(Near) Optimal Adaptivity Gaps for Stochastic Multi-Value...

50
(Near) Optimal Adaptivity Gaps for Stochastic Multi-Value Probing Domagoj Bradac 1 , Sahil Singla 2 , Goran Zuzic 3 University of Zagreb ETH Zurich 1 Princeton and Institute for Advanced Study 2 Carnegie Mellon University 3 September 21, 2019 Domagoj Bradac Sahil Singla 2 Slides are based on a deck by Sahil Singla. 1 / 21

Transcript of (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value...

Page 1: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

(Near) Optimal Adaptivity Gaps forStochastic Multi-Value Probing

Domagoj Bradac1, Sahil Singla2, Goran Zuzic3

University of Zagreb → ETH Zurich1

Princeton and Institute for Advanced Study2

Carnegie Mellon University3

September 21, 2019

Domagoj Bradac Sahil Singla2Slides are based on a deck by Sahil Singla.

1 / 21

Page 2: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Outline

1 Motivating example

2 Problem definition

3 Adaptivity gap

4 Results

5 Proof: Upper bound

6 Conclusion

2 / 21

Page 3: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Motivating example: Birthday party

p = 0.5p = 0.5

p = 0.8

p = 0.4 p = 0.25

15 min

25 min

20 min

20 min

30 min

15 min

30 min

20 min

Only 1 hour before deadline!

Remark: if probabilities 1 &nodes distinct, thenOrienteering Problem[Blum et al. FOCS’03].

3 / 21

Page 4: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Motivating example: Birthday party

p = 0.5p = 0.5

p = 0.8

p = 0.4 p = 0.25

15 min

25 min

20 min

20 min

30 min

15 min

30 min

20 min

Only 1 hour before deadline!

Remark: if probabilities 1 &nodes distinct, thenOrienteering Problem[Blum et al. FOCS’03].

3 / 21

Page 5: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Things to note

Probabilities of being active:independent.

Objective: # distinct items.

Constraint: 1 hour in the givenmetric.

Goal: maximize the expectedobjective value.

p = 0.5p = 0.5

p = 0.8

p = 0.4 p = 0.25

15 min

25 min

20 min

20 min

30 min

15 min

30 min

20 min

4 / 21

Page 6: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Things to note

Probabilities of being active:independent.

Objective: # distinct items.

Constraint: 1 hour in the givenmetric.

Goal: maximize the expectedobjective value.

p = 0.5p = 0.5

p = 0.8

p = 0.4 p = 0.25

15 min

25 min

20 min

20 min

30 min

15 min

30 min

20 min

4 / 21

Page 7: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Things to note

Probabilities of being active:independent.

Objective: # distinct items.

Constraint: 1 hour in the givenmetric.

Goal: maximize the expectedobjective value.

p = 0.5p = 0.5

p = 0.8

p = 0.4 p = 0.25

15 min

25 min

20 min

20 min

30 min

15 min

30 min

20 min

4 / 21

Page 8: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Things to note

Probabilities of being active:independent.

Objective: # distinct items.

Constraint: 1 hour in the givenmetric.

Goal: maximize the expectedobjective value.

p = 0.5p = 0.5

p = 0.8

p = 0.4 p = 0.25

15 min

25 min

20 min

20 min

30 min

15 min

30 min

20 min

4 / 21

Page 9: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

p = 0.5

p = 0.5

p = 0.4

15 min

25 min

20 min

p = 0.5

p = 0.5

p = 0.8

15 min

25 min

20 min

p = 0.5p = 0.5

p = 0.8

p = 0.4 p = 0.25

15 min

25 min

20 min

20 min

30 min

15 min

30 min

20 min

0.5+0.5+0.4 = 1.4

0.5(1 + 0.5 + 0)+

0.5(0 + 0.5 + 0.8) = 1.4

Can we do better?

