No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing...

57
The University of Texas at Austin EE382M VLSI-II Class Notes Page # 1/44 Gian Gerosa, Intel Fall 2008 EE-382M VLSI–II A brief summary of trends, device limitations, scaling, device performance in CMOS technologies

Transcript of No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing...

Page 1: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 1/44

Gian Gerosa, IntelFall 2008

EE-382M

VLSI–II

A brief summary of trends, device limitations, scaling, device performance in CMOS technologies

Page 2: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 2/44

Transistors on a chip doubles every ~2 years

P4 in 90n

Core 2 duo in 65nCore duo in 65n

Core 2 duo in 45n

Page 3: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 3/44

Die Size Growth in Desktop/Mobile Processors (mm per side)

40048008

80808085

8086286

386486 PentiumPPro

1

10

100

1970 1980 1990 2000 2010Year

Per s

ide

(mm

)

~7% growth per year~2X growth in 10 years

Die size used to grow ~14% every two years

P4

P4 in 90nCore-duo in 65n

Core2-duo in 65n

Core2-duo in 45n

Page 4: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 4/44

Logic Transistor Density

Shrinks & Compactions meet density goalsNew u-Architectures drop density

Courtesy: Shekhar Borkar, Intel

P4250K

90n 65n 45n

P4450K

P41000

Page 5: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 5/44

Each processor has several revisionsTime

1.5µ 1.5µ P646P646

1.0µ 1.0µ P648P648

0.8µ 0.8µ P650P650

0.6µ 0.6µ P852P852

0.35µ 0.35µ P854P854

0.25µ 0.25µ P856P856

0.18µ 0.18µ P858P858

0.13µ 0.13µ P860P860

Lead designs

proliferations80386

Pentium

Pentium 4

Pentium II,III

80846

1.5µ 1.5µ P646P646

1.0µ 1.0µ P648P648

0.8µ 0.8µ P650P650

0.6µ 0.6µ P852P852

0.35µ 0.35µ P854P854

0.25µ 0.25µ P856P856

0.18µ 0.18µ P858P858

0.13µ 0.13µ P860P860

Lead designs

proliferations80386

Pentium

Pentium 4

Pentium II,III

80846

Page 6: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 6/44

0

20

40

60

80

100

120

1

10

100

1000

10000

0

20

40

60

80

100

120

10

1000

100

10000

1

Pow

er(W

)

Freq

uenc

y(M

Hz)

Willamette

Northwood

Banias

CuMine

Katmai

Deschutes

Klamath

1.0um 0.8um 0.6um 0.35um 0.25um 0.18um 0.13um

Frequency used to double every ~2 years

POWER WALL at ~100W stopped this.

Page 7: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 7/44

Power Dissipation of Compactions

0

10

20

30

40

50

60

70

1.5u 1.0u 0.7u 0.5u 0.35u 0.25u 0.18u

Pow

er(W

atts

)

386 486Pentium

P2&3

P4

Lead processor power increasesCompactions provide higher performance at lower power

Courtesy: Shekhar Borkar, Intel

130n90n

Page 8: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 8/44

Power Dissipation of Lead uP

PProPentium

486386

2868086

808580808008

4004

0.1

1

10

100

1971 1974 1978 1985 1992 2000Year

Pow

er (W

atts

)

Power increases exponentially

P4

Courtesy: Shekhar Borkar, Intel

P4 (90n)

Core-duo65n

Core2-duo65n

Po

wer w

all

Core2-duo45n

Page 9: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 9/44

Page 10: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 10/44

Source: Mark Bohr, Intel Corporation

Page 11: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 11/44

MEROM core2 duo in 65nm

~180 mm2~ 450 million transistors

Page 12: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 12/44

PENRYN core2 duo in 45nm

~105 mm2~510 million transistors

Page 13: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 13/44

~25 mm2~47 million transistors

SILVERTHORNE (ATOM Processor) in 45nm

Page 14: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 14/44

Deep Sub-micron CMOS device Cross Section

P-Epi

Shallow trench

isolationP-Well N-Well

N+ N+

N+

P+ P+

P+

2CoSi 43NSi

Implant Halo

ExtensionS/D

Page 15: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 15/44

Deep Sub-Micron Transistors

• Characteristics in the linear, saturation, and sub-threshold regions

• Leakage• Parasitic Elements• Performance / Leakage tradeoff

Si3N4CoSi2

130nm Generation Courtesy: Mark Bohr, Intel

70 nm

Page 16: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 16/44

Source: Mark Bohr, Intel Corporation

Page 17: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 17/44

Source: Mark Bohr, Intel Corporation

Strained silicon increases electron/hole mobility.

