NORHASMIRA IDAYU BINTI HARUN · 2020. 12. 15. · NORHASMIRA IDAYU BINTI HARUN Thesis submitted in...

23
THE ASSESSMENT OF RIVER WATER QUALITY IN KUANTAN RIVER BASIN NORHASMIRA IDAYU BINTI HARUN MASTER OF SCIENCE UNIVERSITI MALAYSIA PAHANG

Transcript of NORHASMIRA IDAYU BINTI HARUN · 2020. 12. 15. · NORHASMIRA IDAYU BINTI HARUN Thesis submitted in...

  • THE ASSESSMENT OF RIVER WATER

    QUALITY IN KUANTAN

    RIVER BASIN

    NORHASMIRA IDAYU BINTI HARUN

    MASTER OF SCIENCE

    UNIVERSITI MALAYSIA PAHANG

  • SUPERVISOR’S DECLARATION

    We hereby declare that we have checked this thesis, and, in our opinions, this thesis is

    adequate in terms of scope and quality for the award of the degree of Master of Science.

    _______________________________

    (Supervisor’s Signature)

    Full Name : DR. MOHD HASBI AB. RAHIM

    Position : ASSOCIATE PROFESSOR

    Date :

    _______________________________

    (Co-supervisor’s Signature)

    Full Name : DR. SAIFUL NIZAM TAJUDDIN

    Position : ASSOCIATE PROFESSOR

    Date :

  • STUDENT’S DECLARATION

    I hereby declare that the work in this thesis is based on my original work except for

    quotations and citations which have been duly acknowledged. I also declare that it has

    not been previously or concurrently submitted for any other degree at Universiti

    Malaysia Pahang or any other institutions.

    _______________________________

    (Student’s Signature)

    Full Name : NORHASMIRA IDAYU BINTI HARUN

    ID Number : MKT 15001

    Date :

  • THE ASSESSMENT OF RIVER WATER QUALITY

    IN KUANTAN RIVER BASIN

    NORHASMIRA IDAYU BINTI HARUN

    Thesis submitted in fulfillment of the requirements

    for the award of the degree of

    Master of Science

    Faculty of Industrial Sciences & Technology

    UNIVERSITI MALAYSIA PAHANG

    AUGUST 2019

  • ii

    ACKNOWLEDGEMENTS

    With the name of Allah, Most Gracious and Most Merciful.

    First of all, all praises and thanks to Allah, for giving me enough time to complete my

    thesis. Secondly, it is dedicated to my teachers and supervisors, Associate Professor Dr.

    Mohd Hasbi Ab. Rahim, Dr. Daisuke Kozaki, Associate Professor Dr. Saiful Nizam

    Tajuddin, and Dr. Wan Nur Syidah, the lecturers and the staff of Universiti Malaysia

    Pahang, especially Ms. Anida, for teaching, assissting and guiding me in the research

    works. Then specially to my lovely husband, Kang Wei, my parents, Harun Bin

    Abdullah and Napisah Binti Taib, my children and my siblings for their endless support

    and love. Lastly to my research team, Aini Syazana Binti Derahman, Nurul Syazwani

    Binti Alias and Kee Seng Pu, for assisting me during the research.

  • iii

    ABSTRAK

    Penilaian kualiti air sungai adalah sangat penting kepada masyarakat dan alam sekitar.

    Sebarang kemorosotan kualiti air sungai akan mendorong kepada risiko yang besar

    kepada ekosistem hidupan serta boleh memberi kesan negatif kepada ekonomi setempat.

    Oleh itu, pengawasan berterusan kualiti air serta kaedah rawatan dan pengurusan yang

    sesuai adalah perlu. Maka, penyelidikan ini berfokus kepada pengawasan kualiti air

    sungai di kawasan lembangan Sungai Kuantan. Ia melibatkan Sungai Galing, Sungai

    Belat dan Sungai Kuantan kerana sungai- sungai ini saling berkait antara satu sama lain.

    Pefahaman terhadap hubungkait antara ion inorganik dan parameter terpilih sangat

    penting dan salah satu langkah penambahbaikan dalam pengurusan air sungai.

    Penyelidikan ini menumpukan kepada kefahaman terhadap taburan kepekatan ion

    inorganik dan parameter kualiti air yang terpilih dan pengkelasan sungai berdasarkan

    Piawaian Kualiti Air Kebangsaan (NWQS). Selain itu, pengkajian pengawasan secara

    terperinci juga dilakukan kepada sungai yang paling tercemar di antara sungai-sungai

    yang di kaji. Sistem ion kromatografi di gunakan dalam penyelidikan ini terutamanya

    dalam menganalisa sifat ion inorganik. Ion HCO3- di kaji dengan menggunakan Ion

    Kromatografi Pengecualian, manakala SO42-, Cl-, NO3

    -, Na+, NH4+, K+, Mg2+, Ca2+ ion

    di kaji dengan menggunakan Ion Kromatografi Pengecualian/ Kation Penukaran

    Kromatografi. Selain itu, analisis statistik dibuat dengan menggunakan ANOVA.

