mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

134
MOS CAPACITOR – MOSFET TRANSISTOR – MOS INVERTERS Prof. Philippe LORENZINI Polytech-Nice Sophia

Transcript of mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Page 1: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

MOS CAPACITOR –MOSFET TRANSISTOR –MOS INVERTERSProf. Philippe LORENZINIPolytech-Nice Sophia

Page 2: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini 2

Outline

• Metal Oxyde Semiconductor Structure • MOS Transistor• MOS Inverters

• NMOS • CMOS

From MOS Capacitor to CMOS inverter

Page 3: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 3

• Two definitions (only 2!)• Work Function (Travail de sortie) : this is the energy we

have to give to an electron to extract it of metal without kinetic energy. It reaches the "vacuum level". Work function is the energy difference between the vacuum level and the highest occupied energy level, ie the Fermi level.

• Electron Affinity (Affinité électronique ) : it’s the difference between the vacuum level and the bottom of the conduction band. It’s only defined for SC and not for Metal.

• Unity for both of them: eV (electron volt)

Me

SCe

Page 4: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini 4

Metal Oxyde Semiconductor Structure

MOS capacitor

Energy band diagram of the three components of a MOS system

fig

SCSC eE

2 fi

gSCSC e

E

2

From MOS Capacitor to CMOS inverter

Page 5: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

• The field effect is the variation of the conductance of a channel in a semiconductor by the application of an electric field

Field Effect Transistor

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 5

Page 6: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini 6

Equilibrium of MOS structure

MeSCeSCe

EFEF

Metal SC(n)

EV

EC

SCSCMbi

xdx

VddxdVEV

)(, 2

2

    ,          

Independant system

MeSCeSCe

EFEF

Metal SC(n)

EV

EC

eVbi

Equilibrium statedx

From MOS Capacitor to CMOS inverter

Page 7: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini 7

The five regimes : a functionof workfunction

(a) Accumulation

(b) Flat band

(c) Desertion / depletion

(d) Weak inversion

(e) Strong inversion

From MOS Capacitor to CMOS inverter

Ox

Page 8: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini 8

Energyband diagramfor ideal n and p type MOS capacitors underdifferentbias conditions

From MOS Capacitor to CMOS inverter

Page 9: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 9

Page 10: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini 10

We suppose we deal with a p type semiconductor:

0 FiFFi EEe

VgVsxVxV ,)0( ,0)(

warning: in few books, absolute value is not present!!!!

Field, potential and charges in Silicon

From MOS Capacitor to CMOS inverter

Page 11: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini 11

Poisson’s Equation:

Charge density )()()()()( xNxNxnxpex AD

DA NNnp 00 )exp(0 kTe

nn Fii

)exp(0 kT

enp Fi

i

)))((exp())(exp()( 0 kTxVen

kTxeVnxn Fi

i

kTxeVp

kTxVenxp Fi

i)(exp)))((exp()( 0

From MOS Capacitor to CMOS inverter

Field, potential and charges in Silicon

SC

xdx

Vd )(

2

2

Page 12: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini 12

kT

xeVkT

xeV

eneppnex)(

0

)(

000)(

)1()1()( )(

0

)(

02

2kT

xeVkT

xeV

SC

enepedx

xVd

dxxdV

dxxdV

dVd

dxxdV

dxd

dxxVd )()()()(

2

2

)()1()1()()( )(

0

)(

0 xdVenepedx

xdVddx

xdV kTxeV

kTxeV

SC

From MOS Capacitor to CMOS inverter

Field, potential and charges in Silicon

Page 13: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 13

• We compute the integral from bulk to  a point x in SC

)(

0

)(

0

)(

0

)(

0)()1()1()()( xV

kTxeV

kTxeV

SC

dxxdV

xdVenepedx

xdVddx

xdV

V(x=« bulk »)=0 et 0)(

bulkdxxdV

dxxdVxE )()( And the Electric Field is given by:

1)(1)(2)()()(

0

0)(

02

2

kTxeVe

pn

kTxeVe

kTpdx

xdVxE kTxeV

kTxeV

SC

Field, Potential and Charges in Silicon

MO SVg

Page 14: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 14

1)(1)(2)()()(

0

0)(

2

222

kTxeVe

pn

kTxeVe

LekT

dxxdVxE kT

xeVkT

xeV

D

With the Debye length:  2 22 2SC SC

Do a

kT kTLe p e N

If we use the Gauss’s theorem:SC

SCS

QExE

)0(

Field, potential and charges in Silicon

metalSkT

VeSkT

eV

D

SCSC Q

kTeV

pne

kTeVe

LekTQ

FISS

2

1

0

0)2(

112 metal

SkTVe

SkTeV

D

SCSC Q

kTeV

pne

kTeVe

LekTQ

FISS

2

1

0

0)2(

112

Page 15: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

metalSkT

VeSkT

eV

D

SCSC Q

kTeV

pne

kTeVe

LekTQ

FISS

2

1

0

0)2(

112 metal

SkTVe

SkTeV

D

SCSC Q

kTeV

pne

kTeVe

LekTQ

FISS

2

1

0

0)2(

112

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 15

For Vs (and so Vg) negative(accumulation)

For Vs (and Vg) positive butless than 2fi

(depletion – weak inversion)

For Vs (and Vg) > 2fi(strong inversion)

Field, potential and charges in SiliconAllways negligible

(p type)

Page 16: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 16

Weak / Strong Inversion

ns=p0=NA

i

AFiS n

NekTV ln22

i

AFiS n

NekTV ln22

This condition will define a veryimportant parameter of the struture: the threshold voltage or the  required gate voltage to put the transistor in strong inversion regime

eFI

Page 17: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 17

Measurement of capacitance in IdealMOS  Structure

The C-V curve is usually measured with a CV meter:• We apply a DC bias voltage Vg + small sinusoidal signal (100 Hz to 10 MHz)• We measure the capacitive current with an AC meter (90 degree phase shift)

=> icap/vac =C

Page 18: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 18

When a voltage Vg is applied on the MOS Gate, part ofit appears as a potential drop across oxide and the restof it appears as a band bending Vs in silicon:

