Notes 2 Complex Vectors ECE 3317 Prof. Ji Chen Adapted from notes by Prof. Stuart A. Long Spring...

22
Notes 2 Complex Vectors ECE 3317 Prof. Ji Chen Adapted from notes by Prof. Stuart A. Long Spring 2014 1

Transcript of Notes 2 Complex Vectors ECE 3317 Prof. Ji Chen Adapted from notes by Prof. Stuart A. Long Spring...

Page 1: Notes 2 Complex Vectors ECE 3317 Prof. Ji Chen Adapted from notes by Prof. Stuart A. Long Spring 2014 1.

Notes 2 Complex Vectors

ECE 3317Prof. Ji Chen

Adapted from notes by Prof. Stuart A. Long

Spring 2014

1

Page 2: Notes 2 Complex Vectors ECE 3317 Prof. Ji Chen Adapted from notes by Prof. Stuart A. Long Spring 2014 1.

• V(t) is a time-varying function.

• V is a phasor (complex number).

• A bar underneath indicates a vector: V(t), V.

Notation

Appendices A, B, C, and D in the Shen & Kong text book list frequently used symbols and their units.

2

Page 3: Notes 2 Complex Vectors ECE 3317 Prof. Ji Chen Adapted from notes by Prof. Stuart A. Long Spring 2014 1.

Complex Numbers

Real part

| | jc a j b c e

MagnitudeImaginary part

Phase (always in radians)

1j

cos sinje j Euler's identity:

cos

sin

a c

b c

Im

c a jb

sinc

cosc

c

b

Rea

2 2 c a b

3

Page 4: Notes 2 Complex Vectors ECE 3317 Prof. Ji Chen Adapted from notes by Prof. Stuart A. Long Spring 2014 1.

Complex Numbers

** - - | | jc a jb a jb c e

Im

* c a jb

Re

a

b

Im

c a jb

Re

a

b

Complex conjugate

4

Page 5: Notes 2 Complex Vectors ECE 3317 Prof. Ji Chen Adapted from notes by Prof. Stuart A. Long Spring 2014 1.

1 2 1 2 1 2

1 2 1 2 1 2

( ) ( )

( ( )

)

c c a a j b b

c c a a j b b

Addition

Subtraction

Complex Algebra

1

2

1 1 1 1

2 2 2 2

| |

| |

j

j

c a jb c e

c a jb c e

5

Page 6: Notes 2 Complex Vectors ECE 3317 Prof. Ji Chen Adapted from notes by Prof. Stuart A. Long Spring 2014 1.

1

1 2 1 2

( )11

2 2

j

j

c c c c e

cce

c c

Multiplication

Division

Complex Algebra (cont.)

1

2

1 1 1 1

2 2 2 2

| |

| |

j

j

c a jb c e

c a jb c e

6

Page 7: Notes 2 Complex Vectors ECE 3317 Prof. Ji Chen Adapted from notes by Prof. Stuart A. Long Spring 2014 1.

1/2

/2

j

j

c c e

c e

Square Root

where n is an integer

The complex square root will have two possible values.

(The principal branch is unique.)

1/21/2

1/22

/2

/2

j

j n

j n

j jn

c c e

c e

c e

c e e

c

jc c e

(principal branch)

Principle square root

7

Page 8: Notes 2 Complex Vectors ECE 3317 Prof. Ji Chen Adapted from notes by Prof. Stuart A. Long Spring 2014 1.

0( ) = cos( )V t V t

0V jV e Define the phasor :

Time-Harmonic Quantities

2

f

Amplitude Angular Phase

Frequency

We then have

( ) = Re V j tV t e

0( ) = Re j j tV t V e e

From Euler’s identity: 1 T

f

8

Page 9: Notes 2 Complex Vectors ECE 3317 Prof. Ji Chen Adapted from notes by Prof. Stuart A. Long Spring 2014 1.

0( ) = cos( )V t V t

Time-Harmonic Quantities (cont.)

( ) VV t

( ) = Re V j tV t e

0V = jV e

Time-domain Phasor domain

going from time domain to phasor domain

going from phasor domain to time domain

9

Page 10: Notes 2 Complex Vectors ECE 3317 Prof. Ji Chen Adapted from notes by Prof. Stuart A. Long Spring 2014 1.

B

B

A

V(t)

t

C CA

Re

Im

Graphical Illustration

0( ) = cos( )V t V t

The complex number V

0V

0( ) = Re

Re V

j t

j t

V t V e

e

0V = jV e

10

Page 11: Notes 2 Complex Vectors ECE 3317 Prof. Ji Chen Adapted from notes by Prof. Stuart A. Long Spring 2014 1.

( ) ( ) U+V

( ) V

( ) ( ) UV

U t V t

V t jt

U t V t

Note :

However,

Time-Harmonic Quantities (cont.)

( ) VV t

There are no time derivatives in the phasor domain!

All phasors are complex numbers, but not all complex numbers are phasors!

This assumes that the two sinusoidal signals are at the same frequency.

11

Page 12: Notes 2 Complex Vectors ECE 3317 Prof. Ji Chen Adapted from notes by Prof. Stuart A. Long Spring 2014 1.

ˆ cos( ) ( ˆ cosˆ c ))os( ) (y zy zx xVV t t V tVt z yx

Transform each component of a time-harmonic vector function into a complex vector.

