O F. Schirmer - Centre national de la recherche...

45
Bound small hole polarons in oxides and related materials: strong colorations and high ionization energies O F Schirmer O. F . Schirmer Universität Osnabrück

Transcript of O F. Schirmer - Centre national de la recherche...

  • Bound small hole polarons in oxides and related materials:  

    strong colorations and high ionization energies

    O F SchirmerO. F. Schirmer

    Universität Osnabrück

  • central example:  acceptor Li+Zn in ZnO

  • O2‐O‐

    O

  • • Small polaron: carrier localized at one of severalequivalent sites ‐ here: hole–polaron bound toacceptoracceptor

    o Large polaron: usually delocalized over many equivalent sites

    • Localization by short range carrier – lattice coupling

    o Coupling by long range Coulomb interaction (Fröhlich‐coupling)

    • Transport from a site to a neighbouring one bythermally activated hopping (incoherent)thermally activated hopping (incoherent)

    o Transport by coherent bandlike tunnelingp y g

  • Evidence by:   

    1) Paramagnetic resonance of unpaired spins:1) Paramagnetic resonance of unpaired spins:

    2)  Typical optical absorption:

    3) Th ti l d ti f t t d l l3) Theoretical reproduction of structure and energy levels:

  • Carriers are provided by:     

    1) doping1) doping

    2)   optical irradiation

  • Summarizing overviews: 

    O. F. Schirmer,  J. Phys.: Condens. Matter 18, R667 (2006)

    and J. Phys.:  Condens. Matter 23, 334218 (2011)

  • Menu:

    1) Formation of small polarons, their optical absorptionsand their energies of ionization

    2) Basic features of the theoretical reproduction of boundsmall polaronssmall polarons

    3) Luminescence accompanying recombination with boundsmall polarons

    4) E l f b d ll l i i d t ‘4) Examples of bound small polarons in ‚semiconductor‘ (high gap) materials

  • Bound small polarons:  

    Typical features of

    • their optical absorptions

    • their energies of ionizationg

  • Optical absorption Most simple example:  2 equivalent sites(localization of a hole at one of 2 equivalent sites)  

  • ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−

    +⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛=

    1001

    1001

    0110 2KQVQJH ⎟⎟

    ⎞⎜⎜⎝

    ⎛LR

    operating on

    ⎟⎟⎞

    ⎜⎜⎛ +

    = 22 JKQVQ

    H ⎟⎠

    ⎜⎝ +−

    2KQVQJ

    KVEP 4/2= KVQ 2/min ±=minimal energy at

  • Optical absorption:Optical absorption:

    O‐ ‐ O2‐ charge transfer under Franck – Condon conditions

    ))4(exp()()( 222 pEwdJ −−∗∝ ωωωα hh

    )8/(1 0ωhpEw =

    a) high oscillator strengtha)  high oscillator strength

    b) largest possible width of an absorption band for given peak energyfor given peak energy. 

    c) characteristic fingerprint, indep. of EP :W2/M = ln 2 * 8 E * / 4 E ~ 0 14 eVωhW2/M = ln 2 * 8 EP *    o / 4 EP   0.14 eV

    d)  width of the ‚zero‐phonon band‘ :  

    ωh

    2J * exp(‐ 4 EP /      o)∝ ωh

  • 2‐well small polaron absorption

  • Tetrahedral symmetry:  ZnO:Li , BeO:Liy y

    ⎞⎛1⎟⎞⎜⎛ +2 JJJKQVQ

    ⎟⎟⎟⎟⎟⎞

    ⎜⎜⎜⎜⎜⎛

    321

    ⎟⎟⎟⎟⎞

    ⎜⎜⎜⎜⎛

    ++

    +

    =−−

    −2

    111

    2111

    111

    JKQVQJJJJKQVQJJJJKQVQ

    Hoper‐ating    on

    ⎟⎟⎠

    ⎜⎜⎝4⎟

    ⎟⎠

    ⎜⎜⎝ +−−

    2111

    111

    KQVQJJJQQ

  • ))3/8(exp(/)( 22|||| JEwJd p +−−∗∝ ωωα h))23/8(exp(/)( 22 JEwJd p −−−∗∝ ⊥⊥ ωωα h