Sox

SCSCoxg V

CQVVV

S

ox

SCSCoxg V

CQVVV

MO SVg

Vox VSCOxide and Silicon have capacitor behavior

Measurement of capacitance in IdealMOS  Structure

VG

VOX

VS

X

V(X)

-tOX 0

SC is grounded, so VSC=VS

Page 19: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 19

• Oxide capacitance: as a parallel‐plate capacitor

• We can also write :

Measurement of capacitance in Ideal MOS  Structure

2F/cm ox

oxox d

C

( ) ( )M M M

oxOX G S G S

Q Q dQC

V V V d V V

1 G S

ox M M

dV dVC dQ dQ

Page 20: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 20

• Semiconductor (silicon) capacitance

(charge in  SC) ( ) ( )(v  across SC)

SC MSC

S S

d Q d QC

oltage dV dV(charge in  SC) ( ) ( )

(v  across SC)

SC MSC

S S

d Q d QC

oltage dV dV

Measurement of capacitance in IdealMOS  Structure

1 S

SC M

dVC dQ

Page 21: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 21

• Global capacitance of the structure:

• If we combine the 3 relations above :

G

SC

G

MMOS dV

dQdVdQC

G

SC

G

MMOS dV

dQdVdQC

1 1 1  2 capacitances connected in serie

MOS ox SCC C C

1 1 1  2 capacitances connected in serie

MOS ox SCC C C

Measurement of capacitance in IdealMOS  Structure

M O SVg

Vox VSC

1 1 1G S

ox M M MOS SC

dV dVC dQ dQ C C

Page 22: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini 22

• Total charge QSC depends on different regimes 2 types of charges, fixed and mobile/free:

free carriers charges   fixed charges SC S depQ Q Q free carriers charges   fixed charges SC S depQ Q Q

( )S dep depsc SSC

S S S S

dQ dQ dQdQ dQCdV dV dV dV

( )S dep depsc SSC

S S S S

dQ dQ dQdQ dQCdV dV dV dV

Semiconductor capacitance can be written as:

Measurement of capacitance in IdealMOS  Structure

From MOS Capacitor to CMOS inverter

Page 23: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini 23

free carriers charges   fixed charges   SC S depQ Q Q free carriers charges   fixed charges   SC S depQ Q Q

scSC S d ep

S

d QC C C

d V

scSC S d ep

S

d QC C C

d V

Semiconductor capacitance can be written as:

Measurement of capacitance in IdealMOS  Structure

From MOS Capacitor to CMOS inverter

• Total charge in SC depends on different regimes 2 types of charges, fixed and mobile/free:

Page 24: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 24

• Summary: MOS capacitor is equivalent :- of 2 capacitors connected in serie, COX and CSC- CSC is equivalent of two capacitors- the two are variable and be view as 2 capacitors in //

Cox

Csc

Cox

Cs Cdep

Measurement of capacitance in IdealMOS  Structure

Conclusion: the total capacitance of MOS structure isfunction of bias conditions or operating regime throughCSC

Page 25: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

metalSkT

VeSkT

eV

D

SCSC Q

kTeV

pne

kTeVe

LekTQ

FISS

2

1

0

0)2(

112 metal

SkTVe

SkTeV

D

SCSC Q

kTeV

pne

kTeVe

LekTQ

FISS

2

1

0

0)2(

112

Pr. Ph.Lorenzini 25

Capacitance of MOS structure

• Accumulation Regime: VS<0 ie VG<0

02 2

kTeV

D

SCSC

S

eeL

kTQ 02 2

kTeV

D

SCSC

S

eeL

kTQ

SgoxSCs

SCSC VVC

kTeQ

kTe

dVdQC

22

From MOS Capacitor to CMOS inverter

Page 26: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini 26

Capacitance of MOS structure

• Accumulation Regime: VS<0 ie VG<0

SgoxMOS

SgoxSCoxMOS

VVe

kT

CC

VVe

kT

CCCC

2111

21111

From MOS Capacitor to CMOS inverter

metalSkT

eVSkT

eV

D

SCSC Q

kTeVe

pn

kTeVe

LekTQ

SS

2

1

0

0 112

Cox

Csc

Page 27: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini 27

Capacitance of MOS structure

• Accumulation Regime: VS<0 ie VG<0

kT=26 meV, in accumulation regime VS is around ‐0,3 V to ‐0,4 V,  as soon as  VG<‐1 to ‐2 V, so we can simplify to:

oxSgoxMOS CVVe

kT

CC12

111

oxSgoxMOS CVVe

kT

CC12

111

From MOS Capacitor to CMOS inverter

metalSkT

eVSkT

eV

D

SCSC Q

kTeVe

pn

kTeVe

LekTQ

SS

2

1

0

0 112

Page 28: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 28

Capacitance of MOS structure

• Flat Band:   VS =0 V ie VG=0 V(warning : ideal structure!!!!!)

Analytical computing:D

SCSC L

fbC

)(D

SCSC L

fbC

)(

2

( )

2

ox oxMOS ox

ox ox SCox D ox

SC SC A

C fb CkTd L de N

2

( )

