESSCIRC 2004

Quantum-mechanical Quantum-mechanical ModelingModeling

and Numerical Simulationand Numerical Simulation

Quantum mechanical descriptionsQuantum mechanical descriptions

–Transmission formalismTransmission formalism

–Scattering matrixScattering matrix

–NNon-on-eequilibrium quilibrium GGreen‘s reen‘s ffunction unction formalism (NEGF)formalism (NEGF)

Page 12: On the Analysis of Parasitic Quantum Effects in Classical MOS Circuits

Felgenhauer Uni Hannover20.09.2004

MOS-AK ESSCIRC 2004

Non-equilibrium, open boundary conditionsNon-equilibrium, open boundary conditions

1-d MOS-structure1-d MOS-structure Time invariant systemTime invariant system Spatial dependent effective mass and Spatial dependent effective mass and

permittivitypermittivity ScatteringScattering

Poisson self-consistencyPoisson self-consistency

Page 13: On the Analysis of Parasitic Quantum Effects in Classical MOS Circuits

Felgenhauer Uni Hannover20.09.2004

MOS-AK ESSCIRC 2004

Selfconsistent Selfconsistent potentialpotential Tunneling currentTunneling current

Page 14: On the Analysis of Parasitic Quantum Effects in Classical MOS Circuits

Felgenhauer Uni Hannover20.09.2004

MOS-AK ESSCIRC 2004

Simulation StrategySimulation Strategy

Spice circuit modelsSpice circuit models

Circuit SimulationCircuit Simulation

Quantum-mechanical modeling Quantum-mechanical modeling and numerical simulationand numerical simulation

Qm-Effects in MOS devicesQm-Effects in MOS devices

Page 15: On the Analysis of Parasitic Quantum Effects in Classical MOS Circuits

Felgenhauer Uni Hannover20.09.2004

MOS-AK ESSCIRC 2004

Spice Circuit ModelsSpice Circuit Models

1-d qm simulation1-d qm simulation look-up table modellook-up table model non-linear elements (black box)non-linear elements (black box)

– non-linear current source non-linear current source

tunnelingtunneling– non-linear capacitor non-linear capacitor

MOS C-V, charge quantizationMOS C-V, charge quantization

Page 16: On the Analysis of Parasitic Quantum Effects in Classical MOS Circuits

Felgenhauer Uni Hannover20.09.2004

MOS-AK ESSCIRC 2004

Simulation StrategySimulation Strategy

Parasitic effect identificationParasitic effect identification

Spice circuit modelSpice circuit model

Circuit SimulationCircuit Simulation

Quantum-mechanical modeling Quantum-mechanical modeling and numerical simulationand numerical simulation

Page 17: On the Analysis of Parasitic Quantum Effects in Classical MOS Circuits

Felgenhauer Uni Hannover20.09.2004

MOS-AK ESSCIRC 2004

Circuit SimulationCircuit Simulation

(Choi et al, Transaction on Electron Devices ´01)

Page 18: On the Analysis of Parasitic Quantum Effects in Classical MOS Circuits

Felgenhauer Uni Hannover20.09.2004

MOS-AK ESSCIRC 2004

VVoutout

VVinin

Page 19: On the Analysis of Parasitic Quantum Effects in Classical MOS Circuits

Felgenhauer Uni Hannover20.09.2004

MOS-AK ESSCIRC 2004

(Choi et al, Transaction on Electron Devices ´01)

VxVxVoutVout

VaVa

VbVb

ClockClock

Page 20: On the Analysis of Parasitic Quantum Effects in Classical MOS Circuits

Felgenhauer Uni Hannover20.09.2004

MOS-AK ESSCIRC 2004

ClockClock

VaVa

VbVb

VxVx

VouVoutt

Page 21: On the Analysis of Parasitic Quantum Effects in Classical MOS Circuits

Felgenhauer Uni Hannover20.09.2004

MOS-AK ESSCIRC 2004

(Nii et al, IEEE Journal of Solid States ´04)

Page 22: On the Analysis of Parasitic Quantum Effects in Classical MOS Circuits

Felgenhauer Uni Hannover20.09.2004

MOS-AK ESSCIRC 2004

Leakage CurrentsLeakage Currents

3.6296

9.1743

0

2

4

6

8

10

12

14

Standby leakage (pA/cell)

1.2

Supply Voltage (V)

Ioff

Ig

Page 23: On the Analysis of Parasitic Quantum Effects in Classical MOS Circuits

Felgenhauer Uni Hannover20.09.2004

MOS-AK ESSCIRC 2004

OutlineOutline

IntroductionIntroduction

Simulation StrategySimulation Strategy

SummarySummary

Page 24: On the Analysis of Parasitic Quantum Effects in Classical MOS Circuits

Felgenhauer Uni Hannover20.09.2004

MOS-AK ESSCIRC 2004

SummarySummary Numerical simulationNumerical simulation

Spice modelsSpice models

Circuit simulationCircuit simulation

Circuit functionality – quantum effectsCircuit functionality – quantum effects

Page 25: On the Analysis of Parasitic Quantum Effects in Classical MOS Circuits

Felgenhauer Uni Hannover20.09.2004

MOS-AK ESSCIRC 2004

Page 26: On the Analysis of Parasitic Quantum Effects in Classical MOS Circuits

Felgenhauer Uni Hannover20.09.2004

MOS-AK ESSCIRC 2004

Classical descriptionClassical description– Drift-DiffusionDrift-Diffusion– Hydrodynamic transport equationHydrodynamic transport equation– Boltzmann transport equationBoltzmann transport equation

Semi-classical description (QM-Semi-classical description (QM-corrections)corrections)– Density GradientDensity Gradient– Quantum hydrodynamic equationQuantum hydrodynamic equation

Page 27: On the Analysis of Parasitic Quantum Effects in Classical MOS Circuits

Felgenhauer Uni Hannover20.09.2004

MOS-AK ESSCIRC 2004

Poisson equation

Schrödinger equation

Electron density n Potential U

Page 28: On the Analysis of Parasitic Quantum Effects in Classical MOS Circuits

Felgenhauer Uni Hannover20.09.2004

MOS-AK ESSCIRC 2004

Schrödinger equationSchrödinger equation

Density matrixDensity matrix

Electron densityElectron density

Poisson equationPoisson equation 2DU q N n

*

',

( ) ( ) ( ')r r

n r r r

0

1( )

2F E A E dE

( ) ( )H U r E r

Page 29: On the Analysis of Parasitic Quantum Effects in Classical MOS Circuits

Felgenhauer Uni Hannover20.09.2004

MOS-AK ESSCIRC 2004

Impact in CircuitsImpact in Circuits

Static CMOSStatic CMOS– Off-state power dissipationOff-state power dissipation

Dynamic CMOSDynamic CMOS– Off-state power dissipationOff-state power dissipation– Discharge breakdown, parasitic currentsDischarge breakdown, parasitic currents

Analog – mixed Signal Analog – mixed Signal – Discharge breakdown, parasitic currentsDischarge breakdown, parasitic currents– Magnitude variationMagnitude variation

Page 30: On the Analysis of Parasitic Quantum Effects in Classical MOS Circuits

Felgenhauer Uni Hannover20.09.2004

MOS-AK ESSCIRC 2004

QM transport processQM transport process

Integral Integral valuesvalues

I,UI,U

Integral Integral valuesvalues

I,UI,U

Circuit Circuit modelingmodeling

Circuit Circuit modelingmodelingPhysical Physical

LayerLayer