O62-The Fe-Sn-Zr system at 900°Ctofa2010/Apresentacoes_TOFA2010/O62... · 2010-11-03 · J.-C....

77
J.-C. Savidan J.-M. Joubert Chimie Métallurgique des Terres Rares Institut de Chimie et des Matériaux Paris-Est CNRS Thiais France The Fe-Sn-Zr system at 900°C C. Toffolon-Masclet Service des Recherches Métallurgiques Appliquées Laboratoire d'Analyse Microstructurale des Matériaux CEA Saclay France

Transcript of O62-The Fe-Sn-Zr system at 900°Ctofa2010/Apresentacoes_TOFA2010/O62... · 2010-11-03 · J.-C....

J.-C. Savidan

J.-M. Joubert

Chimie Métallurgique des Terres RaresInstitut de Chimie et des Matériaux Paris-EstCNRSThiaisFrance

The Fe-Sn-Zr system at 900°C

C. Toffolon-Masclet

Service des Recherches Métallurgiques AppliquéesLaboratoire d'Analyse Microstructurale des MatériauxCEASaclayFrance

Introduction• use of zirconium alloys as fuel cladding materials in nuclear reactors

• iron and tin are the main alloying elements

• the knowledge of the complete phase diagram is a prerequisitebefore modeling by techniques such as Calphad

Nuclear fuel

cladding

Fuel

bundle

Outline

• introduction

• presentation of the constituting binary systems

• partial phase diagram of Nieva and Arias

• experimental techniques

• results

• conclusions and outlook

Constituting binary systemsPourcentage massique de Sn

Liquide 2

Fe 5

Sn

3

Liquide 1L1 + L2

Fe 3

Sn

2

1130°C31 69

1495°C

910°C

806°C

770°C

513°C

765°C

607°C

8

94.5

.

96.797.5

99.76

FeS

n

FeS

n2

βSn

400

600

800

1000

1200

1400

16000 10 20 30 40 50 60 70 80 90 100

αFe

Tc770°C

9.2

6.5

3.5

Tem

péra

ture

°C

1538°C

δFe

912°C

1394°C

943 °C

Liquide

Sn

1987 °C

ηηηη

Zr5Sn3

79

β

βZr

αZr

1327 °C

1917

1142 °C

ZrSn2Zr5Sn4

Zr4Sn

1855 °C

74.9

11.8

400

600

800

1000

1200

1400

1600

1800

2000

2200

Tem

péra

ture

°C

Pourcentage massique de Sn0 10 20 30 40 50 60 70 80 90 100

1600 °C

ouA15

ZrSn2Zr5Sn4Zr5Sn3

A15

Fe5Sn3

Pourcentage atomique de Sn SnFe

FeS

n

231.9681°C231.96°C

10 20 30 40 50 60 70 80 90 1000200

Pourcentage atomique de Sn SnZr10 20 30 40 50 60 70 80 90 1000

232°C200

A15

232 °C

FeSn

Sn Zr

ZrFe

A15

Zr2Fe

C15

[Stein, J. Phase Equilib., 2002]

Fe-Sn: [Predel, Landolt-Börnstein, 2005]

[Jerlerud, Calphad, 2008]

Partial ternary phase diagramNieva and Arias,J. Nucl. Mater. 359 (2006) 29-40

Snliquid

ZrSn2

900 °C

Fe ZrZrFe2 (C15) Zr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

XN

θ

Partial ternary phase diagramNieva and Arias,J. Nucl. Mater. 359 (2006) 29-40

Snliquid

ZrSn2

Presence of two new ternaryphases:

- X

900 °C

Fe ZrZrFe2 (C15) Zr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

XN

θ

Partial ternary phase diagramNieva and Arias,J. Nucl. Mater. 359 (2006) 29-40

Snliquid

ZrSn2

Presence of two new ternaryphases:

- X- N

with unknown crystal

900 °C

Fe ZrZrFe2 (C15) Zr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

XN

θ

with unknown crystalstructures

Snliquid

ZrSn2

Aim of this work

- determine the phase equilibriain the Zr-poor region

- investigate the crystal structureof the intermetallic compounds

900 °C

Fe ZrZrFe2 (C15) Zr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

XN

θ

Experimental techniques

• synthesis by arc melting of the pure element

• annealing at 900°C between 12 and 30 days

• characterization by XRD, analysis by the Rietveld method

• composition analysis by EPMA

• metallography by SEM

liquid

ZrSn2

Synthesized compositionsSn

14 different samples

900 °C

ZrFe2 (C15) Zr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

XN

θ

Fe Zr

Snliquid

ZrSn2

Results: X phase900 °C

sample synthesized in themiddle of the single phase fieldof the X phase

nominal composition

Fe ZrZrFe2 (C15) Zr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

XN

θ

Snliquid

ZrSn2

Results: X phase900 °C

sample synthesized in themiddle of the single phase fieldof the X phase

nominal compositionanalyzed compositions

Fe ZrZrFe2 (C15) Zr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

XN

θ

analyzed compositions

X’’