5 / 21

Page 10: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

p = 0.5

p = 0.5

p = 0.4

15 min

25 min

20 min

p = 0.5

p = 0.5

p = 0.8

15 min

25 min

20 minp = 0.5p = 0.5

p = 0.8

p = 0.4 p = 0.25

15 min

25 min

20 min

20 min

30 min

15 min

30 min

20 min

0.5+0.5+0.4 = 1.40.5(1 + 0.5 + 0)+

0.5(0 + 0.5 + 0.8) = 1.4 Can we do better?

5 / 21

Page 11: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Outline

1 Motivating example

2 Problem definition

3 Adaptivity gap

4 Results

5 Proof: Upper bound

6 Conclusion

6 / 21

Page 12: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Problem definition: Stochastic probing

Given:Universe [n] = 1, 2, . . . , n.

Probabilities p1, p2, . . . , pn of being active.Probing constraints C ⊆ 2[n].

C is downward closed.

Monotone valuation function f : 2[n] → R≥0.

Then:Find Probed ⊆ [n] satisfying constraints.

i.e., Probed ∈ CSample a set of active elements A ⊆ [n].

i.e., (i ∈ A) ∼ Bernoulli(pi ) independent of j 6= iGoal: Maximize f (Probed ∩ A).

i.e., EA[f (Probed ∩ A)]

7 / 21

Page 13: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Problem definition: Stochastic probing

Given:Universe [n] = 1, 2, . . . , n.Probabilities p1, p2, . . . , pn of being active.

Probing constraints C ⊆ 2[n].C is downward closed.

Monotone valuation function f : 2[n] → R≥0.

Then:Find Probed ⊆ [n] satisfying constraints.

i.e., Probed ∈ CSample a set of active elements A ⊆ [n].

i.e., (i ∈ A) ∼ Bernoulli(pi ) independent of j 6= iGoal: Maximize f (Probed ∩ A).

i.e., EA[f (Probed ∩ A)]

7 / 21

Page 14: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Problem definition: Stochastic probing

Given:Universe [n] = 1, 2, . . . , n.Probabilities p1, p2, . . . , pn of being active.Probing constraints C ⊆ 2[n].

C is downward closed.

Monotone valuation function f : 2[n] → R≥0.

Then:Find Probed ⊆ [n] satisfying constraints.

i.e., Probed ∈ CSample a set of active elements A ⊆ [n].

i.e., (i ∈ A) ∼ Bernoulli(pi ) independent of j 6= iGoal: Maximize f (Probed ∩ A).

i.e., EA[f (Probed ∩ A)]

7 / 21

Page 15: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Problem definition: Stochastic probing

Given:Universe [n] = 1, 2, . . . , n.Probabilities p1, p2, . . . , pn of being active.Probing constraints C ⊆ 2[n].

C is downward closed.

Monotone valuation function f : 2[n] → R≥0.

Then:Find Probed ⊆ [n] satisfying constraints.

i.e., Probed ∈ CSample a set of active elements A ⊆ [n].

i.e., (i ∈ A) ∼ Bernoulli(pi ) independent of j 6= iGoal: Maximize f (Probed ∩ A).

i.e., EA[f (Probed ∩ A)]

7 / 21

Page 16: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Problem definition: Stochastic probing

Given:Universe [n] = 1, 2, . . . , n.Probabilities p1, p2, . . . , pn of being active.Probing constraints C ⊆ 2[n].

C is downward closed.

Monotone valuation function f : 2[n] → R≥0.

Then:Find Probed ⊆ [n] satisfying constraints.

i.e., Probed ∈ C

Sample a set of active elements A ⊆ [n].i.e., (i ∈ A) ∼ Bernoulli(pi ) independent of j 6= i

Goal: Maximize f (Probed ∩ A).i.e., EA[f (Probed ∩ A)]

7 / 21

Page 17: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Problem definition: Stochastic probing

Given:Universe [n] = 1, 2, . . . , n.Probabilities p1, p2, . . . , pn of being active.Probing constraints C ⊆ 2[n].

C is downward closed.

Monotone valuation function f : 2[n] → R≥0.