2

ox oxMOS ox

ox ox SCox D ox

SC SC A

C fb CkTd L de N

<< dox

Page 29: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini 29

Capacitance of MOS structure

• Depletion regime and weak inversion

FiSV 20 FiSV 20

022212

1

depSSCA

S

D

SCSC QVeN

kTeV

eLkTQ 022

212

1

depSSCA

S

D

SCSC QVeN

kTeV

eLkTQ

dep

SC

S

SCA

S

SCSC WV

eNdVdQC

21

2 dep

SC

S

SCA

S

SCSC WV

eNdVdQC

21

2

From MOS Capacitor to CMOS inverter

Wdep

Insulator

Page 30: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini 30

Capacitance of MOS structure

• Depletion regime and weak inversion

FiSV 20 FiSV 20

dep

SC

S

SCA

S

SCSC WV

eNdVdQC

21

2 dep

SC

S

SCA

S

SCSC WV

eNdVdQC

21

2

)/2(1)(

2ASCgox

ox

depSC

oxox

oxMOS

eNVCC

WddepletionC

)/2(1)(

2ASCgox

ox

depSC

oxox

oxMOS

eNVCC

WddepletionC

From MOS Capacitor to CMOS inverter

Page 31: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini 31

Capacitance of MOS structure

• Strong inversion FiSV 2 FiSV 2

From MOS Capacitor to CMOS inverter

metalSkT

VeSkT

eV

D

SCSC Q

kTeV

pne

kTeVe

LekTQ

FISS

2

1

0

0)2(

112 metal

SkTVe

SkTeV

D

SCSC Q

kTeV

pne

kTeVe

LekTQ

FISS

2

1

0

0)2(

112

02 2)2(

kT

Ve

D

SCSC

FIS

eeL

kTQ 02 2

)2(

kT

Ve

D

SCSC

FIS

eeL

kTQ

kTVe

Ds

SCSC

FIs

eLdV

dQC 2)2(

2

oxSCoxMOS CCCC

1 111

Page 32: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

p type SC

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 32

Capacitance of MOS structureaccumulation dep

???

p type SC

Strong inversion

DSC

oxox

oxMOS

LdfbC

)(

DSC

oxox

oxMOS

LdfbC

)(

SgoxMOS VVe

kT

CC

2111

depSC

oxox

oxMOS

WddepletionC

)(

depSC

oxox

oxMOS

WddepletionC

)(

Page 33: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 33

Capacitance of MOS structure

• Strong inversion:

Which mechanism governs the onset of strong inversion layer?

P type SC : we must create electrons at oxide/SC interface. Where they come from? FromMetal : NO  because oxide barrier From SC (neutral region) : NOminority carriers (e‐)

Only one solution: thermal (or optical) generation

Page 34: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 34

Capacitance of MOS structure

• Strong inversion:                        • Thermal generation?

• #1 :In the space charge + dissipation of charge by electric field

• #2 : In the neutral region

First mechanism dominates but it’s a slow one.

recombination

+

+

+

++

p ++

EF

space charge zone

diffusion zone

0 W

n

p+SiO

2

n+

metal contactsemitransparent metal

(a)

(b)

(c)

Page 35: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini 35

• Strong inversion• Which Delay time to create strong inversion layer ?

m

ith

ng2

m

ith

ng2

ASth Ng ASth Ng mi

AS n

N 2 mi

AS n

N 2

Strong inversion limit: nS = NA

More realistics mi

AS n

N 10 -1 mi

AS n

N 10 -1

From MOS Capacitor to CMOS inverter

Capacitance of MOS structure

Shockley-Read equation

Si: ni=1010 cm-3

NA=1015 cm-3 s=1s !!m=10-5 s

Page 36: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 36

• When we measure C(V) , results depend on YES or NO, we give enough time to create this layer• YES: we measure capacitance du to inversion layer • NO : Depletion layer preserves the neutrality of the system with

an increase of its width . The limit is the breakdown of the semiconductor

Results are frequency dependant

Capacitance of MOS structure

Page 37: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 37

3 cases :

Low frequency+

Slow ramp Vg

x

Q

x

Q

High frequency+

Slow ramp Vg

x

Q

High frequency+

High ramp Vg

Capacitance of MOS structure: strong inversion

Page 38: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 38

Page 39: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 39

• minimum capacitance (HF):

Asc

iA

ox NenNkT

CC 2min

)/ln(411

)/ln(4222max iA

A

scFi

A

sc nNNekT

eNW

BF

HF

Capacitance of MOS structure: strong inversion

Page 40: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 40

MOS capacitor : parasitic effects• 2 factors modify « ideal » structure of MOS capacitor.

• The charges in oxide and/or charges at interface Oxide – SC.• The difference between the work function of the Metal and the SC

Influence on the threshold voltage VT of the structure.

Page 41: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini 41

• Distribution of charges in the oxide :• Mobile ionic charges• Oxide traped charges• Fixed oxide charges• Traped charges at Si-SiO2 interface

K+

Na+ Ionic mobiles

- - - - -+ + + + traped

+ + + + +x x x x

SiO2

SiOx

Si

Depending on their position in the oxide, the charges will influence more or less on the electron population below the gate.

From MOS Capacitor to CMOS inverter

MOS capacitor :oxide charge

Page 42: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 42

MOS capacitor :oxide charge

• Effect of a sheet charge of a real density Q within the oxide layer of an MOS capacitor:

Oxide

x

(x)Vg=0V

SiMetal

0 x1

Q

x

(x)Vg=Vfb

dox

-Q

Q

Oxide charges are compensated with charges in Metal AND SC.

If Vg=Vfb, charges in SC must be zero. Only Metal« DO the job »

ox

ox

oxox

oxg C

QdxxQ

V

Page 43: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 43

• The effect is maximum when the charges are located at the interface oxide - SC, ie Qox=QSS (and no effect if Qox close to Metal)

oxdx ox

ssg C

QV

( ) ( )( ) ox S SS S

g S FBox ox

Q V Q VV V V

C C

( ) ( )( ) ox S SS S

g S FBox ox

Q V Q VV V V

C C

It is a common practice to define an equivalentoxide charge per unit area Qox located at the oxide– silicon interface (named QSS):

MOS capacitor :oxide charge

Page 44: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 44

Work function difference

• Work function difference non zero oxide field.• Even when Vg = 0 V, structure show a band bending

e

Depletion zone

A gate voltage must be applied to restore the flat band condition  VFB = M– S = MS : this voltage is called Flat Band voltage VFB

Page 45: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini 45

• Work function difference.• Example: polysilicon n+ gate on p-MOS

siliciumpoly en

siliciumpoly e

n

fig

SiliciumSC eE

2 fi

gSiliciumSC e

E

2

0.56 ln( )   02gpoly a

FB MS fii

E kT NV

e e n 0.56 ln( )   0

2gpoly a

FB MS fii

E kT NV

e e n

From MOS Capacitor to CMOS inverter

Work function difference

Page 46: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 46

Non ideal MOS capacitor

• Taking into account both Oxide charges and work-function difference, the global flat band voltage can bewritten as:

ox

oxMSFB C

QV ox

oxMSFB C

QV

Warning: this is the voltage we have to applyon the gate to restore de flat band condition.Warning: this is the voltage we have to applyon the gate to restore de flat band condition.