    Berdasarkan penyelidikan ini, pengkelasan berdasarkan NWQS telah dibuat dan

    didapati bahawa Sungai Galing adalah yang paling tercemar dalam kalangan sungai

    yang dikaji. Daripada kepekatan Cl- and Na+, didapati di kawasan G2 sangat tinggi

    disebabkan masalah persekitaran dan pengaruh daripada bahan buangan organik

    berbanding dengan kawasan yang lain. Manakala jumlah nitrogen (TN), keperluan

    oksigen kimia (COD) dan oksigen terlarut (DO), kepekatannya sangat tinggi

    terutamanya pada sebelah barat Sungai Galing. Hal ini disebabkan oleh sisa buangan

    yang tidak dirawat dengan sempurna daripada kawasan industri, perumahan dan

    pertanian yang berdekatan seterusnya menghasilkan pengkelasan yang tinggi bagi

    sebelah barat Sungai Galing berbanding kepada kawasan sebelah timur sungai Galing.

    Nilai pH di kawasan pangkal sungai di sebelah barat Sungai Galing (G1a-1 and G1a-2)

    di kawasan industri dikelaskan dalam kelas V atau dekat dengan kelas V. Secara

    umumnya, penyelidikan ini menunjukkan status terkini bagi kualiti air sungai di

    kawasan Kuantan. Selain itu, penggunaan Ion Pengecualian Kromatografi di dapati

    mampu menjadi rujukan untuk penyelidik alam sekitar yang lain dan juga institusi

    berkaitan dalam proses pengawasan kualiti air sungai.

  • iv

    ABSTRACT

    Assessing water quality is of crucial importance to both society and the environment.

    Deterioration in water quality induces substantial risk to the living ecosystem and can

    have detrimental effects on the local economy. Therefore continuous water monitoring

    with appropriate treatment and management approach is necessary. Thus, the current

    study focuses on the assessment of river water quality in Kuantan River basin. It

    involved Galing, Belat and Kuantan rivers that link to each other. Understanding the

    relationship of inorganic ions and selected parameters are important and one of the

    improvements for river water management. Thus, the research focuses on understanding

    the distribution of inorganic ions concentrations and its relationship with selected water

    quality parameters subsequently classification of the monitored rivers was made based

    on the National Water Quality Standards (NWQS). The detail monitoring was done to

    the most polluted river among the study area. The ion chromatographic systems were

    used for analyzing the behavior of inorganic ions. The HCO3- ion concentration was

    determined using Ion Exclusion Chromatography. Meanwhile, SO42-, Cl-, NO3

    -, Na+,

    NH4+, K+, Mg2+, Ca2+ ions were identified by Ion-Exclusion Chromatography/Cation-

    Exchange Chromatography. The statistical analysis was made by using ANOVA. The

    classification was made based on the NWQS indicates that the Galing River is the most

    polluted river in the study area. Thus, detail monitoring on Galing River is done and

    from the obtained results, the concentration of Cl- and Na+, is high due to the

    environmental burden and anthropogenic influence that was detected in G2 compared to

    the rest of the Galing River area. In terms of total nitrogen (TN), chemical oxygen

    demand (COD), and dissolved oxygen (DO), the western side of the Galing River was

    affected by higher human activity such as wastewater from industrial, household, and

    agricultural, which classify within higher class compared to the eastern side. Class V or

    near Class V for pH values were obtained at upstream on the western side of the Galing

    River (G1a-1 and G1a-2) in the industrial area. In general, the study provides the

    current status of river water quality on Kuantan river basin. On top of that, the

    application of ion exclusion chromatography can be used as the reference for other

    environmental researcher and related institutional bodies in water monitoring process.

