Multi-Spectral Vision Processing For the ExoMars 2018...

28
ASTRA 12 th 14 th April 2011 1 Multi-Spectral Vision Processing For the ExoMars 2018 Mission Dave Barnes, Martin Wilding, Matt Gunn, Stephen Pugh, Laurence Tyler Aberystwyth University, UK Andrew Coates, Andrew Griffiths, Claire Cousins UCL, UK Nicole Schmitz DLR, Gemany Arnold Bauer, Gerhard Paar Joanneum Research, Austria UK Work Funded by UK Space Agency with contributions from EU FP7 PRoVisG and PRoViScout projects

Transcript of Multi-Spectral Vision Processing For the ExoMars 2018...

Page 1: Multi-Spectral Vision Processing For the ExoMars 2018 Missionrobotics.estec.esa.int/ASTRA/Astra2011/Presentations/session 7b/01_barnes.pdf · Multi-Spectral Vision Processing For

ASTRA 12th – 14th April 2011 1

Multi-Spectral Vision Processing

For the ExoMars 2018 Mission

Dave Barnes, Martin Wilding, Matt Gunn, Stephen Pugh,

Laurence Tyler – Aberystwyth University, UK

Andrew Coates, Andrew Griffiths, Claire Cousins – UCL, UK

Nicole Schmitz – DLR, Gemany

Arnold Bauer, Gerhard Paar – Joanneum Research, Austria

UK Work Funded by UK Space Agency with contributions

from EU FP7 PRoVisG and PRoViScout projects

Page 2: Multi-Spectral Vision Processing For the ExoMars 2018 Missionrobotics.estec.esa.int/ASTRA/Astra2011/Presentations/session 7b/01_barnes.pdf · Multi-Spectral Vision Processing For

ASTRA 12th – 14th April 2011 2

ESA ExoMars

Rover:

Phase-B2X

Design

Launch 2018

(Credit ESA &

EADS Astrium)

Page 3: Multi-Spectral Vision Processing For the ExoMars 2018 Missionrobotics.estec.esa.int/ASTRA/Astra2011/Presentations/session 7b/01_barnes.pdf · Multi-Spectral Vision Processing For

ASTRA 12th – 14th April 2011 3

•The PanCam Calibration Target (PCT) is an essential component for

the science operations of the PanCam instrument.

•Its purpose is to allow both radiometric and geometric calibration

of the PanCam instrument whilst operating on the surface of Mars.

•Science target spectra can be generated (e.g. for rock mineralogy),

if the returned WAC images are radiometrically corrected. A key

element within this process involves measuring the reflectance of

the individual grey and coloured calibration targets on Mars, and

comparing these values with pre-flight laboratory measured data.

•The radiometrically corrected filtered images for those wavelengths

within the human visible light region can be used to create ‘true-

colour’ image products of the Martian surface; i.e. if a human stood

on the Martian surface, then they would perceive the same colours

as those exhibited by the generated PanCam image.

Why Do We Need A Calibration Target?

Page 4: Multi-Spectral Vision Processing For the ExoMars 2018 Missionrobotics.estec.esa.int/ASTRA/Astra2011/Presentations/session 7b/01_barnes.pdf · Multi-Spectral Vision Processing For

ASTRA 12th – 14th April 2011 4

Past and Current Mars Calibration Targets

NASA VL2 1976

NASA Pathfinder 1997 ESA Beagle 2 2003

NASA

Phoenix

Lander

2008

NASA

MER

2004

MER

FS

on

MSL

Page 5: Multi-Spectral Vision Processing For the ExoMars 2018 Missionrobotics.estec.esa.int/ASTRA/Astra2011/Presentations/session 7b/01_barnes.pdf · Multi-Spectral Vision Processing For

ASTRA 12th – 14th April 2011 5

PanCam Calibration Target (PCT) CAD Model

Width = 50 mm

Depth = 50 mm

Height =16 mm

4 × M3 Bolts

Stained glass

calibration targets

Good for Planetary

Protection

Will not ‘bleach’

under UV irradiation

Page 6: Multi-Spectral Vision Processing For the ExoMars 2018 Missionrobotics.estec.esa.int/ASTRA/Astra2011/Presentations/session 7b/01_barnes.pdf · Multi-Spectral Vision Processing For

ASTRA 12th – 14th April 2011 6

Red (Au

nano-particles)

Black

(Anodised Al)