Page 47: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 47

• Imagine the depletion regime of the MOS capacitor (Qss=0)

• We know that :

Capacitance of Non ideal MOS structure:

2

2

2

2

2

dep a dep a sc sox

ox ox ox

a deps

sc

a dep a depg ox s fb fb

ox sc

Q eN W eN VV

C C C

eN WV

eN W eN WV V V V V

C

~

Page 48: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 48

• Imagine the depletion regime of the MOS capacitor (Qss=0)

• We know that :

Capacitance of Non ideal MOS structure:

2

1 1 1

2( )1 1

scsc dep

dep

MOS ox dep

g fb

MOS ox a sc

C CW

C C C

V VC C eN

~

Page 49: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 49

Threshold voltage

• Key parameter for behavior understanding of transistor

• Many definitions (same results!):• nS = NA

• Vs = 2 fi

• …

Page 50: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 50

VT is simply the applied gate voltage when the surface potential or band bending reaches 2FI and the siliconcharge is equal to the bulk depletion charge for thatpotential

FBFiOX

FiASCFiSgT V

CeN

VVV

24

)2(

FBFiOX

FiASCFiSgT V

CeN

VVV

24

)2(

(we suppose here that no bias on the bulk is present no body effect)

Threshold voltage

VT

VOX

VS=2FI

X

V(X)

-tOX 0

)0( FBV

(from slide 16)

Page 51: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 51

• Substrate sensitivity - Body Effect

• In general the MOS devices have a common silicon substrate substrate voltage is equal for all transistor.

• BUT when multiple NFETs (or PFETs) are connected in series in a circuit, they share a common body (the silicon substrate) but their sources do not have the same voltage. We must introduce a coefficient that accounts for this effect :

Threshold voltage

Page 52: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 52

=0

>0+++++++

<0

>0+++++++

+ + +- - -

One part of Gate voltage is no more used to create inversion layer but just to compensate the extra depletion width VT will increase

Threshold voltage

Page 53: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 53

• The new threshold voltage taking account the body effect can be written as:

• The substrate sensitivity as:

• Of course substrate bias have to be reverse to preventcurrent flow

oxT

ox

SBFiasc

SBoxSB

T

CQV

CVeN

dVdQ

CdVdV

et )2(2/1

oxT

ox

SBFiasc

SBoxSB

T

CQV

CVeN

dVdQ

CdVdV

et )2(2/1

FiSBFiTT VVV 220 FiSBFiTT VVV 220 ox

SCA

CeN

2

ox

SCA

CeN

2

Threshold voltage

Page 54: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 54

The effect of (reverse) substrate bias is to widen the bulkdepletion region and raise the threshold voltage:• The back contact acts as a back Gate• We can tune VT !

VVd

FB

ox

0A200

0 2 4 6 8 10

0,8

1,0

1,2

1,4

1,6

1,8 Na = 1E16 cm-3

Na = 3E15 cm-3

T

Substrate bias voltage VSB (V)

Thresholdvolta

ge (V

)    

Threshold voltage

Page 55: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 55

Threshold voltage : body effect

Page 56: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

MOS-FET TRANSISTOR

Page 57: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 57

MOS-FET transistor

Page 58: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 58

Graphical summary of the major processing steps in the formation of a MOSFET Transistor

http://www.youtube.com/watch?v=dR-Qtv-7uWI

Page 59: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 59

MOS-FET transistor

Stockage time ?

Page 60: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 60

Linear regime

Page 61: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 61

Saturation / linear limit

Page 62: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 62

Saturation regime

Effective length of canal decreases from L to L’

Page 63: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 63

Basic MOSFET IV Model

• L, canal length( y oriented)• W, canal width(z oriented)• V, voltage in the canal (f(y))

• V(y=0) = V(source) = Vs = 0 V• V(y=L) = V (drain) = Vds

• Vg, gate voltage• -VBS, body voltage

Page 64: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 64

Charge sheet approximation

• Analytical solution we simplify the model:• Charge sheet approximation (xi=0):

• We assume all the inversion charges are located at the siliconinterface without any thickness

• No potentiel drop across this layer• No band bending across this layer

Page 65: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 65

First step: calculation of inversion layer charge function of Vg

))(2(2)(2 yVeNyVeNWeNQ FiSCASSCAMAdep

))(2())(()()( yVVVCyVVVCyQyQ FiFBgoxSFBgoxmétalsc

))(2(2))(2( yVeNyVVVCQQQ FiSCAFiFBgoxdepscinv

21

))(2(2))(2()(

e

yVNe

yVVVCe

Q

eQ

eQ

yn FiSCAFiFBgoxdepscinvS

Charge sheet approximation

Page 66: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

• Current density in the channel can be caused by diffusion and drift components

• Current is simply given (integration over channel section)

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 66

dydn

qkTqµ

dyydVqnμ=Jn 00)(

Charge sheet approximation

ii

ii

xx

DS

xWxW

DS

dxdydn

qkTqµWdx

dydVqnWI

dxdydn

qkTqµdzdx

dydVqndz=I

0 0

0 0

0 00

0 00

There is a sign change because we want IDS>0 in –y direction

Page 67: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

• The previous relation can be rewritten

• If we remember that:

• Current expression can be found

• And so, by integrationg from y=0 to y=L and as current isindependant of y:

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 67

ii xx

DS qndxdyd

qkTWµqndx

dydV=WI

 

 

 

  0000

ix

inv dxyxnqQ

0 ),(

dyVdQ

qkTWµ

dydVVQWμ=I inv

invDS)(

)( 00

Charge sheet approximation

)(

)0(

)(

)0(00

LQ

Q inv

LV

V inv

L

DSinv

inv

dQq

kTdVQ=WdyI 

 

 

 

 

 

conduction diffusion

Page 68: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 68

• If we want to derive basic expressions for long channel currentin linear and saturation regions, we can neglect drift component

Charge sheet approximation

DS 

 

 

 

 

 

V

inv

LV

V inv

L

DS dVVQWdVVQWdyI00

)(

)0(00)()(

)2()2(2

32

)2

2(

23

23

FiDSFiox

Asc

DSDS

FiFBgoxnDS

VC

eN

VVVVCL

WI

)2()2(2

32

)2

2(

23

23

FiDSFiox

Asc

DSDS

FiFBgoxnDS

VC

eN

VVVVCL

WI

After few simple steps:

!! Cox is the oxide capacitance per surface unit (Fm‐2 ou Fcm‐2)!!