Page 18: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 18/44

Source: Mark Bohr, Intel Corporation

Page 19: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 19/44

High-K, Metal Gate 45 nm CMOS (intel)

K. Mistry, et al., “A 45nm Logic Technology with High-k+ Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging”, Tech. Digest IEDM, Dec 2007.

Page 20: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 20/44

Source: Mark Bohr, Intel Corporation

Page 21: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 21/44

SOURCES of TRANSISTOR LEAKAGE

gate

source drain

gate

source drain

gate

source drain

SubthresholdLeakage

Ioff

JunctionLeakage

Ijctn

GateLeakage

Igate

Ilkg indicator = 0.5(ON state) + 0.5(OFF state)= 0.5(Igate(ON)) + 0.5(Ioff+Ijctn+Igate(OFF))

Page 22: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 22/44

Transistor Leakage Components

Design of High-Performance Microprocessor Circuits, IEEE Press, New York, 2001

SubthresholdLeakage @ Vgs=0

Page 23: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 23/44

Performance vs. Leakage Tradeoff

Page 24: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 24/44

IEDM 2004, P. Bai et. al., “A 65nm Logic Technology Featuring 35nm Gate Length, Enhanced Channel Strain, 8 Cu Interconnect Layers, Low-k ILD and 0.57um2 SRAM Cell”.

65 nm Transistors Ioff vs. Idsat

Page 25: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 25/44

Deep Submicron Device PARASITICS

Figures from: Y. Taur, T.H. Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, UK, 1998.

Source-Drain Resistance

Parasitic Capacitances

Gate Resistance

Page 26: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 26/44

Design of High-Performance Microprocessor Circuits, IEEE Press, New York, 2001

Constant Field Scaling

constant

Page 27: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 27/44

Some numbers .. Constant Electric Field Scaling

7.0,7.0

,7.07.0

7.07.0

=⇒==

==

CCapTotalCCapFringing

CCapArea

f

a

Lateral and vertical dimensions reduce 30%

Capacitance--area and fringing--reduce 30%

7.0,7.0,7.0 ===== oxtLLengthWWidth

27.07.07.0 =×=×= YXAreaDie

Die area reduces 50%

~(e*W*L)/Tox

~W

Page 28: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 28/44

Constant Electric Field Scaling –cnt’d-

7.017.0

==Transistor

Cap

Capacitance per transistor reduces 30%

7.01

7.07.07.0

=AreaCap

Capacitance per unit area increases 43%

22

2 7.07.0

7.07.0,7.07.0

7.07.0

7.07.0

7.07.0)(,7.0,7.0

=××==×

=

=−===

fVCPowerIVddCT

VVddtWIVVdd t

oxt

Delay reduces 30%, power reduces 50%

velocity-saturated device

Fmax scales by 1/0.7

Page 29: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 29/44

What About Constant Voltage Scaling?

Page 30: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 30/44

A comparison …….

7.01

17.0

117.07.0)(

1,7.0

=×==

=×=−=

==

ICVD

VtVtWI

VC

ox

7.07.0

7.07.0

7.07.07.07.0)(

17.07.0,1

7.07.0,7.0

=×==

=×=−=

=======

ICVD

VtVtWI

LVE

tVEC

ox

ox

Constant voltage scaling Constant electric field scaling

Power = CV2F = 0.7 × 17.0

Power = 1 Power = CV2F = 0.7 × 0.72

7.0Power = 0.5Power Density = 1/0.72 = 2

Power Density = 0.5/0.72 = 1

Page 31: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 31/44

Issues with Constant Voltage Scaling

• Practical (from the systems integration point of view), since the power supply and signal voltages are unchanged …… but,

• Electric field increases by factor k (1/S). Can cause transistor failures such as oxide breakdown, punch-through, and hot electron charging of the oxide.

• Current density will also increase in transistors as well as metals causing self-heating and metal migration in interconnects.

• Power density (P/area) is increasing causing localized heating and heat dissipation problems.

• In reality, CMOS technology evolution has followed a mixture of both constant field and constant voltage scaling.

Page 32: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 32/44

Non-Scaling Effects

• Subthreshold Current: since kT/q and Eg do not scale …..

• The Polysilicon gate depletion contributes a Capacitance which is in series with the oxide capacitance Cox ….. Thus the total gate capacitance does not scale exactly to 1/K ….. unless metal gates are used.

• The full benefit of scaling cannot be realized unless process tolerances (Leff, Tox, Vt, etc.) scale along with 1/K.