X’

6000

8000

(

coun

ts)

Two phases X’ and X’’• strongly different diffraction patterns• characteristic lines for each phase

X’’

X’

30 31 32 33 34 35 36 37 38 390

2000

4000

I (co

unts

)

2 θ (°)

Snliquid

ZrSn2

900 °C

sample synthesized in themiddle of the single phase fieldof the X phase

nominal compositionanalyzed compositions

Two phases X’ and X’’

Fe ZrZrFe2 (C15) Zr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

XN

θ

analyzed compositions

X’’

X’

6000

8000

Two phases X’ and X’’• the sample with intermediate composition contains peaks of both phases• further confirmation that two phases are present• unfortunately, none of the phase could be indexed

X’’

X’

so-called X composition

30 31 32 33 34 35 36 37 38 390

2000

4000

I (co

unts

)

2 θ (°)

Snliquid

ZrSn2

Modification of the phase diagram900 °C

Nieva and Arias

Fe ZrZrFe2 (C15) Zr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

XN

θ

Snliquid

ZrSn2

Modification of the phase diagram900 °C

This work

Fe ZrZrFe2 (C15) Zr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

N

θ

X’’

X’

Snliquid

ZrSn2

More ternary phases900 °C

nominal compositionanalyzed compositions

Fe ZrZrFe2 (C15) Zr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

N

θ

X’’

X’

analyzed compositions

Snliquid

ZrSn2

More ternary phases900 °C

nominal compositionanalyzed compositions

Fe ZrZrFe2 (C15) Zr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

N

θ

X’’

X’

analyzed compositions

4000

6000

(

coun

ts)

More ternary phases

bcc (Fe)

lines typical of the C36 structure(hexagonal Laves phase)

20 30 40 50 60 70 80 90 100 110 120

0

2000

I (co

unts

)

2 θ (°)

More ternary phases

Fe-Zr binary diagram [Stein 2002]

Snliquid

ZrSn2

More ternary phases900 °C

nominal compositionanalyzed compositions

Fe ZrZrFe2 (C15) Zr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

N

θ

X’’

X’

C36

analyzed compositions

Snliquid

ZrSn2

More ternary phases900 °C

nominal compositionanalyzed compositions

Fe ZrZrFe2 (C15) Zr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

N

θ

X’’

X’

analyzed compositions

Snliquid

ZrSn2

More ternary phases900 °C

nominal compositionanalyzed compositions

Fe ZrZrFe2 (C15) Zr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

N

θ

X’’

X’

analyzed compositions

6000

8000

10000

(co

unts

)

More ternary phasesthe structure could not be identified from databasesthe pattern could not be indexed ab initio

20 30 40 50 60 70 80 90 100 1100

2000

4000

I (co

unts

)

2 θ (°)

Snliquid

ZrSn2

More ternary phases900 °C

nominal compositionanalyzed compositions

Fe ZrZrFe2 (C15) Zr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

N

θ

X’’

X’

Y

analyzed compositions

Snliquid

ZrSn2

More ternary phases900 °C

nominal compositionanalyzed compositions

Fe ZrZrFe2 (C15) Zr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

N

θ

X’’

X’

analyzed compositions

Snliquid

ZrSn2

More ternary phases900 °C

nominal compositionanalyzed compositions

Fe ZrZrFe2 (C15) Zr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

N

θ

X’’

X’

analyzed compositions

4000

More ternary phasesthe structure could be identified to be isotypic with MgFe6Ge6 like UFe6Sn6it had been previously reported in the literature [Mazet, JMMM, 2000]

30 40 50 60 70 80 90 100 110 120

0

2000

I (co

unts

)

2 θ (°)

Fe6Sn6ZrFe5Sn3bcc

Snliquid

ZrSn2

More ternary phases900 °C

nominal compositionanalyzed compositions

Fe ZrZrFe2 (C15) Zr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

N

θ

X’’

X’