  • v

    TABLE OF CONTENT

    DECLARATION

    TITLE PAGE

    ACKNOWLEDGEMENTS ii

    ABSTRAK ii

    ABSTRACT iv

    TABLE OF CONTENT v

    LIST OF TABLES ix

    LIST OF FIGURES xi

    LIST OF SYMBOLS xii

    LIST OF ABBREVIATIONS xiii

    CHAPTER 1 INTRODUCTION 1

    1.1 Background of study 1

    1.2 Problem statement 3

    1.3 Research objectives 4

    1.4 Scope of study 4

    1.5 Significance of study 5

    1.6 Thesis summary 5

    CHAPTER 2 LITERATURE REVIEW 7

    2.1 Introduction 7

  • vi

    2.2 Overview of selected water quality parameters practiced in Malaysia 7

    2.2.1 Dissolved Oxygen (DO) 8

    2.2.2 pH 9

    2.2.3 Total Nitrogen (TN) 10

    2.2.4 Chemical Oxygen Demand (COD) 12

    2.2.5 Total Phosphorus (TP) 13

    2.3 The relationship between inorganic ions with river water quality 13

    2.4 The relationship between different seasons and water quality 15

    2.5 General water quality status of selected rivers in Malaysia 16

    2.6 Geographical structure of study area 17

    2.7 Ion Exclusion Chromatography (IEC) 18

    CHAPTER 3 METHODOLOGY 21

    3.1 Introduction 21

    3.2 Water sampling area and filtration method 21

    3.3 Reagents 25

    3.4 IEC/CEC systems for inorganic ions 25

    3.5 Water quality parameters for water quality standard 30

    3.5.1 Dissolved Oxygen (DO) 30

    3.5.2 pH 30

    3.5.3 Total Nitrogen (TN) 30

    3.5.4 The statistical analysis 32

    3.6 The classification of the monitored rivers based on National Water

    Quality Standards (NWQS) 32

    3.7 Detailed monitoring of the most polluted river in the study area 33

    3.7.1 The sampling map for detailed monitoring of the most polluted

    river in the study area 33

  • vii

    3.7.2 The water quality parameters in detailed monitoring of Galing

    River 36

    Chemical Oxygen Demand (COD) 36

    Total Phosphorus (TP) 37

    CHAPTER 4 RESULTS AND DISCUSSION 39

    4.1 Introduction 39

    4.2 The distribution of inorganic ions concentration in Galing, Belat and

    Kuantan rivers 39

    4.3 The distribution of water quality parameters in Galing, Belat and

    Kuantan rivers 51

    4.4 The relationship between NO3-, NH4

    + and DO 56

    4.5 The classification of monitored rivers using National Water Quality

    Standards (NWQS) in Malaysia 61

    4.6 The statistical analysis 62

    4.7 The detailed monitoring of the most contaminated river 65

    4.7.1 Details monitoring of inorganic ions concentration in Galing River 66

    4.7.2 The distribution of water quality parameters in detail monitoring of

    Galing River 70

    4.7.3 The detailed monitoring of relationship between NH4+, NO3- and

    DO in Galing River 71

    4.7.4 The water quality classification using National Water Quality

    Standards (NWQS) for Malaysia 72

    CHAPTER 5 CONCLUSION AND RECOMMENDATION 75

    5.1 Conclusion 75

    5.2 Recommendation 76

  • viii

    REFERENCES 77

    APPENDIX A 84

    APPENDIX B 89

    ACHIEVEMENT 92

  • ix

    LIST OF TABLES

    Table 2.1 National Water Quality Standards (NWQS) Classes and Uses 8

    Table 2.2 Dissolved Oxygen value classification based on Water Quality

    Index and National Water Quality Standards 9

    Table 2.3 The pH value classification based on Water Quality Index and

    National Water Quality Standards 10

    Table 2.4 The ammoniacal nitrogen (NH3-N), nitrite ions (NO2) and nitrate

    ions (NO3) value classification based on National Water Quality

    Standard and ammoniacal nitrogen (NH3-N) value classification

    based Water Quality Index. 11

    Table 2.5 Chemical Oxygen Demands value classification based on Water

    Quality Index and National Water Quality Standards 12

    Table 3.1 The sampling time 21

    Table 3.2 The sampling point and coordinate 24

    Table 3.3 The list of system involved in ion chromatography 25

    Table 3.4 List of the samples point that need to be diluted 27

    Table 3.5 The list of Test 'N Tube Low Range Total Nitrogen Reagent Set 31

    Table 3.6 The classification of the monitored river based on the National

    Water Quality Standards 32

    Table 3.7 The details monitoring for Galing River and its coordinate 33

    Table 3.8 The geographical structure of the detailed sampling point of

    Galing River 36

    Table 3.9 The list of Chemical Oxygen Demand Reagent Set 38

    Table 3.10 The list of Total Phosphorus TNT Reagent Set 39

    Table 4.1 The average concentration of inorganic ions in Galing, Belat and

    Kuantan rivers 50

    Table 4.2 The classification of Galing, Belat and Kuantan rivers based on

    National Water Quality Standards 61

    Table 4.3 The National Water Quality Standards in Malaysia 61

    Table 4.4 The ANOVA Two- Factor with replication for water quality

    parameters including dissolved oxygen, pH and total nitrogen in