))(2(2))(2( yVeNyVVVCQ FiSCAFiFBgoxinv with

Page 69: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

DSTGSoxnDS

DSox

FiAscFifbGSoxnDS

VVVL

WCI

VCeN

VVL

WCI

)(

)4

2(

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 69

Characteristics in the linear (triode) region

When VDS is small (VDS << 2Fi) , one can expand the previousequation into power series in VDS and keep only first orderterm:

We recognize threshold voltage VT.

In the linear region, the MOSFET simply acts like a resistor modulated by the gate voltage

Page 70: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 70

• For larger values of VDS we have to keep second order term(quadratic term) and a good approximation of current is:

2

2)( DSDSTgsoxnDS VmVVV

LWCI

Cdm is the bulk depletion capacitance in limit of strong inversion

13114/

1

m

ox

ox

dm

ox

FiAsc

Wd

CC

CeN

mwith

Characteristics in the linear (triode) region

Page 71: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 71

• Previous equation is a parabole. Ids follows a parabolic curve with VDS until a maximun (or saturation) value is reached when VDS = Vdsat.

mVV

VV TgsDsatD

)(

mVV

LWCII Tgs

oxnDsatDS 2)( 2

In the case of thin oxide and lowdoping m can be reduced to 1 andyield the well known expression:

2)(2 TgsoxnDsatDS VV

LWCII 2)(2 TgsoxnDsatDS VV

LWCII

Dra

in c

urre

nt

VDS

Characteristics in the saturation region

Page 72: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 72

• Without any approximation (series expand,…), completeexpressions for IDSAT can be expressed as:

)2

(2

2 222ox

AscFBgs

ox

Asc

ox

AscFiFBgsDsat C

eNVV

CeN

CeN

VVV

))(

34(12)222)(2(

6

21

ox

FiscAFiFbgsFiFBgsFiDsatFiDsatoxndsat C

eNVVVVVVCL

WµI

If we suppose high value for Cox (thin oxyde) and low doping level, threshold voltage can be simplified as                        ,  and at the same time we can rewrite

FBFiT VV 2

FBFigsTgsdsat VVVVV 2

22

2)(

2 DsatoxnTgsoxnDsat

TgsDsat

VCL

WµVVCL

WµI

VVV

Characteristics in the saturation region

Page 73: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 73

Subthreshold characteristics– weak inversion region

• Three regimes:• Triode (Linear)• Saturation• OFF state (if Vg < VT for nMOS)

• Transition ON /OFF is not so sharp• Weak inversion for fi <Vs <2Fi

• Subthreshold behavior is of importance:• Low power• Low voltage digital logic and memory circuits

Page 74: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

MOSFET basics• Subthreshold current : « OFF » is not totally « OFF »

• Previous analysis VGS<VT, NMOS (NFET) turns OFF• In reality, for VGS~VT, a « weak » inversion layer still exists and some

current (drift component) can flow between S and D.• This is the so called “subthreshold conduction”

0

with , a ideality (or nonideality) factor (≥1)• Remember that changes by 10 for every x60 mV change in

VGS.• Typically, if IDS decreases for one decade , then VGS must decrease by

at least x60 mV (in fact around 80 mV, ) (at 300K!).

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 74

Page 75: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

MOSFET basics• Subthreshold current :

(for VGS<VT)

VT1

Exponential Quadratic

1 decade

VT2

VT3 VGS

log IDS

IOFF

~80 mV

For example:

0

• If we suppose VT=0,3V

• 0,3V/80 mV=3,75

• ION/IOFF = 103,75 ~ 5600

• If VT=0,6V, ION/IOFF >107 !!

ION

OF COURSE WE WANT CLOSE TO UNITY

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 75

Page 76: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 76

Short channel MOSFETs

• Threshold voltage reduction• Drain Induced Barrier Lowering (DIBL)• Channel length modulation• MOSFETs breakdown• …

Page 77: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

77

Threshold voltage reduction: short channel effect (Kang et al)

• Origin: • Previous VT expression supposes

channel depletion region comes onlyfrom gate

• In fact one part is created by depletionregion associated by source/channeland drain/channel pn junctions

• Overestimation of charge induced by gate overestimation of VT

• This reduction more prominentfor MOSFET with shorter channellength

00 )()( TTT VllongchanneVelshortchannV 00 )()( TTT VllongchanneVelshortchannV

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter

Page 78: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

78

• Origin: • Previous VT expression supposes

channel depletion region comes onlyfrom gate

• In fact one part is created by depletionregion associated by source/channeland drain/channel pn junctions

• Overestimation of charge induced by gate overestimation of VT

• This reduction more prominentfor MOSFET with shorter channellength

00 )()( TTT VllongchanneVelshortchannV 00 )()( TTT VllongchanneVelshortchannV

Threshold voltage reduction: short channel effect (Kang et al)

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter

Page 79: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 79

biA

SidS V

eNx 2

)(2DSbi

A

SidD VV

eNx

1

21. ,

,j

DdSjDS x

xxL

121121

241

0j

dD

j

dSjFiASi

oxT x

xxx

Lx

NeC

V

Threshold voltage reduction: short channel effect (Kang et al)

Page 80: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 80

• Threshold voltage isfunction of:• Channel length• Drain –Source voltageVds

through xdD

0 1 2 3 4 5 60,3

0,4

0,5

0,6

0,7

0,8

0,9 VT0

Thresholdvolta

ge(V

)

Channel Length (µm)

Threshold voltage reduction: short channel effect (Kang et al)

Page 81: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Drain Induced Barrier Lowering (DIBL)

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 81

Page 82: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 82

Channel length modulation (saturation operation)

• At the onset of pinch-off (VDS>VDsat), theeffective channel length (the length ofinversion layer) is reduced.