Grey 30%(Fe + Co + Ni)

Grey 50%(Fe + Co + Ni)

Grey 70%(Fe + Co + Ni)

Yellow (Ag

nano-particles)

Blue

(CoO)

Green

(Cr2O3)

White 90%

(TiO2 + Fe )

Polished Al

Anodised Ti

Black

(Anodised Al)

All Greys and RGBY targets are made from stained,

radiation hard (Soda-Lime-Silica + Cerium) glass wafers

Page 7: Multi-Spectral Vision Processing For the ExoMars 2018 Missionrobotics.estec.esa.int/ASTRA/Astra2011/Presentations/session 7b/01_barnes.pdf · Multi-Spectral Vision Processing For

ASTRA 12th – 14th April 2011 77

Early Prototype Model and

Early Fabricated Glass Targets

Early PCT prototype with Macbeth

colour checker targets.

Note top retaining plate inverted.

Early version of top retaining plate with

test glass target wafers. Target

homogeneity under investigation.

Page 8: Multi-Spectral Vision Processing For the ExoMars 2018 Missionrobotics.estec.esa.int/ASTRA/Astra2011/Presentations/session 7b/01_barnes.pdf · Multi-Spectral Vision Processing For

ASTRA 12th – 14th April 2011 8

Calibration Target Radiometric Characterisation

AU BRDF GonioreflectometerAU Integrating Sphere, Spectrometers,

Uniform L.S., NIST Certified Calibration

Standards etc.

Page 9: Multi-Spectral Vision Processing For the ExoMars 2018 Missionrobotics.estec.esa.int/ASTRA/Astra2011/Presentations/session 7b/01_barnes.pdf · Multi-Spectral Vision Processing For

ASTRA 12th – 14th April 2011 99

Prototype Glass Target Relative Reflectance Data

(untreated sawn top surface used with ‘tin-foil’ against bottom surface!)

Stained Glass

Reflective Al coating

Glass layer

Bottom reflective surface

Top surface

Early results very encouraging

Scope for improvementBS(urface)S(cattering)RDF model required

Page 10: Multi-Spectral Vision Processing For the ExoMars 2018 Missionrobotics.estec.esa.int/ASTRA/Astra2011/Presentations/session 7b/01_barnes.pdf · Multi-Spectral Vision Processing For

ASTRA 12th – 14th April 2011 10

PCT Component Mass (g)

Shadow post × 3 (Al) 0.651

Retaining plate (Ti) 5.6

Calibration targets (glass) 5.958

Base plate (Ti) 11.797

Mounting pads (Al) 0.894

PCT TOTAL MASS (g) 24.9

Current design NOT mass optimised

Current PCT Mass Budget = 20 g + 20% contingency

Current PCT Mass Estimates:

Page 11: Multi-Spectral Vision Processing For the ExoMars 2018 Missionrobotics.estec.esa.int/ASTRA/Astra2011/Presentations/session 7b/01_barnes.pdf · Multi-Spectral Vision Processing For

ASTRA 12th – 14th April 2011 11

PCT and 3 × Fiducial Markers mounted on rover deck – Preferred Option

PCT

Page 12: Multi-Spectral Vision Processing For the ExoMars 2018 Missionrobotics.estec.esa.int/ASTRA/Astra2011/Presentations/session 7b/01_barnes.pdf · Multi-Spectral Vision Processing For

ASTRA 12th – 14th April 2011 12

PanCam Simulated Camera Views of the PCT

HRC Right WACLeft WAC

PCT Square Pixel Sample Areas Checked

Page 13: Multi-Spectral Vision Processing For the ExoMars 2018 Missionrobotics.estec.esa.int/ASTRA/Astra2011/Presentations/session 7b/01_barnes.pdf · Multi-Spectral Vision Processing For

13

AU PanCam Emulator (AUPE)

Right WAC

Left WAC

HRC

Filter

wheel

Filter

wheel

Lightweight

optical bench

Mount

Pan/tilt

unit

Filter wheel detail

showing servo

Monochromatic

COTS Cameras

Page 14: Multi-Spectral Vision Processing For the ExoMars 2018 Missionrobotics.estec.esa.int/ASTRA/Astra2011/Presentations/session 7b/01_barnes.pdf · Multi-Spectral Vision Processing For

