Module’2)2 Review’of’Probability’...

37
Module 22 Review of Probability Theory Chanan Singh Texas A&M University Copyrightby Chanan Singh For educational purpose only

Transcript of Module’2)2 Review’of’Probability’...

Page 1: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

Module  2-­2Review  of  Probability  

Theory  

Chanan  SinghTexas  A&M  University

Copyright  by  Chanan Singh  For  educational  purpose  only

Page 2: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

Outline

Copyright  by  Chanan Singh  For  educational  purpose  only

l Random  variablel Probability  distribution  functionl Survival  functionl Hazard  function  l Exponential  distribution   function  

l Stochastic  processesl Markov  process

l Transition  probabilityl Transition  rate  matrix

Page 3: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

Random  Variable  (RV)

Copyright  by  Chanan Singh  For  educational  purpose  only

l Discrete  RV  assigns  discrete  value.l Ex:  A  number  of  components  down  in  power  system

l Continuous  RV  assigns  continuous  value.l Ex:  Time  to  failure  of  a  component

A  function  that  assigns  numerical  values  to  all  possible  outcomes  of  a  state  space

Page 4: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

Discrete  RV:  Number  of  T-­Lines  Down

Copyright  by  Chanan Singh  For  educational  purpose  only

Line  1

Line  2Line  1

Line  2Line  1

Line  2Line  1

Line  2

(1  Up,  2  Up)

(1  Up,  2  Down)

(1  Down,  2  Up)

(1  Down,  2  Down)

Outcomes Random  Variable

0

1

2

Page 5: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

Continuous  RV:  Time  to  Failure

Copyright  by  Chanan Singh  For  educational  purpose  only

Outcomes:  time  to  failure

Random  Variable,  X

GA  generator  start  working  at  time  x  =  0

It  can  fail  at  any  time,  x  ≥  0

x  ≥  0

Page 6: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

Probability  Distribution  Function

Copyright  by  Chanan Singh  For  educational  purpose  only

l Discrete  RV: l Continuous  RV:

A  function  that  gives  probabilities  associated  with  all  possible  values  of  a  random  variable.

0.1

0.2

0.3 0.3

0.1

1              2              3              4              5 1              2              3              4              5

Exponential  distribution  function( ) 1.01Pr ==X

( ) ∫ −=≤≤3

2

5.05.032Pr dxeX x

( ) 0,5.0 5.0 ≥= − xexf xX

0.5

( ) ( )x

xxXxxfxX Δ

Δ+<<=

→Δ

Prlim0

Page 7: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

Discrete  Random  Variable

Copyright  by  Chanan Singh  For  educational  purpose  only

l Probabilty  density  or  mass  function

Properties𝑝" 𝑥 = 0 unless  𝑥 is  one  of  the  values  of  the  discrete  rv,  𝑥&, 𝑥(,…0 ≤ 𝑝" 𝑥+ ≤ 1∑ 𝑝" 𝑥+ = ∑ 𝑃 𝑋 = 𝑥+ = 1+

Page 8: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

Continuous  Random  Variable

Copyright  by  Chanan Singh  For  educational  purpose  only

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 2 𝑓" 𝑦 𝑑𝑦6

7

Propertiesi

ii

iii

𝑓"(𝑥) is  non-­negative

2 𝑓 𝑥 𝑑𝑥 = 1:;

<;

The  function  𝑓(𝑥) is  continuous  at  all  but  finite  number  of  points,  ie,  it  is  piece-­wise  continuous

Page 9: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

Survival  Function

Copyright  by  Chanan Singh  For  educational  purpose  only

l Time  to  failure  of  a  component  is  a  random  variable.

l This  rv  is  commonly  used  in  reliability  theory

A  function  that  gives  probability  of  a  component  survival  beyond  time  x.

1              2              3              4              5

( ) ( )xXxSX >= Pr

( ) ( ) ∫∞ −=>=4

5.05.04Pr4 dxeXS xX

0.5

Page 10: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

Distribution  Function

A  function  that  gives  probability  of  a  component  failing  by   time  x.