DsatDS

D IVLL

LI)(

DSV

LL

11

1 f DSVI

)1()(2

)( 2DSTGS

oxnD VVV

LWCµsatI

Page 83: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 83

MOSFET Breakdown

• 2 main effects:• punchthrough breakdown

• Punch through in a MOSFET is an extreme case of channel length modulation where the depletion layers around the drain and source regions merge into a single depletion region. 

• Punch through causes a rapidly increasing current with increasing drain‐source voltage• No current saturation

• Impact ionisation at the drain:• Electron acceleration in the channel• Impact ionisation  holes electrons pairsgenerated

• Holes collected by substrate substrate current voltage drop in the channel• Reduction of VT ( body effect)• Increase of current and so on !• Permanent dammage

Page 84: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

• Difficulties: • In general, capacitances associated with MOS circuits are a

complicated function of geometries and process• Not lumped capacitances but distributed capacitances

• In the following, first approximation model• Sufficiently accurate to represent main characteristics of MOSFET

charge voltage behavior• All the capacitances are lumped

• Three differents physical origins• Overlay capacitance• Oxyde capacitance• Junction capacitance

Important point : capacitances are dependent of bias voltage / working point.

MOSFET capacitances

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 84

Page 85: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 85

• Overlay capacitances:• LD, gate – drain and gate – source overlay• LM, mask length

LM

LLD LD(n+) (n+)

gateL=LM  ‐ 2.LD

ox

oxox

DoxGD

DoxGS

C

LWCoverlapCLWCoverlapC

=

..=)(..=)(

ox

oxox

DoxGD

DoxGS

C

LWCoverlapCLWCoverlapC

=

..=)(..=)(

MOSFET capacitances

W

Page 86: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 86

Cd

b

MOSFET(DC Model)

Cgb

Cgd

Cgs

Cdb

Csb

S

D

G B

Lumped representation of parasistics capacitances

Equivalent model (with overlapcapacitances)

MOSFET capacitances

Page 87: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 87

Gate – Channel capacitances

channel

channel

• Cut off mode:

• Linear mode

• Saturation mode

Cgs = Cgd = 0Cgb = CoxWL

12

0 (channel shields substrate)

gs gd ox

gb

C C C WL

C

2 , 030 (channel shields substrate)

gs ox gd

gb

C C WL C

C

Page 88: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 88

Oxyde capacitance

Capacitance Cut off Linear saturation

Cgb(total)

Cgd(total)

Cgs(total)

CoxWL

CoxWLD

CoxWLD

0 0

Doxox WLCWLC 21

Doxox WLCWLC 21

DoxWLC

Doxox WLCWLC 32

Page 89: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 89

Dynamic characteristics (1)• Conductance:

• Linear mode

• Saturation mode

FiDSox

ascDSFiFBgsoxn

cteVD

DD V

CN

VVVCL

WµVIg

g

22

2

)(= Tgsoxn

D VVCLWµ

glin

DTgsoxn

DD IVVL

WCµggsatsat

)²(2

ou 0

Page 90: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 90

transconductance: device speed linear

« active region »

DSoxnm VL

WCµglin

)(22)(

Tgs

DsatDsatoxnTgsox

nmsat VV

IIL

WCµVVCLWµg

Dynamic characteristics (2)

Page 91: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 91

HF Caracteristics• Cut off frequencycurrent gain = 1

)-( DGGDgGSin VVCjVCjI

0)-( GDGDgmL

D VVCjVgRV

If we neglect jRLCgd (small) ( ) GLmGDGSin VRgCCωjI )+1(+=

( ) GMGSin VCCωjI +=

CM : Miller capacitance

GGDL

LmGDGSin V

CRjRgCCjI

1

1

Page 92: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 92

HF Caracteristics

)+(2=

MGS

mT CCπ

gf

gsmDout VgII ==outin II =

If CM = 0 (or minimum)   cut off frequency is maximum (saturation mode):

2max 2)-(

LVVµf TGn

T or (if short chanel and/or vsat ) Lπ

vf sT 2

=max

Page 93: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 93

• An other figure of merit : power gain =1 oscillation frequency

)(4maxgdTdg

T

CgRff

Ref: (Tsividis)

Rg: gate resistanceRs : negligeable

HF Caracteristics

Page 94: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

MOS TRANSISTORS INVERTERSStatics characteristics

Page 95: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 95

ideal Inverter : definition

• Input voltage: Vin

• Output voltage: Vout

• Inverter thresholdvoltage:Vth=VDD/2

• Logic « 1 » output :• 0<Vin<Vth

• Logic « 0 » output:• Vth< Vin <VDD

Vertical drop in ideal case

Page 96: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 96

NMOS Inverter: general circuit structure• Load: active (MOS) or passive (resistor)

• « driver »

• Cload :lumped capacitance  • Input Voltage: Vin=Vgs• Output Voltage: Vout=Vds

• DC domain: no input current neither output current• Kirchoff’s current law: ILOAD(VL) = IDS(Vin, Vout)

)(),( LLoutinDS VIVVI )(),( LLoutinDS VIVVI

Page 97: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 97

Inverter: voltage transfer characteristics• With analytical solving

IDS ( Vin ,Vout )=IL( VL ) we foundthe VTC characteristics:

Vout = f ( Vin )• Key voltages:

• VIL : maximum input voltage wich canbe interpreted as a « 0 » logic input

• VIH : minimum input voltage wich canbe interpreted as a « 1 » logic input

• VOL : minimun ouput voltage when the output level is logic « 0 »

• VOH : maximum ouput voltage whenthe output level is logic « 1 »

Page 98: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 98

Inverters: noise margins

• Interconnexions and gate noise can add parasitics voltage logic faults . We introduce for quantify the noise immunity of the circuit the «noise margins ».

• The noise immunity increases with the noise margins

• Interconnexions and gate noise can add parasitics voltage logic faults . We introduce for quantify the noise immunity of the circuit the «noise margins ».

• The noise immunity increases with the noise margins

Page 99: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 99

OLILL

IHOHH

VVNM

VVNM

OLILL

IHOHH

VVNM

VVNM

Uncertainty regionmust bereducewe must have VIL~VIH VTC close to ideal inverter

Uncertainty regionmust bereducewe must have VIL~VIH VTC close to ideal inverter

VOH’

VOL’

Inverters: noise margins

Page 100: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

• Preceding discussions of inverter static (DC) characteristics show that shape of the VTC in general and noise immunity in particular are very important criteria for design priorities.