Fe6Sn6Zr

analyzed compositions

Snliquid

ZrSn2

N phase: composition900 °C

nominal compositionanalyzed compositions

Fe ZrZrFe2 (C15) Zr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

N

θ

X’’

X’

analyzed compositions

Snliquid

ZrSn2

900 °C

N phase: composition

nominal compositionanalyzed compositions

Fe ZrZrFe2 (C15) Zr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

N

θ

X’’

X’

analyzed compositions

N phase: indexation

6000

8000

Automatic indexation was performed by TOPAS

20 30 40 50 60 70 80 90 100 110 120

0

2000

4000

I (co

unts

)

2 θ (°)

6000

8000

N phase: indexationAutomatic indexation was performed by TOPAS

Cell found: orthorhombic a=8.174 Åb=8.932 Åc=10.719 Å

Analysis of the extinctions:space group Pnma

20 30 40 50 60 70 80 90 100 110 120

0

2000

4000

I (co

unts

)

2 θ (°)

N phase: structure solution• estimation of the density from the known density of the binary compounds: ~7.8 c/cm3

• estimation of the cell content from the density, composition andcell volume: 15.2 Fe, 14.9 Sn and 11.5 Zr atoms• in Pnma the lowest Wyckoff multiplicity is 4• hypothesized stoichiometric composition Fe4Sn4Zr3 with 4 formula unitsper cell

• structure solution was done ab initio by global-optimization• structure solution was done ab initio by global-optimizationin the direct space• using reverse Monte-Carlo and parallel tempering as implementedin Fox program

N phase: final Rietveld refinement

8000

Atom Wyckoff x y zZr 8d 0.0519(4) 0.5511(3) 0.1357(3)Fe 8d 0.2034(7) 0.0078(6) 0.4042(5)Sn 8d 0.3839(4) 0.0693(3) 0.1448(2)Zr 4c 0.0544(6) 1/4 0.5569(5)Fe 4c 0.1286(11) 1/4 0.2655(7)Fe 4c 0.1896(11) 1/4 0.0261(7)Sn 4c 0.2400(5) 1/4 0.7879(3)Sn 4c 0.3828(5) 1/4 0.4213(3)

20 30 40 50 60 70 80 90 100 110 120

0

2000

4000

6000

I (co

unts

)

2 θ (°)

RB=5.5%

χ2=2.19

Sc3Mn2Ga6 structure typeIsotypic with Co4Ga4Zr3

Sn

Equilibrium for each sample900 °C

liquid

ZrSn2

Fe ZrZr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

X’N

θ

Fe5Sn3

X’’

ZrFe2 (C15)

C36

Y

Fe6Sn6Zr

Sn

Equilibrium for each sample900 °C

liquid

ZrSn2nominal compositionanalyzed compositions

Fe ZrZr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

X’N

θ

Fe5Sn3

X’’

ZrFe2 (C15)

C36

Y

Fe6Sn6Zr

analyzed compositions

Sn

Equilibrium for each sample900 °C

liquid

ZrSn2nominal compositionanalyzed compositions

Fe ZrZr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

X’N

θ

Fe5Sn3

X’’

ZrFe2 (C15)

C36

Y

Fe6Sn6Zr

analyzed compositions

Sn

Equilibrium for each sample900 °C

liquid

ZrSn2

Fe ZrZr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

X’N

θ

Fe5Sn3

X’’

ZrFe2 (C15)

C36

Y

Fe6Sn6Zr

Sn

Equilibrium for each sample900 °C

liquid

ZrSn2

Fe ZrZr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

X’N

θ

Fe5Sn3

X’’

ZrFe2 (C15)

C36

Y

Fe6Sn6Zr

nominal compositionanalyzed compositions

Sn

Equilibrium for each sample900 °C

liquid

ZrSn2

20 µm

Fe ZrZr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

X’N

θ

Fe5Sn3

X’’

ZrFe2 (C15)

C36

Y

Fe6Sn6Zr

ααααFe Fe6Sn6Zr

nominal compositionanalyzed compositions

Sn

Equilibrium for each sample900 °C

liquid

ZrSn2

Fe ZrZr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

X’N

θ

Fe5Sn3

X’’

ZrFe2 (C15)

C36

Y

Fe6Sn6Zr

nominal compositionanalyzed compositions

Sn

Equilibrium for each sample900 °C

liquid

ZrSn2

Fe ZrZr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

X’N

θ

Fe5Sn3

X’’

ZrFe2 (C15)