14

AUPE Filters

LEFT FILTER WHEEL

Filter Centre WidthCamera

nm nm sensitivity

1) Blue 460 ~100 ~0.85 █

2) Green 550 ~100 ~0.94 █

3) Red 660 ~100 ~0.62 █

4) Geol1 440 10 0.76 █

5) Geol2 470 10 0.89 █

6) Geol3 510 10 1.00 █

7) Geol4 560 10 0.92 █

8) Geol5 600 10 0.79 █

9) Geol6 660 10 0.62 █

RIGHT FILTER WHEEL

Filter Centre Width Camera

nm nm sensitivity

1) Blue 460 ~100 ~0.85 █

2) Green 550 ~100 ~0.94 █

3) Red 660 ~100 ~0.62 █

4) Geol7 720 10 0.49 █

5) Geol8 760 10 0.38 █

6) Geol9 830 10 0.26 █ IR

7) Geol10 880 10 0.16 █ IR

8) Geol11 950 10 0.08 █ IR

9) Geol12 1000 10 0.04 █ IR

PanCam will fly 11 × filters on each WAC

Page 15: Multi-Spectral Vision Processing For the ExoMars 2018 Missionrobotics.estec.esa.int/ASTRA/Astra2011/Presentations/session 7b/01_barnes.pdf · Multi-Spectral Vision Processing For

ASTRA 12th – 14th April 2011 15

AUPE and PCT Field Trial Equipment

Page 16: Multi-Spectral Vision Processing For the ExoMars 2018 Missionrobotics.estec.esa.int/ASTRA/Astra2011/Presentations/session 7b/01_barnes.pdf · Multi-Spectral Vision Processing For

ASTRA 12th – 14th April 2011 16

AUPE and PCT Field Trials – AMASE

Artic Mars Analog Svalbard Expedition

Page 17: Multi-Spectral Vision Processing For the ExoMars 2018 Missionrobotics.estec.esa.int/ASTRA/Astra2011/Presentations/session 7b/01_barnes.pdf · Multi-Spectral Vision Processing For

ASTRA 12th – 14th April 2011 17

Bridget the rover traversing northwards at Clarach Bay (July 2010)

AUPE and PCT Field Trials – Clarach Bay, UK

Page 18: Multi-Spectral Vision Processing For the ExoMars 2018 Missionrobotics.estec.esa.int/ASTRA/Astra2011/Presentations/session 7b/01_barnes.pdf · Multi-Spectral Vision Processing For

ASTRA 12th – 14th April 2011 18

Bridget traversing southwards spots an interesting target

AUPE and PCT Field Trials – Clarach Bay, UK

Page 19: Multi-Spectral Vision Processing For the ExoMars 2018 Missionrobotics.estec.esa.int/ASTRA/Astra2011/Presentations/session 7b/01_barnes.pdf · Multi-Spectral Vision Processing For

ASTRA 12th – 14th April 2011 19

Bridget on her way back to the ‘mission control centre’

AUPE and PCT Field Trials – Clarach Bay, UK

Page 20: Multi-Spectral Vision Processing For the ExoMars 2018 Missionrobotics.estec.esa.int/ASTRA/Astra2011/Presentations/session 7b/01_barnes.pdf · Multi-Spectral Vision Processing For

ASTRA 12th – 14th April 2011 20

Field Trials with the AU Idris Rover at Clarach and Ynyslas

AUPE and PCT Field Trials

Page 21: Multi-Spectral Vision Processing For the ExoMars 2018 Missionrobotics.estec.esa.int/ASTRA/Astra2011/Presentations/session 7b/01_barnes.pdf · Multi-Spectral Vision Processing For

ASTRA 12th – 14th April 2011 21

Baseline Radiometric Image Processing Pipeline Developed

raw image

data

compress

uncompressflat/dark

correction

camera

response

correction

relative

reflectanceCIE XYZ

CIE XYZ to

sRGB etcPanCam

image

PanCam

spectrumreflectance

ROI select

flats/darks

(temp,exp)

PCT

BRDF

data

ESA PSA

PDS format

R*

data

CIE

XYZ

data

SOC Operations

Surface Operations

camera radiometric correction

pixel → spectral radiance

(W∙sr-1∙m-2∙nm-1)

image radiometric and

colourimetric processing

ESA PSA

PDS format

Rover with

PanCam

and PCT

Mathcad

Java

LabVIEW

Page 22: Multi-Spectral Vision Processing For the ExoMars 2018 Missionrobotics.estec.esa.int/ASTRA/Astra2011/Presentations/session 7b/01_barnes.pdf · Multi-Spectral Vision Processing For