    Galing River 62

    Table 4.5 The ANOVA Two-Factor with replication for water quality

    parameters including dissolved oxygen, pH and total nitrogen in

    Belat River 67

    Table 4.6 The ANOVA Two-Factor with replication for water quality

    parameters including dissolved oxygen, pH and total nitrogen in

    Kuantan River 68

  • x

    Table 4.7 The average concentration of inorganic ions in detail monitoring

    of Galing River 70

    Table 4.8 The average value of selected water quality parameters 73

    Table 4.9 The classification of the details monitoring of Galing River based

    on the National Water Quality Standards (NWQS) in Malaysia 76

  • xi

    LIST OF FIGURES

    Figure 3.1 The sampling map of Galing, Belat and Kuantan rivers 23

    Figure 3.2 The IEC schematic diagram for bicarbonate ion 28

    Figure 3.3 The IEC/CEC schematic diagram for inorganic ions 29

    Figure 3.4 The detailed sampling map for Galing River 35

    Figure 4.1 The sulphate ion concentration in Galing, Belat and Kuantan

    rivers 41

    Figure 4.2 The chloride ion concentration in Galing, Belat and Kuantan

    rivers 42

    Figure 4.3 The nitrate ion concentration in Galing, Belat and Kuantan

    rivers 43

    Figure 4.4 The sodium ion concentration in Galing, Belat and Kuantan rivers 44

    Figure 4.5 The ammonium ion concentration in Galing, Belat and Kuantan

    rivers 45

    Figure 4.6 The potassium ion concentration in Galing, Belat and Kuantan rivers 46

    Figure 4.7 The magnesium ion concentration in Galing, Belat and Kuantan

    rivers 47

    Figure 4.8 The calcium ion concentration in Galing, Belat and Kuantan

    rivers 48

    Figure 4.9 The bicarbonate ion concentration in Galing, Belat and Kuantan

    rivers 49

    Figure 4.10 The dissolved oxygen, pH and total nitrogen values in Galing

    River 52

    Figure 4.11 The dissolved oxygen, pH and total nitrogen values in Belat

    River 54

    Figure 4.12 The dissolved oxygen, pH and total nitrogen values in Kuantan

    River 55

    Figure 4.13 The relationship between NO3-, NH4+ and dissolved oxygen in

    Belat River 57

    Figure 4.14 The relationship between NO3-, NH4+ and dissolved oxygen in

    Kuantan River 58

    Figure 4.15 The relationship of NH4+-NO3- -DO concentration of Galing River 60

    Figure 4.16 The average inorganic ions concentration in Galing River:

    a) SO42-, b) Cl2-,c) NO3-, d) Na+, e) NH4-, f) K+, g) Mg2+, h)

    Ca2+ 67

    Figure 4.17 The relationship of NH4+, NO3- and dissolved oxygen in detail

    monitoring of Galing River 72

  • xii

    LIST OF SYMBOLS

    Ca+ Calcium ion

    Cl- Chloride ion

    HCO3- Bicarbonate ion

    H+ Hydrogen ion

    K+ Potassium ion

    Mg/L Miligram per liter

    Mg2+ Magnesium ion

    Min Minute

    Na+ Sodium ion

    NH4+ Ammonium ion

    NO3- Nitrate ion

    SO4+ Sulphate ion

    mM mili Molar

  • xiii

    LIST OF ABBREVIATIONS

    AEC Anion Exchange Chromatography

    COD Chemical Oxygen Demand

    DO Dissolved Oxygen

    EC Electrical Conductivity

    G1 Galing 1

    G2 Galing 2

    IC Ion Chromatography

    IEC Ion Exclusion Chromatography

    IEC/CEC Ion Exclusion Chromatography/ Cation Exchange Chromatography

    pH Alkalinity and acidity

    TP Total Phosphate

    TN Total Nitrogen

    UV-Vis Ultra Violet-Visible

    NWQS National Water Quality Standards Malaysia

    SCX Column Strongly Cationic Exchange Column

    WCX Column Weakly Cationic Exchange Column

  • 77

    REFERENCES

    Department, J. P. T. a. C. P. (2015). Pahang Town and Country Planning Department,

    Kuantan, Malaysia. Kuantan: JPBD Pahang Town and Country Department.

    Pengawasan Kualiti Air Sungai. (2016). Department of Environment, M. o. N. R. a. E.

    M. [Mobile application software]

    Department of Environment, M. o. N. R. a. E. M. (2018a). National Water Quality

    Standards for Malaysia. Malaysia: Department of Environment, Ministry of

    Natural Resources and Environment Malaysia

    Department of Environment, M. o. N. R. a. E. M. (2018b). Pengawasan kualiti air.

    Malaysia

    Department of Environment, M. o. N. R. a. E. M. (2018c). Water Quality Index.

    Malaysia: Department of Environment, Ministry of Natural Resources and

    Environment Malaysia

    Rafia Afroz, A. R. (2017). Health impact of river water pollution in Malaysia.

    International journal of advanced and applied sciences, 4(5), 8.

    Suruhanjaya Perkhidmatan Air Negara (SPAN), M. (2017). Water consumption 2015-

    2016. Retrieved from http://www.span.gov.my/index.php/en/statistic/water-

    statistic/water-consumption-2017

    (ILSM), I. L. S. M. (2010). Ringkasan perangkaan penting bagi kawasan pihak berkuasa

    tempatan, Malaysia. Sungkai: Institut Latihan Statistik Malaysia.

