Nano-scale device fabricationphysics.snu.ac.kr/nml/2008summerschool/lecture/MinBC.pdf · Nano-scale...

82
2008 Summer School on Spin Transfer Torque Nano scale device Nano-scale device fabrication fabrication 2-July-2008 Byoung-Chul Min Byoung Chul Min Center for Spintronics Research Korea Institute of Science and Technology

Transcript of Nano-scale device fabricationphysics.snu.ac.kr/nml/2008summerschool/lecture/MinBC.pdf · Nano-scale...

  • 2008 Summer School on Spin Transfer Torque

    Nano scale device Nano-scale device fabricationfabrication

    2-July-2008

    Byoung-Chul MinByoung Chul Min

    Center for Spintronics Research Korea Institute of Science and Technology

  • Introduction u

  • Moore’s Law in Action

    Source: Intel

  • Intel Lithography Roadmap(High-volume manufacturing)(High volume manufacturing)

    Source: Intel

  • Top-Down & Bottom-Up

  • Si devices shrink to Virus size

    Transistor for 90-nm process

    Influenza Virus

    Source: Intel

  • Gate Oxides as thin as Atoms

    Source: Intel

  • Spin-transfer torque

    Current-induced magnetization switching

    • Spin-polarized current can induce magnetization switchingby spin-transfer torque in nano-scale (< 200 nm) magneticdevices

    Switching by magnetic-field Switching by spin-polarized current

    devices.

    urre

    nt

    urre

    nt

    witc

    hing

    Cu

    witc

    hing

    CuSize of the bit

    Sw

    Size of the bitSw

    Size of the bit Size of the bit

  • Size of STT devices

    Yuasa et al., Nature materials 3, 868 (2004)

    Ozatay et al., Nature materials 7, 567 (2008)

  • Spin-Momentum-Transfer (SMT) MRAM

    S. A. Wolf, IBM J. RES. & DEV. 50, 101 (2006)

  • For non-IC applications

    •High cost of semiconductor processing tools

    •Limited process flexibility- No rapid prototyping possibleNo rapid prototyping possible- Not applicable on fragile substrates

    (mechanical chemical layers)

    •Needs for novel methods

    Source: Intel

  • Bridging the Gap

  • Contents

    1. Materials :- Thin Film Technology

    2 Lith h2. Lithography:- Optical / Interference Lithography- E-beam/Ion-beam Lithography- E-beam/Ion-beam Lithography- Scanning Probe Techniques- Soft Lithographyg p y

    3. Patterning Transfer:W t/D t hi- Wet/Dry etching

    - Lift-off Technology

  • Planar structures

    Realizing small lateral structures by:

    1. (Photo) lithography2. Direct (local) processes

    Collection processes and technologies:

    LithographyEtching (wet; dry and reactive)Oxidation, Diffusion; Ion implantationDepositionLaser structuringg

  • Multilevel metallization

  • Thin film technology

  • MTJ stack

    MTJ Structure TMR vs. magnetic field

    Capping layer Ru (50Å) 250

    CoFeB (3.0 nm)/ MgO (1.5nm)/ CoFeB (3.0nm)

    Ta (50Å)

    MgO (15Å)

    Free layerTunnel barrier

    CoFeB (30Å) 200TMR =204%RA = 43 kΩμm2

    ( Å)

    Synthetic Pinned layer

    CoFeB (40Å)

    CoFe (20Å)Ru (8Å)

    100

    150

    TMR

    (%)

    IrMn (140Å)

    NiFe (60Å)

    Buffer layer Ta (50Å)( Å) 0

    50T

    Si / SiO2Wafer

    Ru (300Å)Ta (50Å) -800 -600 -400 -200 0 200 400 600 800

    0

    H (Oe)

  • Thin film technology

    A thin film is normally made on a substrate by:PVD CVD d th t h l i PVD, CVD and other technologies.

  • Vacuum evaporation system

    Substrate with condensing atoms

    V mVacuum

    Atom transport

    Evaporation source

  • E-beam evaporation sourcep

  • Sputtering

    •Bombardment by high energy atomic particles (ions)Bombardment by high energy atomic particles (ions)

    •Ejection of atoms of the target by a momentum transfer

    D i i h b•Deposition onto the substrate

  • Sputtering System

  • Basic MBE system:Structural control during thin film growthStructural control during thin film growth

  • Steps for making thin films1.emission of particles from source ( h hi h l ) ( heat, high voltage . . .) 2. transport of particles to substrate (free vs directed) (free vs. directed) 3. condensation of particles on substrate (nucleation and growth)( g )

    Simple model:

  • From ad atom via nucleation to continuous filmcontinuous film

  • Growth process of evaporated Au on Carbon-substrate with constant deposition rateCarbon substrate with constant deposition rate