For any inverter circuit five critical points (VIL, VIH,…) fully determine the properties.

Accurate estimation of these voltage points have to be determined.

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 100

Inverters: brief summary

Page 101: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 101

Resistive-load Inverter

• Vin=VGS• Vin=« 1 »: n-MOS is ON at

first order, Drain groundedVout = « 0 »

• Vin=« 0 »: n-MOS is OFF open circuit IL = IDS = 0 Vout= VDD= « 1 »

CL

RL

Input Voltage Range

Operating Mode

Vin<VT0 Cut offVT0<Vin<Vout+VT0 SaturationVin>Vout+VT0 Linear

Page 102: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 102

-4 -3 -2 -1 0 10

2

4

6

8

10

RL=36 k RL=50 k

DSL

outDDL I

RVVI

DS

L

outDDL I

RVVI

Resistive-load Inverter : VTC

Page 103: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 103

LnLn

DDTnIH

LnTnIL

Ln

DD

LnTnDD

LnTnDDOL

DDOH

RkRkVVV

RkVV

RkV

RkVV

RkVVV

VV

138

1

2)1(1 2

LnLn

DDTnIH

LnTnIL

Ln

DD

LnTnDD

LnTnDDOL

DDOH

RkRkVVV

RkVV

RkV

RkVV

RkVVV

VV

138

1

2)1(1 2

( good exercise ! )

Resistive-load Inverter : VTC

Page 104: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 104

• VGS = VDS VGS ‐VT < VDS  saturation mode

• Warning : if Vout>VDD‐VTcut‐off VOH=VDD‐VT

Saturated enhancement-type nMOS Inverters :

Page 105: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 105

The representative points of the load line are given by :

VGS = VDS

The load NMOS isequivalent to a non linearresistance

VDS

VGS

Saturated enhancement-type nMOS Inverters : graphic analysis

Non linear resistance

Page 106: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 106

VDS1=VDD - VDS2 = 6 - VDS2

VDS1 = 6 – 4 = 2 VID2 = 75 µA = ID1

ID2, µA

VDS2

4

75

75

2

Load

Driver

Saturated enhancement-type nMOS Inverters : graphic analysis

Page 107: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 107

NMH = VOH ‐VIH = ‐0.2 V <0By changing the ratio W/L, we can improve NM.

75

2

B

Saturated enhancement-type nMOS Inverters : graphic analysis

Page 108: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 108

Load transistor never in saturation mode: VGS,load – VT,load >VDS,load (1)

VGS,load –VDS,load = VGG – VDD

(1) OK  VGG – VDD >VT,load

non saturated load

drawback : 2 separated power supply voltage !!

Inverter with linear enhancement type load

Page 109: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 109

VGS2 - VDS2 =VGG – VDD = 3V

VDS2 = VGS2 – 3V

T2

T1

VGG = +9V VDD = +6V

VGS1

VDS1

Loadresistance

Inverter with linear enhancement type load

Loadresistance

Page 110: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 110

VDS1 = 6 – VDS2VDS1 = 6 – VDS2

Inverter with linear enhancement type load

Page 111: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 111

Driver   : enhancement VT,Driver >0Load : depletion VT,load <0    VGS,load =0 >VT,load

VSB,load = VDS,pilote = Vout VT,load sensitive to body effect

FioutFiToutloadT VVVV 22)( 0,

VDD = +6V

Depletion Load NMOS inverter

Vin Vout Driver loadVOL VOH Cut off Linear

VIL ~VOH Saturation Linear

VIH small Linear Saturation

VOH VOL linear saturation

Page 112: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

112

VDS2 = 0 V, IDS2 = 0 µA

VDS1 = 6 – 0 = 6 V

VDS2 = 3 V, IDS2 = 22 µA

VDS1 = 6 – 3 = 3 V

Depletion Load NMOS inverter

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter

Page 113: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 113

out

loadToutloadT

driver

loadoutdriverTIH

outloadTDDoutdriver

loaddriverTIL

OLloadTdriver

loaddriverTOOHdriverTOOHOL

DDOH

dVdV

VVkkVVV

VVVVkkVV

VVkkVVVVV

VV

,,,

,,

2,

2,,

)(2

)(

)()(

out

loadToutloadT

driver

loadoutdriverTIH

outloadTDDoutdriver

loaddriverTIL

OLloadTdriver

loaddriverTOOHdriverTOOHOL

DDOH

dVdV

VVkkVVV

VVVVkkVV

VVkkVVVVV

VV

,,,

,,

2,

2,,

)(2

)(

)()(

( goo

d exercise! )

Depletion Load NMOS inverter

Drawback (compare to enhancement load Inverter): • Additional processing step (VT adjust for load)

Advantages (compare to enhancement load Inverter):• Sharp VTC transition• Better noise margins• Single power supply• Smaller layout area

Page 114: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 114

• Vin = 0 et Vout = VOH driver is cut off IDS=0. No power

• Vin= VDD et Vout = VOL both transistors ON large current

)()()( linIsatIVVI driverloadDDinDC )()()( linIsatIVVI driverloadDDinDC

2, )(22 OLloadTloadDD

DC VVkV

P 2, )(22 OLloadTloadDD

DC VVkV

P unacceptable

50% of time logic« 1 »

Depletion Load NMOS inverter: power considerations

Page 115: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 115

C-MOS inverter

• All previous Inverters are based on :• enhancement driver NMOS • a load which can be a resistor, an enhancement or depletion NMOS.

• Major drawback: in one state (output level « 0 ») DC consumption or power dissipation nonzero

• New concept /design :

• One enhancement NMOS and one enhancement PMOS (Complementary MOS or CMOS).

• Depending on input Voltage, NMOS is the load and PMOS the driver and vice versa.