    Abu, N. B. (2014). Assessment of water quality status of Sungai Galing, Kuantan,

    Pahang. (Degree of Bachelor of Civil Engineering), University Malaysia Pahang,

    Ansari, F. A. K. a. A. A. (2005). Eutrophication: An Ecological Vision. BioOne

    Research Evolved, 71(4), 33.

    Association, J. S. (2008). JIS K0102 Testing Methods for Industrial Wastewater. In.

    Tokyo, Japan: Japanese Standards Association.

    Association, J. S. (2013). JIS K0127 General Rules for Ion Chromatography. Tokyo,

    Japan: Japanese Standards Association.

    Company, H. (2014). Total nitrogen Persulfate digestion method. 8.

    Daisuke Kozaki, N. I. b. H., Mohd Hasbi bin Ab. Rahim, Masanobu Mori, Nobutake

    Nakatani, and Kazuhiko Tanaka. (2016). Determination of water quality

    degradation due to industrial and household wastewater in Galing River in

    Kuantan, Malaysia using ion chromatograph and water quality data.

    Environments, 3.

    http://www.span.gov.my/index.php/en/statistic/water-statistic/water-consumption-2017http://www.span.gov.my/index.php/en/statistic/water-statistic/water-consumption-2017

  • 78

    Daisuke Kozaki, N. N., Masanobu Mori, Nobukazu Nakagoshi, Kazuhiko Tanaka.

    (2012). Water quality monitoring system for determination of ionic nutrients by

    ion-exclusion chromatography with spectrophotometric detection on cation and

    anion-exchange resin columns using water eluent. Chinese Journal of

    Chromatography, 30(7), 7.

    Daisuke Kozaki, T. O., Nobutake Nakatani, Masanobu Mori and Kazuhiko Tanaka.

    (2014). Utilization of ion-exclusion chromatography for water quality

    monitoring in a suburban river in Jakarta, Indonesia. Water and urban

    initiatives(6), 16.

    Department of Environment, M. o. N. R. a. E. M. (2018a). National Water Quality

    Standards for Malaysia. Malaysia: Department of Environment, Ministry of

    Natural Resources and Environment Malaysia

    Department of Environment, M. o. N. R. a. E. M. (2018b). Pengawasan kualiti air.

    Malaysia

    Department of Environment, M. o. N. R. a. E. M. (2018c). Water Quality Index.

    Malaysia: Department of Environment, Ministry of Natural Resources and

    Environment Malaysia

    Gandaseca S, R. N., Ngayop J, Arianto CI. (2011). Status of water quality based on the

    physico-chemical assessment on river waterat Wildlife Sanctuary Sibuti

    Mangrove Forest, Miri Sarawak. Am Journal Environmental Sciences, 7, 6.

    HACH. Total phosphorus method 8190. 7.

    Hall, E. R., Murphy, K.L. (1980). Estimation of nitrifying biomass and kinetics in

    wastewater. Water resources, 14, 7.

    Hamilton, E. P. H. B. H. (1993). Fertilizers and eutrophication in Southwestern

    Australia: setting the scene. Fertilizer research, 36, 9.

    Helen P. Jarvie, A. N. S., Paul J. A. Withers, J. Thad Scott, Brian E. Haggard, and

    Collin Neal. (2013). Phosphorus mitigation to control river eutrophication:

    Murky waters, incovenient truths, and "postnormal" science. Journal of

    environmental quality, 10.

    Hongmei Bu, W. M., Yuan Zhang. (2011). Nitrogen pollution and source identification

    in the Haicheng River basin in Northeast China. Science of the total

    environment, 409, 8.

    Kwang Hyeon Chang, A. A., Todd W. Miller, Tomohiko Isobe, Rommel Maneja,

    Fernando P. Siringan, Hiroyuki Imai and Shinichi Nakano. (2009). Pollution

    study in Manila Bay: eutrophication and its impact on plankton community.

    Environment research in Asia, 7.

    Laboratory, S. M. A. (2016). Schedule. Malaysia: Laboratory Accreditation Scheme of

    Malaysia

  • 79

    M. A. Sobahan, S. I. M., Ideris bin Zakaria, and M.A Hossain. (2013). Surface water

    contamination due to industrial activities in Gebeng area, Kuantan, Malaysia.

    Paper presented at the International conference on civil and architechture

    engineering (ICCAE'2013), Kuala Lumpur, Malaysia.

    Masanobu Mori , K. T., Murad I.H Helaleh, Mikaru Ikedo, Yutaka Oqura, Shinji Sato,

    Wenzhi Hu, Kiyoshi Hasebe, Paul R. Haddad (2003). High-speed simultaneous

    ion-exchange/cation-exchange chromatography of anions and cations on a

    weakly acidic cation-exchange resin column. Chromatography, 997(1-2), 6.