    TEM photographs fromTh i s st s f thThe various stages of growth

  • Deposition modesp

    Layer-by-layer 3D-Island model S-K model(van der Merwe) (Volmer-Weber) (Stranski-Krastanov)(van der Merwe) (Volmer Weber) (Stranski Krastanov)

  • Clusters of Au observed by AFM

    Au islands/clusters/nucleiAu islands/clusters/nuclei

  • Growth Modes and Surface Energies

    0cos0 θγγγ fis −−= 0cos0 θγγγ fisfγ Wetting does not occur, if

    sγ0θisf γγγ −>

    fdhE γ2≥Wetting ifisfadhE γγγ −+=

    E γ2<

    fadhE γ2≥Wetting, if

    No wetting if fadhE γ2

  • Growth Modes and Surface Energies

    fadhE γ2≥Wetting, if

    fadhE γ2

  • Growth Modes and Surface Energies

    fadhE γ2≥Wetting, if

    fadhE γ2

  • MTJ stack

    MTJ Structure TMR vs. magnetic field

    Capping layer Ru (50Å) 250

    CoFeB (3.0 nm)/ MgO (1.5nm)/ CoFeB (3.0nm)

    Ta (50Å)

    MgO (15Å)

    Free layerTunnel barrier

    CoFeB (30Å) 200TMR =204%RA = 43 kΩμm2

    ( Å)

    Synthetic Pinned layer

    CoFeB (40Å)

    CoFe (20Å)Ru (8Å)

    100

    150

    TMR

    (%)

    IrMn (140Å)

    NiFe (60Å)

    Buffer layer Ta (50Å)( Å) 0

    50T

    Si / SiO2Wafer

    Ru (300Å)Ta (50Å) -800 -600 -400 -200 0 200 400 600 800

    0

    H (Oe)

  • Indication of the growth of evaporated films as function of Tsubstf f subst

    Tsubstr.

  • Indication of the growth of evaporated films as function of Tsubstf f subst

    Tsubstr.

  • Multilayer structure

    S p l tti /Si l t lli Poly-crystallineSuper lattice/Single crystalline Poly-crystalline

    Interfaces

  • Multilayer structure

    S p l tti /Si l t lliSuper lattice/Single crystalline

    Interfaces

    Yuasa et al., Nature materials 3, 868 (2004)

  • Multilayer structure

    S p l tti /Si l t lli Poly-crystallineSuper lattice/Single crystalline Poly-crystalline

    Interfaces

  • MTJ stack

    MTJ Structure Textured layers

    Capping layer Ru (50Å)

    Ta (50Å)

    MgO (15Å)

    Free layerTunnel barrier

    CoFeB (30Å)

    ( Å)

    Synthetic Pinned layer

    CoFeB (40Å)

    CoFe (20Å)Ru (8Å)

    IrMn (140Å)

    NiFe (60Å)

    Buffer layer Ta (50Å)( Å)

    Si / SiO2Wafer

    Ru (300Å)Ta (50Å)

    Yuasa, J.Phys.D 40,R337 (2007)

  • Contents

    1. Materials :- Thin Film Technology

    2 Lith h2. Lithography:- Optical Lithography- E-beam/Ion-beam Lithography- E-beam/Ion-beam Lithography- Scanning Probe Techniques- Soft Lithographyg p y

    3. Patterning Transfer:W t/D t hi- Wet/Dry etching

    - Lift-off Technology

  • Fabrication of nano-scale MTJsphotoresist

  • B i Lith hi Basic Lithographic

    Process Steps

  • Process flow of lithography

    Radiation sourceIllumination control system

    Illumination process:The resist is changed

    Development:Selectively etched Illumination control system

    Resist coated sampleThe resist is changed by the radiation

    Selectively etched resist

  • Photoresist Coatingg

  • Exposure

  • Exposurep

  • Projection tool

    reticleProjection lens system

    wafer

    θ

    illuminator

    LightSource

    N A i θLens pupil, defines NA

    N.A. = n sin θ

    λNA

    kR λ1= NASource: IMEC

  • Photoresist

    O OHCHN

    SO R

    CH2n

    CH3

    N2

    SO2R

    Sensitizer (DNQ) + Novolac Resin

    Novolac Resin+ converted PAC

    ExposedResist

    on R

    ate

    Novolac ResinDissolution

    Dis

    solu

    tio

    Novolac Resin+ DNQ PAC

    Resistformulation

    SelectivityExposure

    Unexposed resist

  • Photoactive compoundp

    ON

    CO2HO

    NCO

    2H

    Source: Micro chemicals

    SO R

    N2

    SO R

    H 2O

    SO R

    N2

    SO R

    h

    H 2O

    SO2R SO 2R

    Diazonaphthoquinonesensitizer

    Indenecarboxylic acid

    SO2R SO 2R

    Diazonaphthoquinonesensitizer

    Indenecarboxylic acid

    Hydrophobic Hydrophilic

  • Development of resistSource: Micro chemicals

  • Photoresist

    Source: Micro chemicals

  • Photoresist Contrast

    PR

    Oxide

    High contrastHigh contrast

    PR

    Oxide

    Low contrast

  • Negative resist

  • E-beam/Ion-beam Lithography

  • E-beam lithography

    P i t l f th E ~30 keV

    • Precise control of the energy and dose

    • Imaging of electrons to form a small point < 1 nm

    • No need for a physical mask

    • Electron scattering in Electron scattering in solids R > 10 nm

    • Slow exposure speed• Vacuum system• Vacuum system• High cost

    PMMA (polmetthylmethacrylate)