    01 )3/16( ωhpEw =−

    p⊥⊥

  • J = 0.18 eV, EP = 1.18 eV, W2/M = 0.17 eV

  • Energy of ionization, Eth :  

    Contributions to energy of carrier: 

    1) Stabilization by lattice distortion, parameter EP2) Stabilization by Coulomb potential of acceptor, parameter Edd3) Destabilization by rise of kinetic energy, typically W/2

  • lattice distortion, parameter EP

    Coulomb potential of acceptor, parameter Ed

    rise of kinetic energy typically W/2rise of kinetic energy, typically W/2

    Eth =  EP +  Ed – Wb/2          Eopt = 8/3 EP   +‐ a J

  • Concerning the theoretical treatment of bound small polarons:structure and energy levelsgy

    ZnO:Li

    ~ 0 7 eV

    ZnO:LiZn

    0.09 – 0.2 eVDFT (LDA)

    ~ 0.7 eV

    S L (2011)S. Lany (2011)

  • In order to calculate the properties of a bound polaron the environment of thebinding defect, consisting of hundreds of ions, must be included. This implies a 

    d h h b f lcorresponding high number of electrons.  

    This Many‐Electron‐Problem can be tackled by using ‚density functional theory(DFT)‘  (W. Kohn, Nobel prize 1998).  For instance, the energy is described as a functional of the electron density:  y

    E[ρ] = T[ρ] + V[ρ] + Exc[ρ] + ….. 

    ρ =  …  ρi  + ρj + ….

    V[ρ] = ∫∫1/(dist bet each two elec ) ( ρ + ρ + )( ρ + ρ + ) d(all elec )V[ρ] =   ∫∫1/(dist. bet. each two elec.) ( ….. ρi  + ρj + …. )(….ρi  + ρj + ….) d(all. elec.)

    Coulomb‐interaction of the electrons; contains also the self‐interaction of singlelelectrons, e.g. ρi ρi .     

  • This is not correct physically: there is no self‐interaction. Consequence:  The electron‐electron repulsion is underestimated. Therefore it costs lessenergy to put an additional electron into the system as compared to theenergy to put an additional electron into the system, as compared to the‚correct‘ description. 

    The energy distance to the excited states is too low:The energy distance to the excited states is too low:If the next higher state is not populated, this cor‐responds to a hole with a low ionization energy. 

    Since recently there are tricks by which thecompensation of the erroneous self‐interaction can be described exactly. y

    One adds a repulsive additional potential, which strongly raises energy of next electronwhich strongly raises energy of next electron. A hole, captured in the corresponding level, then has a high ionization energy with respectto the occupied statesto the occupied states.  

  • Since the hole is expected to be localized at an O2‐ ion, the electronpotential at this ion is raised correspondingly:p p g y

    This raises the ionization energy of the holeThis raises the ionization energy of the hole.

    The strength of the potential is not arbitrary, however. The parameter λhs ischosen in such a way that all effects of self‐interaction are removed Thischosen in such a way, that all effects of self interaction are removed. Thisleads to exact solution of the problem.  

    In addition there are a series of approximation procedures which have aIn addition there are a series of approximation procedures, which have a good predictive power.  

    R l h l l li d O Mi i i iResult:  hole localized as O‐.  Minimizationof energy also with respect to latticedistortion yields polaronic state andionization energy.   

  • Luminescence:  recombination of electron with bound polaron

    f h h l l h f d hSo far: Transitions within hole polaron system with fixed chargestate (LiZn0 (h)).  

    When recombining with an electron the charge state changes : (e + h) What is the corresponding complete level scheme?(e + h).  What is the corresponding complete level scheme?

