Non-contacting Busbars for Advanced Cell Structures using Low Temperature Copper...

12
Non-contacting Busbars for Advanced Cell Structures using Low Temperature Copper Paste Don Wood, Nick Powell, Adriana Zambova, Brian Chislea, Pierre Chevalier, Caroline Boulord, Alexandre Beucher, Nicolas Zeghers, Guy Beaucarne Izabela KuzmaFilipek, Richard Russell, Filip Duerinckx, Jozef Szlufcik

Transcript of Non-contacting Busbars for Advanced Cell Structures using Low Temperature Copper...

  • Non-contacting Busbars for Advanced Cell Structures using Low Temperature Copper

    PasteDon Wood, Nick Powell, Adriana Zambova, Brian Chislea, Pierre Chevalier, Caroline Boulord, Alexandre Beucher, Nicolas Zeghers, Guy Beaucarne

    Izabela Kuzma‐Filipek, Richard Russell, Filip Duerinckx, Jozef Szlufcik

  • 2

    Dow Corning Cu paste : good conductivity at low cost

    Substrate

    HEAT

    Substrate

    Copper powder

    Solder powder

    Polymer

    250 °C

    ρ = 20 – 40 µΩ cm

  • 3

    Cure in N2

    Combination Ag screen printing – Cu pasteTexturing

    PECVD SiNx front

    Emitter formation

    Junction isolation

    Printing rear

    Co-firing

    Screen printing Ag fingers

    Screen printing low-T Cu BB

    Screen printing Ag fingers and BB

    Wood et al.Silicon PV 2014Energy Procedia Vol.55

    • Equivalent cell performance• No detrimental impact due to Cu presence• Full size modules passing 1 x IEC Wood et al. , Energy Procedia Vol.55

  • 4

    Cure in N2

    Cu paste can also be combined with plated cells

    Rear metallization

    Front end processing

    Laser patterning and plating (only fingers)

    Screen printing low-T Cu BB

    Laser patterning and plating

    • Cure at 200 to 300 ºC temperature-sensitive structures can be preserved

    • Ni silicide formation/anneal and busbar curing can be done simultaneously

  • 5

    Does a hybrid Cu plating – busbar printing process make sense ?

    YES !• Capex and maintenance

    o No laser capacity needed for ablation of busbar areao Screen printer much less capital intensive than laser systemo Fewer lasers → less maintenance

    • Expected performanceo Less Si – metal interface area → less recombination → higher Voco Lower probability of shunting caused by laser damage

    • Interconnectiono Traditional soldered interconnection can be appliedo Alternative to new, emergent but as of yet unproven interconnection

    technologies

  • 6

    p-type PERC cells with plated fingers

    Texturing front and polishing rear

    Clean and oxidation (target 120 Ohm/sq)

    POCl3 target 130-140 Ohm/sq emitter + junction isolation

    Rear laser ablation, Al sputtering and co-firing

    PECVD SiNx on the front + PECVD stack on the rear

    Full stack sintering

    Front laser ablation – only fingers

    Front laser ablation fingers and BB

    LIP Ni-LIP Cu-LIP Ag plating

    p-Cz (Ga), 156mm-sq, 180um, 1.8 Ohm-cm

    Cu BB Printing

  • 7

    Nett performance increase with Cu paste busbar

    6 mV higher Vocthanks to floating busbar

    0.4 % rel. decrease. Due to bleeding ?

    0.8 % abs. higher FF thanks to higher Rshunt

    0.1 % abs. higher efficiency. All cells with Cu paste BB have eff. > 20.2 %

  • 8

    n-PERT cells with plated fingers

    TMAH SDR/polishingTMAH SDR/polishing

    BSG removal +Wet oxidationBSG removal +Wet oxidation

    POCl3 diffusion ‐ FSFPOCl3 diffusion ‐ FSF

    TMAH texturingTMAH texturing

    PSG removal +Dry oxidationPSG removal +Dry oxidation

    Front oxide removalFront oxide removal

    Rear PECVD SiOxRear PECVD SiOx

    Integration flow- front -end

    Laser ablation ‐ rearLaser ablation ‐ rear

    ARC front‐PECVD SiNxARC front‐PECVD SiNx

    Integration flow- back-end

    AlSi PVDAlSi PVD

    FG‐anneal‐ contact formationFG‐anneal‐ contact formation

    Ni/Cu/Ag platingNi/Cu/Ag plating

    Boron diffusion‐ emitterBoron diffusion‐ emitter

    Contact co‐sinteringContact co‐sintering

    Front Laser: fingers and BBs

    Front Laser: fingers and BBs

    Front Laser: fingers only

    Front Laser: fingers only

    Cu BB printingCu BB printing

    n-Cz (P), 156mm-sq, 180um, 3.5 Ohm-cmn-type SiN-type FSF

    P-type emitter

    Front passivationAntireflection coating

    Rear passivation

  • 9

    N-PERT cells with Cu paste busbar: cell results

    ∆ 5mV average gain for floating BB

    Drop in Jsc leads to same efficiency

  • 10

    Suspected reason for lower Jsc : bleeding

    180 m

    Shaded region

    Unaffected regionPrinted Busbar

    Plated fingers (LIP)

  • 11

    …[The busbar is to the left]

    ‘Shaded Region’

    Extent of copper

    ‘Extent of carbon’

    • Wider regions between pyramids in carbon shaded region vs unaffected region• Small copper particles present at the base of the pyramids, carried by solvent • Both copper and carbon cause shading loss• Bleeding issue has been addressed in subsequent formulations and does not appear a fundamental problem

    Bleeding : a closer look

  • 12

    Summary

    • A low-temperature screen printing paste based on Cuparticles was developed

    • The Cu paste was applied to front busbars in PERC and n-PERT solar cells with Ni/Cu-plated fingers

    • Consistent Voc increase thanks to lower recombination under busbars

    • Efficiencies up to 20.5 % (PERC) and 20.9 % (n-PERT) have been obtained for 156 mm Cz wafers

    • Cu paste busbar process results in solderable and easily measurable cells

    • Good control of bleeding desired to make use of full efficiency increase potential