Then:Find Probed ⊆ [n] satisfying constraints.

i.e., Probed ∈ CSample a set of active elements A ⊆ [n].

i.e., (i ∈ A) ∼ Bernoulli(pi ) independent of j 6= i

Goal: Maximize f (Probed ∩ A).i.e., EA[f (Probed ∩ A)]

7 / 21

Page 18: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Problem definition: Stochastic probing

Given:Universe [n] = 1, 2, . . . , n.Probabilities p1, p2, . . . , pn of being active.Probing constraints C ⊆ 2[n].

C is downward closed.

Monotone valuation function f : 2[n] → R≥0.

Then:Find Probed ⊆ [n] satisfying constraints.

i.e., Probed ∈ CSample a set of active elements A ⊆ [n].

i.e., (i ∈ A) ∼ Bernoulli(pi ) independent of j 6= iGoal: Maximize f (Probed ∩ A).

i.e., EA[f (Probed ∩ A)]

7 / 21

Page 19: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Adaptive vs. non-adaptive strategies

Adaptive: a decision tree where every root-leaf path is feasible.

no yes

no yes no yes

no yes

Non-adaptive: ( , , , )

8 / 21

Page 20: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Outline

1 Motivating example

2 Problem definition

3 Adaptivity gap

4 Results

5 Proof: Upper bound

6 Conclusion

9 / 21

Page 21: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Adaptivity gap

Definition (Adaptivity gap)

Ratio of the best adaptive to best non-adaptive strategy.

AdaptivityGap :=E[Adap]

E[NA]

Adaptive example: probe 1 → probe 2 OR 3.

E[Adap] = 0.5(1 + 0.1) + 0.5(0 + 0.5)

= 0.8E[NA] = 1− 0.5 · 0.5

= 0.75

Main question: How large can the gap be?

p1 = 0.5

p2 = 0.5 p3 = 0.1

No Yes

10 / 21

Page 22: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Why care about adaptivity gaps?

Adaptive strategy concerns:

Can be exponentially sized.How to compute?How to represent?

no yes

no yes no yes

no yes

Best non-adaptive: select a feasible Probed ∈ C in the beginningto

maxEA∼p[f (Probed ∩ A)].

Benefits:Easier to represent: just output the set.Easier to find: g(S) = EA∼p[f (S ∩ A)] is often submodular.

Concern: large adaptivity gap := E[Adap]E[NA] .

11 / 21

Page 23: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Why care about adaptivity gaps?

Adaptive strategy concerns:

Can be exponentially sized.How to compute?How to represent?

no yes

no yes no yes

no yes

Best non-adaptive: select a feasible Probed ∈ C in the beginningto

maxEA∼p[f (Probed ∩ A)].

Benefits:

Easier to represent: just output the set.Easier to find: g(S) = EA∼p[f (S ∩ A)] is often submodular.

Concern: large adaptivity gap := E[Adap]E[NA] .

11 / 21

Page 24: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Why care about adaptivity gaps?

Adaptive strategy concerns:

Can be exponentially sized.How to compute?How to represent?

no yes

no yes no yes

no yes

Best non-adaptive: select a feasible Probed ∈ C in the beginningto

maxEA∼p[f (Probed ∩ A)].

Benefits:Easier to represent: just output the set.Easier to find: g(S) = EA∼p[f (S ∩ A)] is often submodular.

Concern:

large adaptivity gap := E[Adap]E[NA] .

11 / 21

Page 25: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Why care about adaptivity gaps?

Adaptive strategy concerns:

Can be exponentially sized.How to compute?How to represent?

no yes

no yes no yes

no yes

Best non-adaptive: select a feasible Probed ∈ C in the beginningto

maxEA∼p[f (Probed ∩ A)].

Benefits:Easier to represent: just output the set.Easier to find: g(S) = EA∼p[f (S ∩ A)] is often submodular.

Concern: large adaptivity gap := E[Adap]E[NA] .

11 / 21

Page 26: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Small adaptivity gap

Assume α is small.

Best adaptive

Best non-adaptive Algorithm

Adaptivity gap

Approx ratio α

Bound: α · gap

Question: For what constraints and functions is the gap small?