Page 33: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 33/44

Transistor Performance Trends

CV/Idsat

Q = CVdQ/dt = CdV/dti = CdV/dtdt = CdV/i

Delay = CV/Idsat

Page 34: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 34/44

CMOS Inverter Delay

Figures from: Y. Taur, T.H. Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, UK, 1998.

i = dQ/dti = D(CV)/dti = CdV/dt

Page 35: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 35/44

Inverter Delay –cnt’d-

Wn=NFET width, Idsatn = mA/um

Wp=PFET width, Idsatp = mA/um

Page 36: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 36/44

0.13 micron Cross Section (Copper)

Cu Interconnect 130nm Generation Courtesy: IBM

M3

M4

M5

M6

M2

Substrate

SiO2

M1

POLY

M6

M5

M4

M3

M2

M1LI

Page 37: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 37/44

Source: Mark Bohr, Intel Corporation

Page 38: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 38/44

Source: Mark Bohr, Intel Corporation

Page 39: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 39/44

Interconnect

Figures from: Y. Taur, T.H. Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, UK, 1998.

thickness

length

width

Inter-dielectricthickness

Metal-to-metal space

RC delay = [ (1/0.7)^2 * Rw * 0.7 ] * [ Cw * 0.7 ] = RwCw

I / WwTw = [ 0.7 * I ] / [ (0.7 * Ww) * ( 0.7 * Tw ) ] = I / (0.7 * WwTw)

Assuming K = 1/0.7 ~ 1.43

Page 40: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 40/44

Interconnect Delay Curves

microns

Pico

seco

nds

M1

M2

M3

M4

M5

M6

microns

0.18 um Aluminum 0.13 um Copper

An M4 5mm 0.18um line (1.8ns un-repeated) would scale to 3.5mm in 0.13um; assuming fF/um remains constant, but ohms/um doubles, then the same wire would take 3.6ns. Copper takes this to 1.0ns.

M4

Page 41: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 41/44

Repeated Interconnect

M3

M4

M5

M6

Pico

seco

nds

microns

0.13 um Copper

The 3.5mm M4 line’s 1ns can be further reduced to 0.52 ns by adding repeaters.

Page 42: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 42/44

90 nm & 65nm Technology Overview

90 nm 65nm units

Lphysical 60/65 38/44 nmWmin 90 65 nmTox N/P 2.0/2.0 1.4/1.4 nmXj N/P 32/32 24/24 nm

CONTACT 90 65 nmVIA1 130 95 nmVIA2 130 95 nmVIA3 130 95 nmVIA4 220 175 nmVIA5 240 175 nmVIA6 340 300 nmVIA7 300 nm

POLY w/s 90/130 65/90 nmM1 w/s 140/140 105/105 nmM2 w/s 170/170 130/130 nmM3 w/s 170/170 130/130 nmM4 w/s 240/240 180/180 nmM5 w/s 360/360 180/180 nmM6 w/s 540/540 400/400 nmM7 w/s 810/810 400/400 nm

Page 43: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 43/44

90 nm & 65nm Technology Overview –cnt’d-90 nm (Cu) 65nm units

Vt0 N/P 0.3/-0.3 .29/-.33 voltsRdsw N/P 300/600 378/748 ohms-umCj N/P 2.9/2.9 4.1/4.2 fF/um^2Cjsw N/P 0.4/0.4 .34/.36 fF/umCgate N/P ~1.4 ~1.8 fF/umIdsat N/P ~1000/500 ~1380/630 uA/umIoff N/P 60/-60 190/-175 nA/um @100C

CONTACT 4.0 8.0 ohms/con @ 100CVIA1 3.0 6.0 ohms/con @ 100CVIA2 2.4 6.0 ohms/con @ 100CVIA3 2.4 6.0 ohms/con @ 100CVIA4 1.4 4.5 ohms/con @ 100CVIA5 1.0 3.4 ohms/con @ 100CVIA6 0.6 2.0 ohms/con @ 100CVIA7 2.0 ohms/con @ 100C

M1 R & C 700 & 0.23 1570 & 0.23 mohms/um & fF/umM2 R & C 400 & 0.23 930 & 0.23 mohms/um & fF/umM3 R & C 400 & 0.23 930 & 0.22 mohms/um & fF/umM4 R & C 150 & 0.22 330 & 0.22 mohms/um & fF/umM5 R & C 150 & 0.23 330 & 0.23 mohms/um & fF/umM6 R & C 150 & 0.25 330 & 0.23 mohms/um & fF/umM7 R & C 100 & 0.25 mohms/um & fF/um

Page 44: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 44/44

References1. A. Chandrakasan, W.J. Bowhill, F. Fox, Design of High-Performance Microprocessor Circuits, IEEE

Press, New York, 2001.2. Y. Taur, T.H. Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, UK, 1998.3. K. Bernstein et. Al., High Speed CMOS Design Styles, Kluwer Academic Publishers, Boston, 1999.4. R.J. Baker, H.W. Li, D.E. Boyce, CMOS Circuit Design, Layout, and Simulation, IEEE Press, New

York, 1998.5. J.M. Rabaey, Digital Integrated Circuits, Prentice-Hall, New Jersey, 1996.6. S. Thompson, et. al., “An Enhanced 130nm Generation Logic Technology Featuring 60nm

Transistors Optimized for High Performance and Low Power at 0.7-1.4V”, 2001 IEDM Technical Digest, pp. 257-260.