C36

Y

Fe6Sn6Zr

Sn

Equilibrium for each sample900 °C

liquid

ZrSn2

Fe ZrZr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

X’N

θ

Fe5Sn3

X’’

ZrFe2 (C15)

C36

Y

Fe6Sn6Zr

nominal compositionanalyzed compositions

Sn

Equilibrium for each sample900 °C

liquid

ZrSn2

Fe ZrZr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

X’N

θ

Fe5Sn3

X’’

ZrFe2 (C15)

C36

Y

Fe6Sn6Zr

nominal compositionanalyzed compositions

Sn

Equilibrium for each sample900 °C

liquid

ZrSn2

Fe ZrZr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

X’N

θ

Fe5Sn3

X’’

ZrFe2 (C15)

C36

Y

Fe6Sn6Zr

Sn

Equilibrium for each sample900 °C

liquid

ZrSn2

Fe ZrZr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

X’N

θ

Fe5Sn3

X’’

ZrFe2 (C15)

C36

Y

Fe6Sn6Zr

nominal compositionanalyzed compositions

Sn

Equilibrium for each sample900 °C

liquid

ZrSn2

20 µm

Fe ZrZr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

X’N

θ

Fe5Sn3

X’’

ZrFe2 (C15)

C36

Y

Fe6Sn6Zr

ααααFe C36 Y

nominal compositionanalyzed compositions

Sn

Equilibrium for each sample900 °C

liquid

ZrSn2

Fe ZrZr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

X’N

θ

Fe5Sn3

X’’

ZrFe2 (C15)

C36

Y

Fe6Sn6Zr

nominal compositionanalyzed compositions

Sn

Equilibrium for each sample900 °C

liquid

ZrSn2

Fe ZrZr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

X’N

θ

Fe5Sn3

X’’

ZrFe2 (C15)

C36

Y

Fe6Sn6Zr

Sn

Equilibrium for each sample900 °C

liquid

ZrSn2

Fe ZrZr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

X’N

θ

Fe5Sn3

X’’

ZrFe2 (C15)

C36

Y

Fe6Sn6Zr

nominal compositionanalyzed compositions

Sn

Equilibrium for each sample900 °C

liquid

ZrSn2

Fe ZrZr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

X’N

θ

Fe5Sn3

X’’

ZrFe2 (C15)

C36

Y

Fe6Sn6Zr

nominal compositionanalyzed compositions

Sn

Equilibrium for each sample900 °C

liquid

ZrSn2

Fe ZrZr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

X’N

θ

Fe5Sn3

X’’

ZrFe2 (C15)

C36

Y

Fe6Sn6Zr

Sn

Equilibrium for each sample900 °C

liquid

ZrSn2

Fe ZrZr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

X’N

θ

Fe5Sn3

X’’

ZrFe2 (C15)

C36

Y

Fe6Sn6Zr

nominal compositionanalyzed compositions

Sn

Equilibrium for each sample900 °C

liquid

ZrSn2

20 µm

Fe ZrZr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

X’N

θ

Fe5Sn3

X’’

ZrFe2 (C15)

C36

Y

Fe6Sn6Zr

20 µm

ααααFe C15 C36

nominal compositionanalyzed compositions

Sn

Equilibrium for each sample900 °C

liquid

ZrSn2

Fe ZrZr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

X’N

θ

Fe5Sn3

X’’

ZrFe2 (C15)

C36

Y

Fe6Sn6Zr

Sn

Equilibrium for each sample900 °C

liquid

ZrSn2

Fe ZrZr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

X’N

θ

Fe5Sn3

X’’

ZrFe2 (C15)

C36

Y

Fe6Sn6Zr

nominal compositionanalyzed compositions

Sn

Equilibrium for each sample900 °C

liquid

ZrSn2

Fe ZrZr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

X’N

θ

Fe5Sn3

X’’

ZrFe2 (C15)

C36

Y

Fe6Sn6Zr

nominal compositionanalyzed compositions

Sn

Equilibrium for each sample900 °C

liquid

ZrSn2

Fe ZrZr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

X’N

θ

Fe5Sn3

X’’

ZrFe2 (C15)

C36

Y

Fe6Sn6Zr

nominal compositionanalyzed compositions

Sn

Equilibrium for each sample900 °C

liquid

ZrSn2

Fe ZrZr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

X’N

θ

Fe5Sn3

X’’

ZrFe2 (C15)