  • ZnO:LiZnO:Cu2+

    Emax = 1.95 eV

    ZnO:LiZnO:Cu

    D. Zwingel, J. Luminescence (1972)  Emax = Egap‐ 2 Eion→→ Eion ~  0.7 eV 

  • Examples of bound small polarons in semiconductor (orinsulating)  materials:

    Identification by: 

    •EPR

    •Optical absorption•Optical absorption

    •Theoretical simulation

  • Oxides  ‐ acceptor defects binding small hole polarons:  

    Tetrahedral coordination (4 O neighbors)  

    ZnO LiZn NaZn V Zn NOBeO Li VBeO LiBe VBe

    SiO2 AlSi GeSi2 Si Si

    Bi12MO20 (M = Ti or Si or Ge)

    BiM (antisite defect)

  • ZnO:LiZn Eionization = 0.64 eV      (Lany 2009)

  • ZnO:NaZn Eion = 0.79 eV (Lany 2009) Zn ion ( y )

    ZnO:VZn Eion = 0.95 eV (Chan, Lany, Zunger 2009) 

    ZnO:NO Eion =  1.62  eV     (Lany 2011)

  • SiO : Al (smoky quartz) ‐ Gillen Robertson 2012SiO2 : Al    (smoky quartz)   ‐ Gillen, Robertson 2012

    Ei = 2 5 eVEion   2.5 eV

  • For comparison:   oxygen vacancy, VO , in ZnO Clark et al.  20112011

    Electron(s): widely extended (no small polaron)Electron(s):  widely extended (no small polaron)

  • Further example for tetrahedral coordination

    Bi12TiO20 BiTii12TiO20        iTi

  • Oxides 

    Octahedral coordination (6 O neighbors): 

    MgO LiMg NaMg VMgCaO LiCaO LiCaSrO LiSr

    LiNbO3 VLiAl2O3 MgAl

    CeO2 LaCeCu O VCu2O VCu

  • oxides

    perovskitesperovskites

    BaTiO3 :  NaBa CaTi3 Ba,  Ti

    SrTiO3 :  FeTi AlTi

    CaTiO3 :  Vti

    LaMnO : SrLaMnO3 : SrLa

  • Tellurides, selenides, sulfides: 

    Tetrahedral coordination

    ZnTe,  ZnSe:          VZnZn

    NitridesNitrides

    Tetrahedral coordinationTetrahedral coordination

    GaN:   MgGa ,   BeGa ,  ZnGaGa Ga Ga

  • GaN:Mg deep: Eion =   0.18 eV (Lany, Zunger 2010)

    •polaronic•responsible for blue luminescenceof GaN (LED !!)

    GaN:Mg shallow:   Eion = 0.15 eV (Lany, Zunger 2010)

  • d h lldeep shallow

    GaN:Be 0 45 eV 0 15 eV (Lany Zunger 2010)GaN:Be 0.45 eV 0.15 eV (Lany, Zunger 2010)

    GaN:Zn 0.32 eV     0.25 eV   (Lany, Zunger 2010)

  • Bound small O‐ polaron also in topaz:Bound small O polaron also in topaz:  

  • Summary:

    •Small (hole) polarons bound to acceptor defects are often found in•Small (hole) polarons bound to acceptor defects are often found in semiconductor (or high gap) materials.   

    •Such polarons are characterized by intense wide absorption andluminescence bands with maxima in the visible spectral range. 

    •The interaction with the lattice is rather strong; EP  (typ.) ~ 1 eV

    •This implies high ionization energies and low p‐conductivity

    •Reliable ab‐initio predictions of the features of bound smallpolarons have become possible recently

  • Holes ‚self‐trapped‘, without attraction by acceptor:

    Theory: van de Walle et al (Phys Rev B 85 081109 (2012))Theory: van de Walle et al. (Phys. Rev. B 85, 081109 (2012))

    TiO2TiO2Al2O3Ga2O3In2O3

    a‐SiO2 O‐ hole small polaron, self‐trappeda SiO2 O hole small polaron, self trapped

    No ‚self‐trapped‘ holes in ZnO, cryst‐SiO2