    Nkechinyere Onyekewere Nweze, U. E. O. (2011). Phycological effects of

    eutrophication with fertilizers in Nike Lake, Nigeria. Journal of water resource

    and protection, 3, 5.

    Nobutake Nakatani, D. K., Wakako Masuda, Nobukazu Nakagoshi, Kiyoshi Hasebe,

    Masanobu Mori, Kazuhiko Tanaka. (2008). Simultaneous spectrophotometric

    determination of phosphate and silicate ions in river water by using ion-

    exclusion chromatographic separation and post-column derivation. Analytica

    chimica acta, 619, 5.

    Othman, F., M, E. A., & Mohamed, I. (2012). Trend analysis of a tropical urban river

    water quality in Malaysia. J Environ Monit, 14(12), 3164-3173.

    doi:10.1039/c2em30676j

    Paul R. Haddad, P. N. N., Wolfgang Buchberger. (2008). Recent developments and

    emerging directions in ion chromatography. Journal of Chromatography A, 1184,

    18.

    Peter E. Jackson, D. T., and Kirk Chassaniol. (2003). Chapter 1 Environmental analysis

    of inorganic anions and perchlorate by ion chromatography. In Environmental

    impact of fertilizer on soil and water. Washington, DC: American chemical

    society.

    Petronella G. Ah Tung, M. K. Y., Nik Muhamad Majid, Goh Kah Joo and Gan Huang

    Huang. (2009). Effect of N and K fertilizers on nutrient leaching and

    groundwater quality under mature oil palm in Sabah during the monsoon period.

    American journal of applied science, 6(10), 12.

    S. Suratman, M. I. M. S., Y.Y. Hee, E.A. Bedurus & M.T. Latif. (2015). A preliminary

    study of water quality index in Terengganu River basin, Malaysia. Sains

    Malaysiana, 7.

    Sahana Harun, R. D., Mohd. Harun Abdullah, Maryati mohamed. (2014). Spatial and

    seasonal variations in surface water quality of the lower Kinabatangan River

    catchment, Sabah, Malaysia. Tropical biology and conservation, 11, 14.

    Sharif, S. M., Kusin, F. M., Asha’ari, Z. H., & Aris, A. Z. (2015). Characterization of

    Water Quality Conditions in the Klang River Basin, Malaysia Using Self

    Organizing Map and K-means Algorithm. Procedia Environmental Sciences, 30,

    73-78. doi:10.1016/j.proenv.2015.10.013

  • 80

    Srivastava, S. A. K. a. J. (2008). Interaction of ions in water affects water quality of

    freshwater lake: a case study of major lakes of North India. Environmentalist, 28,

    4.

    Tanaka, K. (1981). Determination of bicarbonate ion in biological nitrification process

    water by ion-exclusion chromatography with coulometric detection. Bunseki

    Kagaku, 30, 4.

    Xuan Li, T. H., Weixing Ma, Xin Sun, Haihan Zhang. (2015). Effects of rainfall

    patterns on water quality in a stratified reservoir subject to eutrophication:

    implications for management. Science of the total environment, 521-522, 9.

    Yunlin Zhang, Z. W., Mingliang Liu, Jianbo He, Kun Shi, Yongqiang Zhou, Mingzhu

    Wang, Xiaohan Liu. (2015). Dissolved oxygen stratification and response to

    thermal structure and long-term climate change in a large and deep subtripocal

    reservoir (Lake Qiandaohu, China). Journal of water research, 75, 10.

    Zubaidah Ismail, R. S., Ramlee Karim. (2014). Evaluating trends of water quality index

    of selected Kelang River tributaries. Environmental Engineering and

    management Journal, 13(1), 12.

    Company, H. (2014a). Chemical oxygen demands, Reactor digestion TNT plus Method

    8000. 6.

    Company, H. (2014b). Total nitrogen Persulfate digestion method. 8.

    Corporation, D.-T. (2018). Handheld water dissolved oxygen meter 31-P. In D.-T.

    Corporation (Ed.).

    Daisuke Kozaki, N. I. b. H., Mohd Hasbi bin Ab. Rahim, Masanobu Mori, Nobutake

    Nakatani, and Kazuhiko Tanaka. (2016). Determination of water quality

    degradation due to industrial and household wastewater in Galing River in

    Kuantan, Malaysia using ion chromatograph and water quality data.

    Environments, 3.

    Daisuke Kozaki, N. N., Masanobu Mori, Nobukazu Nakagoshi, Kazuhiko Tanaka.

    (2012). Water quality monitoring system for determination of ionic nutrients by

    ion-exclusion chromatography with spectrophotometric detection on cation and

    anion-exchange resin columns using water eluent. Chinese Journal of

    Chromatography, 30(7), 7.

