New Developments in Fast Reactor Related Technologies at HZDR · New Developments in Fast Reactor...

27
Text optional: Institutsname Prof. Dr. Hans Mustermann www.fzd.de Mitglied der Leibniz-Gemeinschaft New Developments in Fast Reactor Related Technologies at HZDR B. Merk Department Reactor Safety at Institute of Resource Ecology Helmholtz-Zentrum Dresden-Rossendorf IAEA TWG-FR, Vienna, May 19-23, 2014

Transcript of New Developments in Fast Reactor Related Technologies at HZDR · New Developments in Fast Reactor...

Text optional: Institutsname Prof. Dr. Hans Mustermann www.fzd.de Mitglied der Leibniz-Gemeinschaft

New Developments in Fast Reactor

Related Technologies at HZDR

B. Merk

Department Reactor Safety at

Institute of Resource Ecology

Helmholtz-Zentrum Dresden-Rossendorf

IAEA TWG-FR, Vienna, May 19-23, 2014

Seite 2/29

Content

DYN3D developments

Cross section measurements

Liquid metal technologies

Enhanced feedback effects

Contribution to P&T Study

Molten salt reactor for P&T

Text optional: Institutsname Prof. Dr. Hans Mustermann www.fzd.de Mitglied der Leibniz-Gemeinschaft

DYN3D Develoments

12

3 1

2

4

5

6

7 8

9

11

10

13

14

15

16

DYN3D distribution at national and international institutions

Seite 4/29

Verification of XS generation and Steady State

Calculations

• 3D full core calculations (Example: 3600 MW Pu-MOX SFR)

– At beginning of life

• DYN3D and PARCS

– Diffusion solution

• Serpent:

– Reference solution

– Few-group XS for DYN3D and PARCS

Seite 5/29

k-eff, Radial Power, and Safety Parameters • Δρ

– DYN3D vs. Serpent: 128 pcm

– PARCS vs. Serpent: 84 pcm

• Max. diff. in radial power

– DYN3D vs. Serpent: 0.56%

– PARCS vs. Serpent: 0.34%

Parameter Serpent,

pcm

DYN3D vs.

Serpent, pcm

PARCS vs.

Serpent, pcm

Doppler constant -852 -15 -15 Na void reactivity 1864 87 81 Total CR worth -6046 -127 -180

Acknowledements:

Eugene Shwageraus, Univ. of Cambridge

Konstantin Mikityuk, PSI

Seite 6/29

Thermal hydraulics

Sodium thermal hydraulics is tested

Fuel rod model

coupling of DYN3D with TRANSURANUS in testing

Strategy for handling of axial fuel rod expansion in a nodal code is

developed, implementation has started

Validation on experiments

~ 24 pm in FREYA for validation for LFR, work is started

STC with IPPE for validation on BFS experiments has started

Developments for Transient Calculatons

Text optional: Institutsname Prof. Dr. Hans Mustermann www.fzd.de Mitglied der Leibniz-Gemeinschaft

Nuclear Data Measurements at the

Photoneutron Source nELBE

Liquid-Pb loop as neutron producing target

electron

beam

neutron

beam

Seite 8/29

nELBE double time-of-flight experiment HZDR Dresden

incoming neutron time-of-flight: BaF2 and LaBr3 scintillators

scattered neutron time-of-flight: plastic scintillators

Seite 9/29

nELBE neutron spectrum

Photoneutron spectrum (measured with a 235U fission chamber)

Photofission from bremsstrahlung and neutron induced fission can be measured.

similar to the neutron spectrum from fission

Neutron time of flight 100 ns – 2,5 µs

Neutron energy range from 100 keV – 7 MeV

235U fission chamber

Measurement time : 49.4 h Ie- = 15 μA, Ee- = 31 MeV

Flight path 618 cm

Absorption dips : 78,117, 355, 528, 722, 820 keV 208Pb scatttering resonances

Emission peaks: 40,89,179, 254, 314, 605 keV near threshold photoneutron emission

In 208Pb (strong capture resonances of 207Pb)

R. Beyer et al., NIM A723 (2013) 151

Seite 10/29

Double time-of-flight measurement natFe(n,n‘)

-Fe-56 (1.,2.,3. Level)

(847, 2085, 2658 keV)

-Fe-54 (1. Level)

(1408 keV)

-Fe-56 (2 x 1. Level)

(1694 keV)

excited levels in Fe resolved by double time-of-flight method

Publications:

Neutron total cross section measurements of gold and tantalum at the nELBE photoneutron source⋆

Roland Hannaske, et al. Eur. Phys. J. A 49 (2013) 137

Characterization of the neutron beam at nELBE

Roland Beyer, et al., Nuclear Instruments and Methods in Physics Research A 723 (2013) 151–162

Determination of Resonance Parameters and their Covariances from Neutron Induced Reaction Cross Section Data

P. Schillebeeckx et al., Nuclear Data Sheets 113 (2012) 3054–3100

Inelastic neutron scattering from excited states in 56Fe

R. Beyer et al., Nuclear Physics A 927 (2014) 41

Text optional: Institutsname Prof. Dr. Hans Mustermann www.fzd.de Mitglied der Leibniz-Gemeinschaft

Liquid Metal Technologies

DRESDYN – 3D design and curreent comnstruction status

Seite 12/29

Helmholtz-Zentrum Dresden-Rossendorf (HZDR)

Institute of Fluid Dynamics

Measurement techniques for liquid metal flows

applicable to flows of Na, Pb, PbBi, etc.

Local flow fields (3D) can be measured by:

- Ultrasonic Doppler velocimetry (UDV)

- Contactless inductive flow tomography (CIFT)

15 20 25 30 35 40 45 50 55

-2000

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

ve

locity [m

m/s

]

depth [mm]

Essential development over past 1-2 decades:

Liquid metal flows can (almost) completely

be measured and monitored

Velocity profiles

in the Na duct flow

at HZDR

measured by UDV

(4 MHz, 5 mm)

A flow field modifies an externally applied magnetic field:

the magnetic field measured outside the melt

contains full information about the flow field

Seite 13/29

Integral flowrate: Eddy-current flowrate measurements (ECFM)

Sketch of the flowrate sensor

y

x

z

flow receiver coil1

receiver coil2

channelwall

emitter

coil

magnetic field

induced currents

J. Priede, D. Buchenau, G. Gerbeth: Contactless electromagnetic phase-shift

flowmeter for liquid metals. Meas. Sci. Technol. 22, 055402, 2011.

Phase-shift sensor of HZDR:

phase-shift between receiver coils proportional to flowrate

Coils around the flow

Commercially available via company SAAS Ltd. Dresden

Tested at: THESYS (KIT), WebExpir (SCK Mol), NACIE (ENEA), etc.

planned model exp.

using GaInSn

Transient application:

Flow around the sensor

for detection of flow

blockages

Text optional: Institutsname Prof. Dr. Hans Mustermann www.fzd.de Mitglied der Leibniz-Gemeinschaft

Enhanced Feedback Effects

Assembly burnup distribution wit and without modrating material

Seite 15/29

Enhanced Feedback Effects

Merk, Weiß, Annals of Nuclear Energy 38,5, (2011), 921-929

Merk, Weiß, Annals of Nuclear Energy 38,11 (2011) 2374–2385

Merk, Fridman, Kliem, Weiß, Nuclear Sc. and Eng. 171 (2012) 136-149

Insertion of fine distributed moderating material:

Hydrogen bearing metal compound

Significant low energy tail formed in the spectrum

Ideally located in the spacer wire

ZrH or better YH for increased thermal stability

10-4

10-2

100

102

104

106

10-15

10-5

105

1015

10-4

10-2

100

102

104

flu

x p

er

un

it l

eth

arg

y

(1/c

m²/

s)

neutron energy (eV)

rad

iati

ve

cap

ture

co

rss s

ecti

on

(barn

)

reference

YH

U-238

Pu-239

Pu-240

Seite 16/29

Optimization of Fast Reactor Safety for P&T

feedback effects are an inherent safety

mechanism in all nuclear reactors

Insertion of fine distributed

moderating material

enhances the negative Doppler effect

reduces the positive sodium void effect

reduces the positive coolant effect

insertion of transmutation materials

damps the feedback effects

compensation of effects caused by insertion of

transmutation materials (Americium)

improved transmutation efficiency due to higher possible loading

refere

nce

with m

od. materia

l

with A

m

with A

m + mod.