( ) ( )xXxFX ≤= Pr

)(1)( xx SF XX −=

Copyright  by  Chanan Singh  For  educational  purpose  only

Page 11: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

Hazard  Function

l Denoted  by  Ф(x),

A  function  that  gives  a  rate  at  time  x,  at  which  a  component  fails  (  i.e.  failure  rate),  given  that  it  has  survived  for  time  x.

( ) ( )x

xXxxXxxxX Δ

>Δ+<<=

→Δ

|Prlim0

φ

Probability  of  a  component  fails  between  time  x  and  x+Δx  given  that  it  has  survived  for  time  x

Copyright  by  Chanan Singh  For  educational  purpose  only

Page 12: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

Hazard  Function

Copyright  by  Chanan Singh  For  educational  purpose  only

l From,

l We  have( ) ( )

xxXxxXxx

xX Δ

>Δ+<<=

→Δ

|Prlim0

φ

( ) ( )( )xSxfx

X

XX =φ

( ) ( )( )xXx

xxXxxxX >

⋅Δ

Δ+<<=

→Δ Pr1Prlim

Page 13: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

An  Important  Relationship

Copyright  by  Chanan Singh  For  educational  purpose  only

l From  hazard  function  as  Δx  →  0,

l This  gives  probability  of  failure  of  a  component  in  interval  (x,  x+Δx).

( ) ( )xXxxXxxxX >Δ+<<=Δ |Prφ

( )xXφ

x        x+  Δx

( )xXxxXx >Δ+<< |Pr

Page 14: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

Important  Note

Copyright  by  Chanan Singh  For  educational  purpose  only

l Although  ,  for  simplicity,  survival  function  and  hazard  rate  function  have  been  described  with  respect  to  a  component  failure,  they  apply  to  any  random  variable.

l For  example  if  the  random  variable  is  time  to  repair,  then  Ф(x)  represents  the  repair  rate

Page 15: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

Expected  Value

Copyright  by  Chanan Singh  For  educational  purpose  only

𝐸 𝑋 =>𝑥+  𝑃 𝑋 = 𝑥++

=>𝑥+  𝑝(𝑥+)+

𝐸 𝑋 = 2 𝑥  𝑓 𝑥 𝑑𝑥;

<;

For  discrete  random  variable

For  continuous  random  variable

Page 16: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

Mean  and  Average

Copyright  by  Chanan Singh  For  educational  purpose  only

𝑋@ =𝑋& + 𝑋( + ⋯+ 𝑋C

𝑛

limC→;

𝑃 𝑋@ −𝑚 > 𝑐 = 0

Consider  a  random  sample  of  n  observations  of  X.  Then  the  sample  mean

According  to  the  law  of  large  numbers,  for  any  constant  c>0

Where  m  is  the  mean  of  xThus  as  sample  size  increases,  the  sample  mean  approaches  the  mean  value  of  rv.

Page 17: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

Sum  of  Random  Variables

Copyright  by  Chanan Singh  For  educational  purpose  only

𝐸 >𝑋+

C

+M&

= >𝐸(𝑋+)C

+M&

This  result  holds  even  when  the  random  variables  are  not  independent.

Page 18: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

Variance

Copyright  by  Chanan Singh  For  educational  purpose  only

𝑉 𝑋 = 𝐸 𝑋 − 𝐸 𝑋(

=>(𝑥+ − 𝑚)(  𝑝+(𝑥)+

= 2 𝑥 −𝑚 (𝑓 𝑥 𝑑𝑥;

<;

Variance  provides  a  measure  of  spread  of  the  distribution

for  discrete  rv

for  continuous  rv

Page 19: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

Variance

Copyright  by  Chanan Singh  For  educational  purpose  only

𝑉 𝑋 = 𝐸 𝑋 − 𝐸 𝑋(

= 𝐸 𝑋( + 𝐸 𝑋(− 2𝑋𝐸 𝑋

                     = 𝐸 𝑋( − (𝐸(𝑋))(

This  relationship  is  easier  to  implement

Page 20: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

Covariance

Copyright  by  Chanan Singh  For  educational  purpose  only

A  measure  of  the  tendency  of  two  random  variables  to  vary  together.