12 / 21

Page 27: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Outline

1 Motivating example

2 Problem definition

3 Adaptivity gap

4 Results

5 Proof: Upper bound

6 Conclusion

13 / 21

Page 28: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Our results

TheoremAdaptivity gap is 2.

Always gap ≤ 2, there exists an example where gap = 2.Function = monotone submodular.Constraints = downward closed.

Downward closed: If a set can be probed then also its subsets can.

Submodular: E.g., # of distinct elements.

Theorem

Adaptivity gap is between Ω(√

k) and O(k log k).Function = weighted rank of k-matroid intersection.Constraints = downward closed.

14 / 21

Page 29: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Our results

TheoremAdaptivity gap is 2.

Always gap ≤ 2, there exists an example where gap = 2.Function = monotone submodular.Constraints = downward closed.

Downward closed: If a set can be probed then also its subsets can.

Submodular: E.g., # of distinct elements.

Theorem

Adaptivity gap is between Ω(√

k) and O(k log k).Function = weighted rank of k-matroid intersection.Constraints = downward closed.

14 / 21

Page 30: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Prior work

Reference Function Constraints Gap LB Gap UB

[GN’13] k1-matroidintersection

k2-matroidintersection

O((k1 + k2)2

)[GNS’16] k-matroid in-

tersectiondownwardclosed

O(k4 log kn)

[an’16] monotonesubmodular

1-matroid ee−1 ≈ 1.58 e

e−1 ≈ 1.58

[GNS’17] monotonesubmodular

downwardclosed

1.58 [AN’16] 3

this paper monotonesubmodular

downwardclosed

2 2

this paper k-matroid in-tersection

downwardclosed

√k O(k log k)

15 / 21

Page 31: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Prior work

Reference Function Constraints Gap LB Gap UB

[GN’13] k1-matroidintersection

k2-matroidintersection

O((k1 + k2)2

)[GNS’16] k-matroid in-

tersectiondownwardclosed

O(k4 log kn)

[an’16] monotonesubmodular

1-matroid ee−1 ≈ 1.58 e

e−1 ≈ 1.58

[GNS’17] monotonesubmodular

downwardclosed

1.58 [AN’16] 3

this paper monotonesubmodular

downwardclosed

2 2

this paper k-matroid in-tersection

downwardclosed

√k O(k log k)

15 / 21

Page 32: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Outline

1 Motivating example

2 Problem definition

3 Adaptivity gap

4 Results

5 Proof: Upper bound

6 Conclusion

16 / 21

Page 33: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Upper bound: Proof Steps

TheoremAdaptivity gap is at most 2.

Function = monotone submodular.Constraints = downward closed.

Steps:

1 Transform an adaptive strategy to a non-adaptive.2 Prove E[NA] ≥ 1

2E[Adap].

17 / 21

Page 34: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Upper bound: Proof Steps

TheoremAdaptivity gap is at most 2.

Function = monotone submodular.Constraints = downward closed.

Steps:1 Transform an adaptive strategy to a non-adaptive.2 Prove E[NA] ≥ 1

2E[Adap].

17 / 21

Page 35: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Upper bound: Two ideas

(1) Take a random root-leaf pathOnly show existence

XX X

X X

NO .. p = 0.7 p = 0.3 .. YES

0.5 0.5 0.2 0.8

0.3 0.7

18 / 21

Page 36: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Upper bound: Two ideas

(1) Take a random root-leaf pathOnly show existence

XX X

X X

NO .. p = 0.7 p = 0.3 .. YES

0.5 0.5 0.2 0.8

0.3 0.7

Blue path prob = 0.7 · 0.5 · 0.7Here Adap gets 2.Here NA gets 0.3 + 0.5 + 0.7 = 1.5Goal to show: E[NA] = E[RandomPath] ≥ 1

2E[Adap].