    Daisuke Kozaki, T. O., Nobutake Nakatani, Masanobu Mori and Kazuhiko Tanaka.

    (2014). Utilization of ion-exclusion chromatography for water quality

    monitoring in a suburban river in Jakarta, Indonesia. Water and urban

    initiatives(6), 16.

    Masanobu Mori , K. T., Murad I.H Helaleh, Mikaru Ikedo, Yutaka Oqura, Shinji Sato,

    Wenzhi Hu, Kiyoshi Hasebe, Paul R. Haddad (2003). High-speed simultaneous

    ion-exchange/cation-exchange chromatography of anions and cations on a

    weakly acidic cation-exchange resin column. Chromatography, 997(1-2), 6.

  • 81

    Masanobu Mori, K. T., Tatsuya Satori, Mikaru Ikedo, Wezhi Hu, Hideyuki Itabashi.

    (2006). Influence of acidic eluent for retention behaviors of common anions and

    cations by ion-exclusion/cation-exchange resin in the H+- form Journal of

    Chromatography A, 1118(1), 5.

    Ab Razak, N. H., Praveena, S. M., Aris, A. Z., & Hashim, Z. (2016). Quality of

    Kelantan drinking water and knowledge, attitude and practice among the

    population of Pasir Mas, Malaysia. Public Health, 131, 103-111. doi:

    10.1016/j.puhe.2015.11.006

    Abdullah, W. M. A. W. M. K. a. M. P. (2012). Seasonal influence on water quality

    status of Temenggor Lake, Perak. Malaysian Journal of Analytical Sciences,

    16(2), 9.

    American Public Health Association, A. W. W. A. a. W. E. F. (1999). 5220 Chemical

    oxygen demand (COD)*#(102). 13.

    American Public Health Association, A. W. W. A. a. W. E. F. (2012). Standard

    Methods for the Examination of Water and Wastewater. Washington, USA:

    American Public Health Association, American Water Works Association and

    Water Environment Federation.

    Ansari, F. A. K. a. A. A. (2005). Eutrophication: An Ecological Vision. BioOne

    Research Evolved, 71(4), 33.

    Association, J. S. (2008). JIS K0102 Testing Methods for Industrial Wastewater. In.

    Tokyo, Japan: Japanese Standards Association.

    Daisuke Kozaki, M. H. b. A. R., Wan Mohd Faizal bin Wan Ishak, Mashitah M.

    Yusoff,Masanobu Mori, Nobutake Nakatani and Kazuhiko Tanaka. (2015).

    Assessment of the River Water Pollution Levels in Kuantan, Malaysia, Using

    Ion-Exclusion Chromatographic Data, Water Quality Indices, and Land Usage

    Patterns. Air, Soil and Water Resource, 9, 11.

    Daisuke Kozaki, T. O., Nobutake Nakatani, Masanobu Mori and Kazuhiko Tanaka.

    (2014). Utilization of ion-exclusion chromatography for water quality

    monitoring in a suburban river in Jakarta, Indonesia. Water and urban

    initiatives(6), 16.

    HACH. Total phosphorus method 8190. 7.

    Helen P. Jarvie, A. N. S., Paul J. A. Withers, J. Thad Scott, Brian E. Haggard, and

    Collin Neal. (2013). Phosphorus mitigation to control river eutrophication:

    Murky waters, incovenient truths, and "postnormal" science. Journal of

    environmental quality, 10.

    Helen P. Jarvie, C. N., Paul J. A. Withers. (2006). Sewage-effluent phosphorus: A

    greater risk to river eutrophication than agricultural phosphorus? Journal of the

    total environment, 360, 7.

    Jiaqing Xiong, X. C. W., Qingqing Zhang, Ran Duan, Nan Wang. (2016).

    Characteristics of a landscape water with high salinity in a coastal city of China

  • 82

    and measures for eutrophication control. Ecological indicators, 61, 6.

    M. A. Pena, S. K., T. Oguz, and D. Gilbert. (2010). Modelling dissolved oxygen

    dynamics and hypoxia. Journal of biosciences, 7, 25.

    Masanobu Mori , K. T., Murad I.H Helaleh, Mikaru Ikedo, Yutaka Oqura, Shinji Sato,

    Wenzhi Hu, Kiyoshi Hasebe, Paul R. Haddad (2003). High-speed simultaneous

    ion-exchange/cation-exchange chromatography of anions and cations on a

    weakly acidic cation-exchange resin column. Chromatography, 997(1-2), 6.

    Nimptsch, J., & Pflugmacher, S. (2007). Ammonia triggers the promotion of oxidative

    stress in the aquatic macrophyte Myriophyllum mattagrossence. . Chemosphere,

    66, 7.

    Paul R. Haddad, P. N. N., Wolfgang Buchberger. (2008). Recent developments and

    emerging directions in ion chromatography. Journal of Chromatography A, 1184,

    18.