𝐶𝑜𝑣 𝑋, 𝑌 = 𝐸 𝑋 − 𝐸 𝑋 𝑌 − 𝐸 𝑌= 𝐸 𝑋𝑌 − 𝐸(𝑋)𝐸(𝑌)

Correlation  Coefficient𝐶"T =

𝐶𝑜𝑣(𝑋, 𝑌)𝑉 𝑋 𝑉(𝑌)

Range  (-­1,  1)

Page 21: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

Covariance

Copyright  by  Chanan Singh  For  educational  purpose  only

If  X,  Y  are  independent𝐶"T = 0

But  reverse  is  not  always  true

Page 22: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

Expectation  of  a  Real  Valued  Function  g(X)

Copyright  by  Chanan Singh  For  educational  purpose  only

𝐸 𝑔 𝑋 =>𝑔(𝑥+)+

 𝑝 𝑥+

= 2 𝑔 𝑥 𝑓 𝑥 𝑑𝑥;

<;

for  drv

for  crv

Page 23: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

Moments

Copyright  by  Chanan Singh  For  educational  purpose  only

Then  the  kth initial  moment  of  X

𝑔 𝑋 = 𝑋VLet

𝑚V 𝑋 =  𝑚V

=>𝑥+V  𝑝(𝑥+)+

   = 2 𝑥V  𝑓 𝑥 𝑑𝑥;

<;

for  drv

for  crv

Page 24: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

Moments  around  Mean  or  Central  Moments

Copyright  by  Chanan Singh  For  educational  purpose  only

𝑀V 𝑋 =  𝑀V

=>(𝑥+ −𝑚)V  𝑝(𝑥+)+

   = 2 (𝑥 −𝑚)V  𝑓 𝑥 𝑑𝑥;

<;

for  drv

for  crv

Page 25: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

Transform  MethodsCharacteristic  Function  of  X

Copyright  by  Chanan Singh  For  educational  purpose  only

One  to  one  correspondence  between  pdf &  CF

𝜙" θ = 𝐸 𝑒+["

= 2 𝑒+[\𝑓 𝑥 𝑑𝑥;

<;

𝑖 = −1where

f(x)  =  pdf of  x

𝑓 𝑥 =12𝜋2 𝜙(θ)𝑒<+[\𝑑θ

;

<;

Page 26: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

CF  and  MomentsDifferentiate  CF  k  times

Copyright  by  Chanan Singh  For  educational  purpose  only

𝜙(V) θ =𝑑V𝜙(θ)𝑑θV = 𝑖V 2 𝑥V𝑒+[\𝑓 𝑥 𝑑𝑥

;

<;As  θ → 0

𝜙(V) 0 = 𝑖V 2 𝑥V𝑓 𝑥 𝑑𝑥;

<;= 𝑖V𝑚V

or𝑚V = 𝑖<V𝜙(V) 0

Page 27: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

CF  of  Sum  of  Random  Variables

Copyright  by  Chanan Singh  For  educational  purpose  only

𝑌 = 𝑋& + 𝑋( +⋯+ 𝑋C

Where  𝑋+ are  independent

𝜙  T θ = 𝐸 𝑒+[T

= 𝐸 𝑒+_ "`:"a:⋯:"b

= 𝐸 𝑒+["` 𝐸 𝑒+["a …𝐸 𝑒+["b

= 𝜙"`(θ)𝜙"a(θ)…𝜙"b(θ)

Page 28: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

Moment  Generating  Function

Copyright  by  Chanan Singh  For  educational  purpose  only

For  real  numbers

Ψ θ = 𝐸 𝑒["

= 2 𝑒[\𝑓 𝑥 𝑑𝑥;

<;

=>𝑒[\c  𝑝(𝑥+)+

for  crv

for  drv

Here𝑚V = 𝛹 V (0)

Page 29: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

Moment  Generating  FunctionAbout  mean  m  (or  any  point)

Copyright  by  Chanan Singh  For  educational  purpose  only

Ψe θ = 𝐸 𝑒("<e)[

= 𝑒<e[𝛹(θ)

The  kth moment  about  mean

𝑀V = 𝛹e(V)  (0)

Page 30: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

Laplace  transform(If  X  is  non-­negative)

Copyright  by  Chanan Singh  For  educational  purpose  only

Compare  with  moment  generating  function

𝐿 𝑔 𝑡 = �̅� 𝑠 = 2 𝑔(𝑡)𝑒<jk𝑑𝑡;

l

θ = −𝑠𝑓̅ 𝑠 = 𝐸 𝑒<j"

= 𝐸[>(−1)V𝑠V𝑋V

𝑘!