Complex Vectors

ˆˆV ˆ zx yy zx

j jj

V Ve V ee

yx z

ˆ ˆ ˆ( ) cos( ) cos( ) cos( )

ˆ ˆ ˆRe

Re V

yx z

x x y y z z

jj j j tx y z

j t

V t V t V t zV t

V e V e V e e

e

x y

x y z

12

To see this:

( ) VV t Hence

Page 13: Notes 2 Complex Vectors ECE 3317 Prof. Ji Chen Adapted from notes by Prof. Stuart A. Long Spring 2014 1.

Example 1.15 (Shen & Kong)

( ) Re A

ˆ ˆ( ) Re ( )

ˆ ˆ( ) Re ( )(cos sin )

ˆ ˆ( ) cos sin

j t

j t

A t e

A t x jy e

A t x jy t j t

A t x t y t

ωt = 3π/2

ωt = π

ωt = π/2

y

xωt = 0

The vector rotates with time!

ˆ ˆA jx + yAssume

Find the corresponding time-domain vector

ˆ ˆ( ) cos sinA t x t y t

2 2 2 2( ) cos sin 1x yA t A t tA

13

Page 14: Notes 2 Complex Vectors ECE 3317 Prof. Ji Chen Adapted from notes by Prof. Stuart A. Long Spring 2014 1.

Example 1.15 (cont.)

ˆ ˆ( , ) cos sinE t z x t kz y t kz

Practical application:A circular-polarized plane wave (discussed later).

For a fixed value of z, the electric field vector rotates with time.

14

E (z,t)

z

Page 15: Notes 2 Complex Vectors ECE 3317 Prof. Ji Chen Adapted from notes by Prof. Stuart A. Long Spring 2014 1.

Example 1.16 (Shen & Kong)

ˆ ˆ ˆ ˆA ( ) cos sin

ˆ ˆ ˆ ˆ ˆ ˆ B ( ) ( ) sin cos

ˆA B (A B A B )

ˆ (1)( 1) ( )( )

ˆ ( 1) ( 1)

0

A B

and

x y y x

j A t t t

j j j B t t t

z

z j j

z

Recall from example 1.15

Let

x y x y

x y x y x y

2 2

0 ( ) ( ) 0

ˆ ˆ ( ) ( ) cos s

in

A t B t

A t B t z t t z

However,

We have to be careful about drawing conclusions from cross and dot products in the phasor domain!

15

Page 16: Notes 2 Complex Vectors ECE 3317 Prof. Ji Chen Adapted from notes by Prof. Stuart A. Long Spring 2014 1.

2 2 200

22 0

0

2 22 0 0

1( ) cos ( )

1 cos[2( )]( )

2

( )2 2

T

T

V t V t dtT

V tV t dt

T

V VTV t

T

Time Average of Time-Harmonic Quantities

00

1( ) cos( ) 0

TV t V t dt

T

21T =

f

22 0( )

2

VV t

0( ) cos( )V t V t

16

Hence

Page 17: Notes 2 Complex Vectors ECE 3317 Prof. Ji Chen Adapted from notes by Prof. Stuart A. Long Spring 2014 1.

0 0 0

0 00

0 0

0 0

1( ) ( ) cos( ) cos( )

cos cos 2

2

cos

2

cos

2

T

T

V t I t V I t t dtT

tV Idt

T

V IT

T

V I

Time Average of Time-Harmonic Quantities (cont.)

0 00

1( ) cos( ) cos(

TV t I t V t I t dt

T

Next, consider the time average of a product of sinusoids:

17

Sinusoidal (time ave = 0)

Page 18: Notes 2 Complex Vectors ECE 3317 Prof. Ji Chen Adapted from notes by Prof. Stuart A. Long Spring 2014 1.

**0 0

0 0

0 0

VI j j

j j

j

V e I e

V e I e

V I e

Time Average of Time-Harmonic Quantities (cont.)

*0 0Re VI cosV I

0 0

cos( ) ( )

2V t I t V I

1( ) ( ) Re VI

2*V t I t

(from previous slide)

Hence

Next, consider

Hence,

Recall that

18

Page 19: Notes 2 Complex Vectors ECE 3317 Prof. Ji Chen Adapted from notes by Prof. Stuart A. Long Spring 2014 1.

Time Average of Time-Harmonic Quantities (cont.)

The results directly extend to vectors that vary sinusoidally in time.

* * *

* * *

1 1 1Re D E Re D E Re D E

2 2 21

Re D E + D E + D E2

x x y y z z

x x y y z z

x x y y z z

D E = D E + D E + D E

x x y y z zD t E t D E + D E + D E

Hence *1Re D E

2D t E t

, , , ,Re D j tx y z x y zD t e etc.

Consider:

19

Page 20: Notes 2 Complex Vectors ECE 3317 Prof. Ji Chen Adapted from notes by Prof. Stuart A. Long Spring 2014 1.

Time Average of Time-Harmonic Quantities (cont.)

*1Re D E

2D t E t

*1Re E H

2E t H t

The result holds for both dot product and cross products.

, , , Re D , , j tD x y z t x y z e etc.

20

Page 21: Notes 2 Complex Vectors ECE 3317 Prof. Ji Chen Adapted from notes by Prof. Stuart A. Long Spring 2014 1.

Time Average of Time-Harmonic Quantities (cont.)

To illustrate, consider the time-average stored electric energy for a sinusoidal field.

1

2EU t D t E t

*1Re D E

4EU t

*

1

21 1

Re D E2 2

EU t D t E t

21

(from ECE 2317)

Page 22: Notes 2 Complex Vectors ECE 3317 Prof. Ji Chen Adapted from notes by Prof. Stuart A. Long Spring 2014 1.

Time Average of Time-Harmonic Quantities (cont.)

Similarly,

*1Re B H

4HU t

22