ASTRA 12th – 14th April 2011 22

Generating Rock Spectra AMASE 2009, BOCK01 Site

using PCT test target

BOCK01 'OUTCROP' SPECTRA

0

0.5

1

1.5

2

2.5

3

440 470 510 560 600 660 720 760 830 880 950 1000

Wavelength (nm)

Rela

tive R

efl

ecta

nce a

nd

SD

SULPHUR

FeB

VB

X

Mag

SiB

NBO

G

S

FeB

X

Mag

SulphurS

SiB

NBO VB

G

(Artic Mars Analogue Svalbard Expedition – AMASE)

Page 23: Multi-Spectral Vision Processing For the ExoMars 2018 Missionrobotics.estec.esa.int/ASTRA/Astra2011/Presentations/session 7b/01_barnes.pdf · Multi-Spectral Vision Processing For

ASTRA 12th – 14th April 2011 23

Baseline Radiometric Image Processing Pipeline Developed

raw image

data

compress

uncompressflat/dark

correction

camera

response

correction

relative

reflectanceCIE XYZ

CIE XYZ to

sRGB etcPanCam

image

PanCam

spectrumreflectance

ROI select

flats/darks

(temp,exp)

PCT

BRDF

data

ESA PSA

PDS format

R*

data

CIE

XYZ

data

SOC Operations

Surface Operations

camera radiometric correction

pixel → spectral radiance

(W∙sr-1∙m-2∙nm-1)

image radiometric and

colourimetric processing

ESA PSA

PDS format

Rover with

PanCam

and PCT

Page 24: Multi-Spectral Vision Processing For the ExoMars 2018 Missionrobotics.estec.esa.int/ASTRA/Astra2011/Presentations/session 7b/01_barnes.pdf · Multi-Spectral Vision Processing For

Dept. Research Presentation

9th March 201124

Left WAC Right WAC

Colour images generated from ‘raw’ uncorrected broadband (100 nm) RGB Filters

AMASE 2009, Bock01

Page 25: Multi-Spectral Vision Processing For the ExoMars 2018 Missionrobotics.estec.esa.int/ASTRA/Astra2011/Presentations/session 7b/01_barnes.pdf · Multi-Spectral Vision Processing For

ASTRA 12th – 14th April 2011 25

440 nm 560 nm

470 nm

510 nm

600 nm

660 nm

Narrow-band (10 nm) filtered input images

Image True Colour Correction

Output colour corrected image

in sRGB format

Svalbard, Bock01, 2009

Page 26: Multi-Spectral Vision Processing For the ExoMars 2018 Missionrobotics.estec.esa.int/ASTRA/Astra2011/Presentations/session 7b/01_barnes.pdf · Multi-Spectral Vision Processing For

Dept. Research Presentation

9th March 201126

Left WAC Right WAC

Clarach Bay, March 2010

Colour images generated from ‘raw’ uncorrected broadband (100 nm) RGB Filters

Page 27: Multi-Spectral Vision Processing For the ExoMars 2018 Missionrobotics.estec.esa.int/ASTRA/Astra2011/Presentations/session 7b/01_barnes.pdf · Multi-Spectral Vision Processing For

ASTRA 12th – 14th April 2011 27

440 nm 560 nm

470 nm

510 nm

600 nm

660 nm

Narrow-band (10 nm) filtered input images

Image True Colour Correction

Output colour corrected image

in sRGB format

Clarach Bay 2010

Page 28: Multi-Spectral Vision Processing For the ExoMars 2018 Missionrobotics.estec.esa.int/ASTRA/Astra2011/Presentations/session 7b/01_barnes.pdf · Multi-Spectral Vision Processing For

ASTRA 12th – 14th April 2011 28

• The PanCam Calibration Target (PCT) has been designed

• Early stained glass wafers manufactured

• Preliminary radiometric characterisation looks very encouraging

• Baseline radiometric and colourimetric image processing pipeline

developed in Mathcad and ported to Java and LabVIEW

• Early PCT field trials conducted at Clarach Bay and Ynyslas (UK)

and for AMASE

• STM PCT being fabricated for ΔPDR later this year

• Plan to perform preliminary thermal cycle and vibration tests

prior to ΔPDR

• Radiometric and colourimetric image processing pipeline will

continue to be developed

Conclusion