• Advantages:• No DC ( steady state) power dissipation ( except leakage current)• Full output voltage swing between VDD and 0• Very sharp VTC transition : very similar to ideal inverter

Page 116: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 116

C-MOS inverter

S

S

D

D

VGS,p ‐(VDD – Vin)VDS,p ‐(VDD – Vout)VGS,n Vin

VDS,n Vout

Page 117: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 117

The structure complexity of CMOS is the price to be paid for the improvements achieved in power consumption and the noise margins

C-MOS inverter

Page 118: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 118

• careful! VTn > 0 et VTp < 0• 1st case: Vin < VTn

• VGS,n < VTn nMOS cut off zero current• VGS,p < VTp pMOS ‘ON ‘ Vout = VDD = VOH

• 2nd case: Vin > VDD + VTp

• VGS,n > VTn nMOS ‘ON ’ zero current• VGS,p > VTp pMOS cutoff Vout = VOL 0

C-MOS inverter

Page 119: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 119

C-MOS inverter

Page 120: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 120

Region Vin Vout nMOS pMOS

A < VTn VOH Cut off linear

B VIL « 1 » VOH Saturation linear

C Vth Vth Saturation Saturation

D VIH « 0 » VOL linear Saturation

E > (VDD + VT,p ) VOL linear Cut off

Consumption zone when switching

C-MOS inverter

Page 121: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 121

LWµCk

kk

k

k

VVk

VV

kVVkVV

V

kVkVVV

V

VVV

oxpp

npR

r

pTDDr

nT

th

R

nToutRpTDDIH

R

nTRDDpToutIL

OL

DDOH

p

)11(

)(1

1)2.(

120

,,

,,

,,

LWµCk

kk

k

k

VVk

VV

kVVkVV

V

kVkVVV

V

VVV

oxpp

npR

r

pTDDr

nT

th

R

nToutRpTDDIH

R

nTRDDpToutIL

OL

DDOH

p

)11(

)(1

1)2.(

120

,,

,,

,,

C-MOS inverter

Page 122: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 122

Interconnect effects

Cint represents the parasitic capacitance betweenthe two inverters

C‐MOS inverter: switching characteristics

Page 123: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 123

• To simplify the problem, all the capacitances are combined into a unique lumped linear capacitance Cload

• The question of inverter transient response is reduced to finding the charge‐up and charge‐down time of a single capacitance which is charged and discharged through a transistor (NMOS or PMOS).

, , , , intload gd n gd p db n db p gC C C C C C C , , , , intload gd n gd p db n db p gC C C C C C C

Cload

C‐MOS inverter: switching characteristics

Page 124: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 124

• Delay-time or Propagation-time:

PLH : delay time from « 0 » to « 1 ».PHL : delay time from « 1 » to « 0 ».

The average propagation delaytime :

2PHL PLH

P

2

PHL PLHP

C‐MOS inverter: switching characteristics

Page 125: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 125

VOL

VOH

• Output voltage Rise and Fall time:

CDrise

ABfall

LOOHOL

OLHOOL

tttt

VVVVVVVV

)(9.0)(1.0

%90

%10

CDrise

ABfall

LOOHOL

OLHOOL

tttt

VVVVVVVV

)(9.0)(1.0

%90

%10

C‐MOS inverter: switching characteristics

Page 126: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 126

Calculation of delay times:

nDpDCout

load iiidt

dVC ,,

Fall time calculation:•Vin switches from VOL to VOH• nMOS is turned ‘ON’ and itstarts to discharge Cload•pMOS is switched off ID,p 0

nDout

load idt

dVC ,

C‐MOS inverter: switching characteristics

Page 127: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 127

Be carefull : during the switching, operating mode of  MOS changes !!

In our case , we have to decompose the calcul in two delay‐times

NMOS in saturation ?VGSn – VTN < VDS Vin-VTN <Vout VOH – VTn < Vout

C‐MOS inverter: switching characteristics

Page 128: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 128

• After few steps

C‐MOS inverter: switching characteristics

, ,

, ,

2 4( )ln 1  

( )T n OH T nload

PHLn OH T n OH T n OH OL

V V VCk V V V V V V

, ,

50%, ,

2 2( )ln 1  

( )T p OH OL T pload

PLHOHp OH OL T p OH OL T p

V V V VCV Vk V V V V V V

Page 129: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 129

• Other method (more simple, less accurate): average current method

HLavg

OHload

HLavg

HLloadPHL I

VVCI

VC )( %50

),(),(21

%50VVVViVVVViI outOHincOHoutOHincavgHL

C‐MOS inverter: switching characteristics

Page 130: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 130

0

x x1 ( )    ( )     

T

avgP v t i t dtT

2avg load DDP C V f 2avg load DDP C V f

Power dissipation for a gate CMOS during switching : this is the power used to charge and discharge the capacitance Cload.

C‐MOS inverter: switching characteristics

Page 131: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 131

Another source of power consumption: the short‐circuit current, ie a direct pathway from power supply to ground through PMOS and NMOS, both of them being in “ON” state. 

C‐MOS inverter: switching characteristics

Page 132: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 132

bibliographic references• S.M. Sze « Physics of semiconductors devices », 2° edition, Wiley and Sons,

New York, 1981• H.Mathieu, « Physique des semi-conducteurs et des composants

électroniques », 4° edition, Masson 1998.• J. Singh, « semiconductors devices : an introduction », McGraw-Hill, Inc

1994• D.A. Neamen, « Semiconductor physics and devices », McGraw Hill, 2003• Y.Taur et T.H. Ning, « Fundamentals of Modern VLSI devices », Cambridge

University Press, 1998.• K.K. Ng, « complete guide to semiconductor devices », McGraw-Hill, Inc,

1995• E. H. Nicollian et J. R. Brews, « MOS Physics and Technology », John Wiley

and Sons, 1982• S.M. Kang et Y. Leblebici, « CMOS Digital Integrated Circuits : analysis and

design », Mc Graw Hill, 2° edition., 1999• J. Millman et A. Grabel, « microelectronique », Mc Graw Hill, 1995• Chenming C. Hu « Modern Semiconductor Devices for Integrated Circuits »,

Prentice Hall, 2009

Figures and tables mainly from these references

Page 133: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

MERCI!THANK YOU FOR YOURATTENTION!

感谢您的关注

Page 134: mos 2014 v4 - users.polytech.unice.frusers.polytech.unice.fr/~lorenz/mos_2014_v4.pdf · S

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 134