18 / 21

Page 37: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Upper bound: Two ideas

(1) Take a random root-leaf pathOnly show existence

XX X

X X

NO .. p = 0.7 p = 0.3 .. YES

0.5 0.5 0.2 0.8

0.3 0.7

(2) Node-by-node inductionConvert NA to a “greedy” algorithm for induction.

18 / 21

Page 38: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Upper bound: Proof

Goal: E[RandomPath] ≥ 12E[Adap].

Def: I = is the root active in Adap?Def: R = is the root active in NA?

Adap = EI [f (I ) + Adap(TI , fI )]

≤ EI ,R [f (I ∪ R) + Adap(TI , fI∪R)]

≤ EI ,R [2f (R) + Adap(TI , fI∪R)].

Non-adaptive:

NA = EI ,R [f (R) + NA(TI , fR)]

≥ EI ,R [f (R) + NA(TI , fI∪R)]

Induction hypothesis:

EI ,R [Adap(Ti , fI∪R)] ≤ 2 · EI ,R [NA(TI , fI∪R)]

19 / 21

Page 39: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Upper bound: Proof

Goal: E[RandomPath] ≥ 12E[Adap].

Def: I = is the root active in Adap?Def: R = is the root active in NA?

Adap = EI [f (I ) + Adap(TI , fI )]

≤ EI ,R [f (I ∪ R) + Adap(TI , fI∪R)]

≤ EI ,R [2f (R) + Adap(TI , fI∪R)].

Non-adaptive:

NA = EI ,R [f (R) + NA(TI , fR)]

≥ EI ,R [f (R) + NA(TI , fI∪R)]

Induction hypothesis:

EI ,R [Adap(Ti , fI∪R)] ≤ 2 · EI ,R [NA(TI , fI∪R)]

19 / 21

Page 40: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Upper bound: Proof

Goal: E[RandomPath] ≥ 12E[Adap].

Def: I = is the root active in Adap?Def: R = is the root active in NA?

Adap = EI [f (I ) + Adap(TI , fI )]

≤ EI ,R [f (I ∪ R) + Adap(TI , fI∪R)]

≤ EI ,R [2f (R) + Adap(TI , fI∪R)].

Non-adaptive:

NA = EI ,R [f (R) + NA(TI , fR)]

≥ EI ,R [f (R) + NA(TI , fI∪R)]

Induction hypothesis:

EI ,R [Adap(Ti , fI∪R)] ≤ 2 · EI ,R [NA(TI , fI∪R)]

19 / 21

Page 41: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Upper bound: Proof

Goal: E[RandomPath] ≥ 12E[Adap].

Def: I = is the root active in Adap?Def: R = is the root active in NA?

Adap = EI [f (I ) + Adap(TI , fI )]

≤ EI ,R [f (I ∪ R) + Adap(TI , fI∪R)]

≤ EI ,R [2f (R) + Adap(TI , fI∪R)].

Non-adaptive:

NA = EI ,R [f (R) + NA(TI , fR)]

≥ EI ,R [f (R) + NA(TI , fI∪R)]

Induction hypothesis:

EI ,R [Adap(Ti , fI∪R)] ≤ 2 · EI ,R [NA(TI , fI∪R)]

19 / 21

Page 42: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Upper bound: Proof

Goal: E[RandomPath] ≥ 12E[Adap].

Def: I = is the root active in Adap?Def: R = is the root active in NA?

Adap = EI [f (I ) + Adap(TI , fI )]

≤ EI ,R [f (I ∪ R) + Adap(TI , fI∪R)]

≤ EI ,R [2f (R) + Adap(TI , fI∪R)].

Non-adaptive:

NA = EI ,R [f (R) + NA(TI , fR)]

≥ EI ,R [f (R) + NA(TI , fI∪R)]

Induction hypothesis:

EI ,R [Adap(Ti , fI∪R)] ≤ 2 · EI ,R [NA(TI , fI∪R)]

19 / 21

Page 43: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Upper bound: Proof

Goal: E[RandomPath] ≥ 12E[Adap].

Def: I = is the root active in Adap?Def: R = is the root active in NA?