;

VMl

]

= >(−1)V𝑠V

𝑘!𝑚V

;

VMl

Page 31: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

Some  Special  DistributionsExponential  Distribution

Copyright  by  Chanan Singh  For  educational  purpose  only

A  non-­negative  rv is  said  to  have  negative  exponential  distribution  if  probability  density  function  is

𝑓 𝑥 = ρ𝑒<r\

ρ is  a  positive  constant

𝐹 𝑥 = 2 ρ𝑒<rt𝑑𝑢 = 1 − 𝑒<r\\

l

𝑆 𝑥 = 1 − 𝐹 𝑥 = 𝑒<r\

Page 32: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

Some  Special  DistributionsExponential  Distribution

Copyright  by  Chanan Singh  For  educational  purpose  only

𝜙 𝑥 =𝑓(𝑥)𝑆(𝑥)

= ρ

𝑀𝑒𝑎𝑛 =  1ρ

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =1ρ(

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑  𝑑𝑒𝑣 =   𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =1ρ

Page 33: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

Distribution  of  Residual  Life  Time

Copyright  by  Chanan Singh  For  educational  purpose  only

t X𝑌 = 𝑋 − 𝑡

𝐹T 𝑥 = 𝑃 𝑋 − 𝑡 ≤ 𝑥    𝑋 > 𝑡]

= 𝑃 𝑋 ≤ 𝑥 + 𝑡    𝑋 > 𝑡]

= 𝑃 𝑡 < 𝑋 ≤ 𝑥 + 𝑡 /𝑃[  𝑋 > 𝑡]

=∫ ρ𝑒<rt𝑑𝑢\:kk

𝑒<rk= 1 − 𝑒<r\

= 𝐹"(𝑥)

Page 34: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

Poisson  Distribution

Copyright  by  Chanan Singh  For  educational  purpose  only

If  the  number  of  events  is  given  by  Poisson  distribution,  in  time  t

𝑝V 𝑡 = 𝑃(𝑁𝑜  𝑜𝑓  𝑒𝑣𝑒𝑛𝑡𝑠 = 𝑘)

=𝜆𝑡 V𝑒<}k

𝑘!

So  probability  of  no  failures  during  (0,t)

1 − 𝐹 𝑡 = 𝑒<}k

This  is  exponential  distribution

Page 35: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

A  Two-­State  Component

Copyright  by  Chanan Singh  For  educational  purpose  only

l Consider  a  two-­state  component

l λ(x)  is  a  hazard  function  of  the  up  time,  called  failure  rate.

l μ(x)  is  a  hazard  function  of  the  down  time,  called  repair  rate.

l Generally,  hazard  function  is  called   ‘transition  rate’  in  reliability  work.

UP DOWNλ(x)

μ(x)

Page 36: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

A  Bath  Tub  Curve

Copyright  by  Chanan Singh  For  educational  purpose  only

l Typical  hazard  function  of  a  component.

l It  is  fairly  common  to  assume  constant  transition  rates  in  reliability  modeling.

Burn-­in  period Wear-­out  periodUseful  life

( )xXφ

Page 37: Module’2)2 Review’of’Probability’ Theory’ece.tamu.edu/~c-singh/coursenotes/module_2-2.pdfTitle Module_2-2 Review of Probability Theory II Created Date 11/11/2015 6:10:52

Exponential  Distribution  Function

Copyright  by  Chanan Singh  For  educational  purpose  only

l Non-­negative  continuous  random  variablel Commonly  used  to  represent  up  time  of  a  component  

l If  we  assume  up  time  and  repair  time  of  a  component  are  exponentially  distributed,  the  failure  rate  and  repair  rate  are  constant.

( ) 0, ≥= − xexf xX

λλ( ) , 0x

XS x e xλ−= ≥

( ) 0, ≥= xxX λφ