C36

Y

Fe6Sn6Zr

Sn

Equilibrium for each sample900 °C

liquid

ZrSn2

Fe ZrZr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

X’N

θ

Fe5Sn3

X’’

ZrFe2 (C15)

C36

Y

Fe6Sn6Zr

nominal compositionanalyzed compositions

Sn

Equilibrium for each sample900 °C

liquid

ZrSn2

Fe ZrZr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

X’N

θ

Fe5Sn3

X’’

ZrFe2 (C15)

C36

Y

Fe6Sn6Zr

nominal compositionanalyzed compositions

Sn

Equilibrium for each sample900 °C

liquid

ZrSn2

Fe ZrZr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

X’N

θ

Fe5Sn3

X’’

ZrFe2 (C15)

C36

Y

Fe6Sn6Zr

Sn

Equilibrium for each sample900 °C

liquid

ZrSn2

Fe ZrZr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

X’N

θ

Fe5Sn3

X’’

ZrFe2 (C15)

C36

Y

Fe6Sn6Zr

nominal compositionanalyzed compositions

Sn

Equilibrium for each sample900 °C

liquid

ZrSn2

20 µm

Fe ZrZr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

X’N

θ

Fe5Sn3

X’’

ZrFe2 (C15)

C36

Y

Fe6Sn6Zr

20 µm

C36 Y N

nominal compositionanalyzed compositions

Sn

Final diagram900 °C

liquid

ZrSn2

Fe ZrZr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

X’N

θ

Fe5Sn3

X’’

ZrFe2 (C15)

C36

Y

Fe6Sn6Zr

SummaryNieva and Arias,J. Nucl. Mater. 359 (2006) 29-40

Snliquid

ZrSn2

900 °C

Fe ZrZrFe2 (C15) Zr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

XN

θ

Snliquid

ZrSn2

900 °C

This work

Summary

Fe ZrZrFe2 (C15) Zr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

N

θ

X’’

X’

Snliquid

ZrSn2

900 °C

This work

Summary

Fe ZrZrFe2 (C15) Zr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

N

θ

X’’

X’

Sn 900 °Cliquid

ZrSn2

This work

Summary

Fe ZrZr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

X’N

θ

Fe5Sn3

X’’

ZrFe2 (C15)

C36

Y

Fe6Sn6Zr

This work

SummarySn 900 °C

liquid

ZrSn2

Fe ZrZr2Fe βZr

αZr

Zr4Sn

Zr5Sn3

Zr5Sn4

X’N

θ

Fe5Sn3

X’’

ZrFe2 (C15)

C36

Y

Fe6Sn6Zr

Conclusion

• major findings- two phases X’ and X’’ in place of X- three new phases C36, Y and Fe6Sn6Zr- complete ab initio structure determination of the N phase

• results published in [Intermetallics, 18 (2010) 2224-8]

• calorimetric measurements of the enthalpy of formation of the intermetallic are in progress

• results published in [Intermetallics, 18 (2010) 2224-8]

• ab initio DFT calculations of the enthalpy of formation of the compounds

• thermodynamic modeling and inclusion in the zircobase

• in progress: structure determination of X’, X’’ and Y

Pourcentage massique de Sn

Liquide 2

Sn

3

Liquide 1L1 + L2

1130°C31 69

1495°C

910°C

8

94.5

1000

1200

1400

16000 10 20 30 40 50 60 70 80 90 100

α Fe 9.2

Tem

péra

ture

°C

1538°C

δFe

912°C

1394°C

Fe 5

Sn

Fe 3

Sn

2

Pourcentage atomique de Sn SnFe

806°C

770°C

513°C

765°C

607°C

94.5

.

96.797.5

99.76

FeS

n

FeS

n2

231.9681°C231.96°C

βSn

10 20 30 40 50 60 70 80 90 1000200

400

600

800

α Fe

Tc770°C

9.2

6.5

3.5

Tem

péra

ture

Liquide

1987 °C

ηηηηβZr

1327 °C

1917

1142 °C

1855 °C

11.8

1200

1400

1600

1800

2000

2200Te

mpé

ratu

re °C

Pourcentage massique de Sn0 10 20 30 40 50 60 70 80 90 100

1600 °C

943 °C

Pourcentage atomique de Sn SnZr10 20 30 40 50 60 70 80 90 100

Sn

Zr5Sn3

0

79

β

232°C

αZr

1142 °C

ZrSn2Zr5Sn4

Zr4Sn

74.9

200

400

600

800

1000

1200

Tem

péra

ture

ouA15

232 °C