    Peter E. Jackson, D. T., and Kirk Chassaniol. (2003). Chapter 1 Environmental analysis

    of inorganic anions and perchlorate by ion chromatography. In Environmental

    impact of fertilizer on soil and water. Washington, DC: American chemical

    society.

    Srivastava, J., Chandra, H., & Singh, N. (2006). Seasonal variation in ionic flux in the

    fresh water bodies of Lucknow city of UP (India). Environmental conservation

    journal, 7(1-2), 5.

    Srivastava, S. A. K. a. J. (2008). Interaction of ions in water affects water quality of

    freshwater lake: a case study of major lakes of North India. Environmentalist, 28,

    4.

    Tapio Sutela, T. V., Martti Rask. (2016). A littoral fish index that responds to

    eutrophication in boreal lakes. Fisheries Research, 173, 5.

    Yang, X., & Williams, M. A. J. (2003). The ion chemistry of lakes and late Holocene

    dessication in Badain Jaran Desert, Inner Mongolia, China. Catena, 51, 5.

    Ab Razak, N. H., Praveena, S. M., Aris, A. Z., & Hashim, Z. (2016). Quality of

    Kelantan drinking water and knowledge, attitude and practice among the

    population of Pasir Mas, Malaysia. Public Health, 131, 103-111. doi:

    10.1016/j.puhe.2015.11.006

    American Public Health Association, A. W. W. A. a. W. E. F. (2012). Standard

    Methods for the Examination of Water and Wastewater. Washington, USA:

    American Public Health Association, American Water Works Association and

    Water Environment Federation.

    Ansari, F. A. K. a. A. A. (2005). Eutrophication: An Ecological Vision. BioOne

    Research Evolved, 71(4), 33.

    Association, J. S. (2008). JIS K0102 Testing Methods for Industrial Wastewater. In.

    Tokyo, Japan: Japanese Standards Association.

  • 83

    Daisuke Kozaki, M. H. b. A. R., Wan Mohd Faizal bin Wan Ishak, Mashitah M.

    Yusoff,Masanobu Mori, Nobutake Nakatani and Kazuhiko Tanaka. (2015).

    Assessment of the River Water Pollution Levels in Kuantan, Malaysia, Using

    Ion-Exclusion Chromatographic Data, Water Quality Indices, and Land Usage

    Patterns. Air, Soil and Water Resource, 9, 11.

    Daisuke Kozaki, T. O., Nobutake Nakatani, Masanobu Mori and Kazuhiko Tanaka.

    (2014). Utilization of ion-exclusion chromatography for water quality

    monitoring in a suburban river in Jakarta, Indonesia. Water and urban

    initiatives(6), 16.

    Department of Environment, M. o. N. R. a. E. M. (2018). Pengawasan kualiti air.

    Malaysia

    HACH. Total phosphorus method 8190. 7.

    Haiyan Li, L. L., Mingyi Li and Xiaoran Zhang. (2013). Effects of pH, temperature,

    dissolved oxygen, and flow rate on phosphorus release processes at the sediment

    and water interface in storm sewer. Analytical methods in chemistry, 2013, 7.

    Helen P. Jarvie, A. N. S., Paul J. A. Withers, J. Thad Scott, Brian E. Haggard, and

    Collin Neal. (2013). Phosphorus mitigation to control river eutrophication:

    Murky waters, incovenient truths, and "postnormal" science. Journal of

    environmental quality, 10.

    Helen P. Jarvie, C. N., Paul J. A. Withers. (2006). Sewage-effluent phosphorus: A

    greater risk to river eutrophication than agricultural phosphorus? Journal of the

    total environment, 360, 7.

    M. A. Pena, S. K., T. Oguz, and D. Gilbert. (2010). Modelling dissolved oxygen

    dynamics and hypoxia. Journal of biosciences, 7, 25.

    Paul R. Haddad, P. N. N., Wolfgang Buchberger. (2008). Recent developments and

    emerging directions in ion chromatography. Journal of Chromatography A, 1184,

    18.

    Peter E. Jackson, D. T., and Kirk Chassaniol. (2003). Chapter 1 Environmental analysis

    of inorganic anions and perchlorate by ion chromatography. In Environmental

    impact of fertilizer on soil and water. Washington, DC: American chemical

    society.

    Srivastava, J., Chandra, H., & Singh, N. (2006). Seasonal variation in ionic flux in the

    fresh water bodies of Lucknow city of UP (India). Environmental conservation

    journal, 7(1-2), 5.

    Srivastava, S. A. K. a. J. (2008). Interaction of ions in water affects water quality of

    freshwater lake: a case study of major lakes of North India. Environmentalist, 28,

    4.

    Yang, X., & Williams, M. A. J. (2003). The ion chemistry of lakes and late Holocene

    dessication in Badain Jaran Desert, Inner Mongolia, China. Catena, 51, 5.