  • E-beam lithography

    50 nm lines 80 nm lines

    Organic resist PMMA ~ 7 nm

    Inorganic resist ~ 1-2 nm

    Source: TU Delft

    Inorganic resist 1 2 nm

  • E-beam lithography

    20 nm 30 nm

    50X50 nm2HSQ(1300A)

    SiO2

  • Use of Focused Ion Beam:Direct structuringg

    AFM S s ith si s f 50 730 AFM: Squares with sizes of 50-730 nm

  • Contents

    1. Materials :- Thin Film Technology

    2 Lith h2. Lithography:- Optical / Interference Lithography- E-beam/Ion-beam Lithography- E-beam/Ion-beam Lithography- Scanning Probe Techniques- Soft Lithographyg p y

    3. Patterning Transfer:W t/D t hi- Wet/Dry etching

    - Lift-off Technology

  • Pattern Transfer

  • Pattern Transfer

    Photoresist

    Substrate

    MTJ film stack

    Pattern

    Lift-offEtching

  • Wet/ Dry EtchingWet/ Dry Etching

  • Etching: Wet and DryWet etching Dry etching

    Ion beam etching Isotropic Ion beam etching, plasma etching, reactive ion etching (RIE)

    IsotropicResolution limited by film thickness

  • Different Dry Etching TechniquesTechniques

    Sputtering Chemical Sputtering Isotropic Etching

    Ion enhanced Ion enhancedenergetic inhibitor

    Vertical Etch

  • Side-wall re-depositionO.Auciello (1981) , JVST 19 p841

    e (Å

    /min

    )Et

    ch R

    ate

    P G Glö (1975) JVST 12 28Beam Angle (deg.)

    P.G. Glöersen (1975) , JVST 12 p28

  • 67/5Ion Beam Etching Acceleration Grid Contamination

    Beam Acc.

    Acceleration Grid Contamination

    Beam

    500 V 0 V -350 VAr+ Ar

    High-energyion

    High-energyneutral

    Grid GridVoltage

    Ar+ Ar

    eLow-energyneutral

    Substrate

    Ar Ar

    Low-energyion

    Contamination of acceleration grid materials

    The contamination is proportional to (the acceleration voltage)2The contamination is proportional to (the acceleration voltage)2Optimum acceleration voltage = 15 ~20 % of the beam voltage

    P R Puckett “Ion Beam etching” P.R. Puckett , Ion Beam etching in J. L. Vossen and W. Kern ed., Thin film process II, (Academic Press, San Diego, 1991)

  • TrenchTilt Angle

    10°

    20°

    30°MTJ

    40°FMBarrierFM

    R. E. Lee (1979) , JVST 16 p164

    FM

  • Plasma Dry Etchery

  • Plasma Etching Stepsg p

  • Typical Dry Etch Chemistries

  • Deep Reactive Ion Etching (DRIE)

    a) Resist patterningb) Et hib) Etchingc) Passivationd) Etchingd) Etching

  • Dry Etching Equipment

    Through-wafer etched interconnectsDry Etcher

    Source: STS

  • Lift-offLift off

  • E-beam litho & Lift-off

  • Sub-micron magnetic dots by LIL and lift-off process

    1 μm

    by LIL and lift-off process

    Co dots evaporated through the shadow

    mask

    1 μm

    Arrays of holes in photoresist with overhang structure

    Diameter: 500 nm Thi k 100Thickness: 100 nm

    27/41

  • Sub-micron magnetic dots Vortex state

    Vortex coreVortex core

    MFM Image of Co dots

    A. Wachowiak (2002), Science 298, p577T. Shinjo (2000), Science 289, p930

    500-nm-diameter 100-nm-thick

    28/41

  • Contents

    1. Materials :- Thin Film Technology

    2 Lith h2. Lithography:- Optical Lithography- E-beam/Ion-beam Lithography- E-beam/Ion-beam Lithography- Scanning Probe Techniques- Soft Lithographyg p y

    3. Patterning Transfer:W t/D t hi- Wet/Dry etching

    - Lift-off Technology

  • Emerging Nano-patterning Methods

    S EPFLSource: EPFL