Adap = EI [f (I ) + Adap(TI , fI )]

≤ EI ,R [f (I ∪ R) + Adap(TI , fI∪R)]

≤ EI ,R [2f (R) + Adap(TI , fI∪R)].

Non-adaptive:

NA = EI ,R [f (R) + NA(TI , fR)]

≥ EI ,R [f (R) + NA(TI , fI∪R)]

Induction hypothesis:

EI ,R [Adap(Ti , fI∪R)] ≤ 2 · EI ,R [NA(TI , fI∪R)]

19 / 21

Page 44: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Upper bound: Proof

Goal: E[RandomPath] ≥ 12E[Adap].

Def: I = is the root active in Adap?Def: R = is the root active in NA?

Adap = EI [f (I ) + Adap(TI , fI )]

≤ EI ,R [f (I ∪ R) + Adap(TI , fI∪R)]

≤ EI ,R [2f (R) + Adap(TI , fI∪R)].

Non-adaptive:

NA = EI ,R [f (R) + NA(TI , fR)]

≥ EI ,R [f (R) + NA(TI , fI∪R)]

Induction hypothesis:

EI ,R [Adap(Ti , fI∪R)] ≤ 2 · EI ,R [NA(TI , fI∪R)]

19 / 21

Page 45: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Outline

1 Motivating example

2 Problem definition

3 Adaptivity gap

4 Results

5 Proof: Upper bound

6 Conclusion

20 / 21

Page 46: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Conclusion

Generalizations of stochastic probing:Multi-value setting.k-extendible systems.XOS functions [GNS’17] (submodular ⊆ XOS ⊆ subadditive).

Open problem:O(polylog(n)) for subadditive functions?

Main takeaways:Stochastic probing captures many natural problems.Often have small adaptivity gap.Focus on, much simpler, non-adaptive strategies.

Thank you! Questions?

21 / 21

Page 47: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Conclusion

Generalizations of stochastic probing:Multi-value setting.k-extendible systems.XOS functions [GNS’17] (submodular ⊆ XOS ⊆ subadditive).

Open problem:O(polylog(n)) for subadditive functions?

Main takeaways:Stochastic probing captures many natural problems.Often have small adaptivity gap.Focus on, much simpler, non-adaptive strategies.

Thank you! Questions?

21 / 21

Page 48: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Conclusion

Generalizations of stochastic probing:Multi-value setting.k-extendible systems.XOS functions [GNS’17] (submodular ⊆ XOS ⊆ subadditive).

Open problem:O(polylog(n)) for subadditive functions?

Main takeaways:Stochastic probing captures many natural problems.Often have small adaptivity gap.Focus on, much simpler, non-adaptive strategies.

Thank you! Questions?

21 / 21

Page 49: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Conclusion

Generalizations of stochastic probing:Multi-value setting.k-extendible systems.XOS functions [GNS’17] (submodular ⊆ XOS ⊆ subadditive).

Open problem:O(polylog(n)) for subadditive functions?

Main takeaways:Stochastic probing captures many natural problems.Often have small adaptivity gap.Focus on, much simpler, non-adaptive strategies.

Thank you! Questions?

21 / 21

Page 50: (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value ...people.inf.ethz.ch/gzuzic/pdfs/adaptivity-gaps-talk.pdf(Near)OptimalAdaptivityGapsfor StochasticMulti-ValueProbing DomagojBradac1,SahilSingla2,GoranZuzic3

Prior work

Reference Function Constraints Gap LB Gap UB

[GN’13] k1-matroidintersection

k2-matroidintersection

k1 + k2 O((k1 + k2)2

)[GNS’16] k-matroid in-

tersectiondownwardclosed

O(k4 log kn)

[AN’16] monotonesubmodular

1-matroid ee−1 ≈ 1.58 e

e−1 ≈ 1.58

[GNS’17] monotonesubmodular

downwardclosed

3 1.58 via [AN’16]

this paper monotonesubmodular

downwardclosed

2 2

this paper k-matroid in-tersection

downwardclosed

k O(k log k)

22 / 21