50

100

150

200

250

Doppler effect

Coolant effect

Void effect

ch

an

ge

re

ac

tiv

ity

eff

ec

t [%

]

Seite 17/29

Effect of Plutonium Loading

Strong effect of Pu content on Doppler effect

Nearly no effect on reduction of sodium void

Effect of Pu content reduces during burnup

breeding in low content vs. burning in high content

5 10 15 20 25 30 35

30

40

50

60

70

80

90

100

BOL

EOL

rel.

ch

an

ge

in

fu

el

tem

p.

eff

ec

t [%

]

Plutonium content [%]

5 10 15 20 25 30 35

-30

-25

-20

-15

-10

-5

0

rel.

ch

an

ge

in

so

diu

m v

oid

eff

ec

t [%

]

Plutonium content [%]

BOL

EOL

Text optional: Institutsname Prof. Dr. Hans Mustermann www.fzd.de Mitglied der Leibniz-Gemeinschaft

Contribution to

P&T Study

Repository exploration site

Gorleben

Fast reactor Superphenix

Reprocessing plant La Hague

Seite 19/29

Workpackage Status of Science and Technology

Reactor systems for P&T – with special view on the boundary

conditions given by the phase out

Overview on the status of science and technology in research and

application

Separation chemistry

Safety aspects in partitioning

accelerator technology and spallation targets

transmutation fuels

Basic physics and core design

Reactor physics and simulation tools

Safety approach for P&T systems

Material concepts and key technologies for liquid metal systems

Waste conditioning

Existing irradiation facilities with fast spectrum

Collection of open questions and technology gaps

Development of a strategy to close the technology gaps

Text optional: Institutsname Prof. Dr. Hans Mustermann www.fzd.de Mitglied der Leibniz-Gemeinschaft

Molten Salt Reactor for P&T

EVOL – Benachmark definition and layout sketch

Seite 21/29

Transmutation Optimized Configuration in Phase Out Scenario

Idea born during P&T study

Bypass special problems in transmutation optimized systems

appearing in solid fuelled reactors

Multi recycling

Solid fuel production

Degradation of feedback effects

Avoiding of extensive transports

Adaption of EVOL design for P&T

Use of fertile free core composition

Use of MOSART salt composition

Application of deep burn phase

Seite 22/29

Simulation of MSFR operation in transmuter mode followed by deep burn

mode using HELIOS 1.10 and a PHYTON script

Average criticality over cycle 𝒌 TRU and heavy metal content

TRU content is over the whole operation below solubility limit of 3 at% at

600°C for the MOSART salt

Scenario for Germany

0 50 100 150 200 250 300 350

-0.010

-0.008

-0.006

-0.004

-0.002

0.000

0.002

0.004

0.006

0.008

0.010

end of operationdeep burn

k

cycles [-]

k

transmuter operation

0 50 100 150 200 250 300 350

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

end of operationdeep burn

num

ber

density [n/b

arn

/cm

]

cycles [-]

heavy metal content

TRU content

transmuter operation

Seite 23/29

Calculation Results for Germany

Operational results

Thermal power 3000 MW

available TRU 170 tons

real TRU inserted (per

reactor) 56.59 tons

operation time –

transmuter 44.9 years

TRU burning rate (calc.) 42.5 kg/TWh

theoretical burning rate 42.3 kg/TWh

operation time – deep burn 15.7 years

over all operation time –

transmuter + deep burn 60.6 years

TRU end of operation –

deep burn 0.115 tons

TRU burnt –

transmuter + deep burn 99.8 %

Seite 24/29

Thank you for your attention

Seite 25/29

Nuclear Data Measurements at the photoneutron source nELBE

Extending the scope of accurate nuclear data

New Isotopes:

Minor actinides, New coolants, structural materials

New energy range:

Fast neutrons

New reactions:

(in)elastic scattering, (n,tot), (n,fis)

New neutron facilities:

Helmholtz-Zentrum Dreden-Rossendorf operates

the world‘s only photoneutron source at a superconducting

electron accelerator:

Seite 26/29

Measuring field: sitch-on – switch-off

eddy currents influenced by metal flow

3 measuring coils deliver flow velocity

around the sensor

calibration free!

ECFM: Flowrate measurements

TEC-FM: Transient eddy-current flow meter

planned model experiment

using GaInSn

recent activity:

Flow around the sensor

for detection of flow

blockages

Seite 27/29

Calculation flow for the calculation of a molten salt reactor with online salt

cleanup using HELIOS 1.10

Intensive use of the power of the post processing tool ZENITH of the HELIOS

package

Calculation Flow using PYTHON Script

only printed

isotopes

re-distribution

of materials

isotopes

converged

re-feeding

material

user input output

expert

input

post-processor pre-processor

AURORA HELIOS ZENITH

SKRIPT