7. S. Thompson, et. al., 90nm Technology, 2002 IEDM Technical Digest, pp. 61-64.8. P. Bai, et. al., “A 65nm Logic Technology Featuring 35nm Gate Length, Enhanced Channel Strain, 8 Cu

Interconnect Layersw, Low-k ILD and 0.57um2 SRAM Cell”, 2004 IEDM.9. Summary of a gazillion processors:

http://www-vlsi.stanford.edu/group/chips_micropro.html10. M. Bohr, Intel’s 90nm Process Starting High Volume Manufacturing,

http://www.intel.com/research/silicon11. For latest information on Intel’s silicon technology, please visit:

http://www.intel.com/technology/silicon/12. K. Mistry, et al., “A 45nm Logic Technology with High-k+ Metal Gate Transistors, Strained Silicon,

9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging”, Tech. Digest IEDM, Dec 2007.

Page 45: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 45/44

BACKUP

Page 46: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 46/44

Drain Current Models

Page 47: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 47/44

Ids: Characteristics in the Linear Region

Figures from: Y. Taur, T.H. Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, UK, 1998.

Page 48: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 48/44

Ids: Characteristics in the Subthreshold Region

Figures from: Y. Taur, T.H. Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, UK, 1998.

Page 49: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 49/44

Characteristics in the Saturation Region (Long Channel)

Figures from: Y. Taur, T.H. Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, UK, 1998.

Page 50: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 50/44

Characteristics in the Saturation Region with Velocity Saturation

Page 51: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 51/44

Characteristics in the Saturation Region with Velocity Saturation

Figures from: Y. Taur, T.H. Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, UK, 1998.

Page 52: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 52/44

Interconnect Delay

Intrinsic wire delay ~ 0.5*L2*(R/um)*(C/um)

Page 53: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 53/44

Wire Delay Example

• In 0.18 um CMOS, assume a 2 mm M2 wire, minimum width (0.34um), and a 120fF load at the end.

• What is the intrinsic wire delay?• What size driver should you use?

• Intrinsic Delay:– Using a worst case 0.18 ohms/um and 0.22 fF/um:– C = 2000*0.22 = 440 fF and R = 360 ohms.– Intrinsic wire delay = 0.5*RC ~ 79ps

• Driver size (use FO=4 and P:N ratio~2):– input cap ~ (Cwire+Cload)/4 ~ 560fF/4 = 140fF– Using Cox ~1fF/um, PFET is 93um and NFET is 47um.

• If M2 wire is 4mm long, intrinsic delay is ~ 317ps ….. 4X longer ….

FO=4

93 μ

47 μ 220 f 220 f

360 120 fF

Page 54: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 54/44

Homework Assignment #1.2 & #1.4

A 2 cycle static circuit will be analyzed with a Copper 1.0V, 90nm CMOS technology. Maximum frequency (Fmax) of operation and power dissipation as a function of VDD with ZERO clock skew will be established via circuit simulation. In addition, the impact of realistic clock skew on Fmax will be determined. Finally, the Fmax will be predicted for a 65nm CMOS circuit using constant field scaling law.

Page 55: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 55/44

A0_in

B0_in

OUT

EE382M HMK #1.2 All dimensions in microns90nm CMOSR in ohms, C in fF

7.6

3.63.9 15.6

21

2129

21

56 21

6.46.47.2

6.010.510.5

101010.8

4.26.06.0

6.411.211.2

7.07.07.7

4.88.48.4

5.35.35.8

101010.8

4.26.06.0

13.313.314.4

5.68.08.0

MSFF

clk

MSFF

clk

MSFF

clk

MSFF

clk

82 2

226 6

7845 45 45

24 24 3313 13

162 2

Page 56: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 56/44

Clock-Skew Impact to Fmax (HMK #1.4)

τ1 > τ2

local clock buffer

mast

er

slaveB0_in

Out

clock

LC

B

LC

B

GLOBAL clock

τ1 τ2

mast

er

slave

mast

er

clock

slave

mast

er

clock

slave

LC

B

τ2

logic logic

A0_in

en

outin

LCB

GCLK

Vdd

in en in en in en

GLOBAL enable

Page 57: No Slide Titleusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_5.pdf ·  · 2008-10-21metals causing self-heating and metal ... The University of Texas at Austin EE382M VLSI-II Class

The University of Texas at Austin EE382M VLSI-II Class Notes Page # 57/44

INVERTING MSFF

clock

DoutDin