MIMO Fundamentals and Signal Processing Course

118
MIMO Fundamentals and Signal Processing Course Erik G. Larsson Link¨oping University (LiU), Sweden Dept. of Electrical Engineering (ISY) Division of Communication Systems www.commsys.isy.liu.se slides version: September 25, 2009

Transcript of MIMO Fundamentals and Signal Processing Course

Page 1: MIMO Fundamentals and Signal Processing Course

MIMO Fundamentals and Signal Processing Course

Erik G. LarssonLinkoping University (LiU), SwedenDept. of Electrical Engineering (ISY)Division of Communication Systemswww.commsys.isy.liu.se

slides version: September 25, 2009

Page 2: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Objectives and Intended Audience

➮ This short course will give an introduction to the basic principles andsignal processing for MIMO wireless links.

➮ Intended audience are graduate students and industry researchers

➮ Prerequisites:General mathematical maturity.Solid knowledge of linear algebra and probability theory.Good understanding of digital and wireless communications.Some basic coding/information theory.

1

Page 3: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Organization

➮ 4 lectures:Le 1: MIMO fundamentalsLe 2: Low-complexity MIMOLe 3: MIMO receiversLe 4: MIMO in 3G-LTE (by P. Frenger, Ericsson Research)

➮ Reading, in addition to course notes:

➠ Le 1: D. Tse & P. Viswanath, Fundamentals of WirelessCommunications, Cambridge Univ. Press 2005, Chs. 7–8

➠ Le 2: E. G. Larsson & P. Stoica, Space-time block coding for wirelesscommunications, Cambridge Univ. Press 2003, Chs. 2, 4–8

➠ Le 3: E. G. Larsson, ”MIMO detection methods: How they work”,IEEE SP Magazine, pp. 91–95, May 2009

➮ Examination (for Ph.D. students): TBD2

Page 4: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Le 1: MIMO fundamentals

3

Page 5: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Basic channel model

➮ Flat fading; linear, time-invariant channel

TX RX

11

nrnt

➮ Complex data {x1, . . . , xnt} are transmitted via the nt antennas

➮ Received data: ym =

nt∑

n=1

hm,nxn + em

4

Page 6: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Basic MIMO Input-Output Relation

➮ Transmission model (single time interval):

y1...

ynr

︸ ︷︷ ︸y (RX data)

=

h1,1 · · · h1,nt... ...

hnr,1 · · · hnr,nt

︸ ︷︷ ︸H (channel)

x1...

xnt

︸ ︷︷ ︸x (TX data)

+

e1...

enr

︸ ︷︷ ︸e (noise)

➮ Transmission model (N time intervals):

[y1,1 · · · y1,N

......

ynr,1 · · · ynr,N

]

︸ ︷︷ ︸Y

=

[h1,1 · · · h1,nt

......

hnr,1 · · · hnr,nt

]

︸ ︷︷ ︸H

[x1,1 · · · x1,N

......

xnt,1· · · xnt,N

]

︸ ︷︷ ︸X∈X

“code matrix”

+

[e1,1 · · · e1,N

......

enr,1 · · · enr,N

]

︸ ︷︷ ︸E

➮ AWGN: ek,l ∼ N(0, N0), i.i.d.

5

Page 7: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

MIMO Design Space

➮ Fast fading: codeword spans ∞ number of channel realizationsChannel can be time- or frequency-variant (e.g., MIMO-OFDM), or both

➮ Slow fading: codeword spans one channel realization

➮ For point-to-point MIMO, four basic cases (reality inbetween)

Fast fading Slow fadingChannel V-BLAST optimal V-BLAST suboptimalunknown at TX no coding across antennas coding across antennas

D-BLAST optimalChannel waterfilling waterfillingknown at TX over space& time over space

6

Page 8: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Slow fading, full CSI at TX

➮ Deterministic channel, known at TX and RX

y = Hx + e H ∈ Cnr×nt

➮ Power constraint: E[||x||2] ≤ P

➮ e is white noise, N(0, N0I)

➮ SVD: H = UΛV H, UHU = I, V HV = I

➮ Dimensions: U ∈ Cnr×nr, Λ ∈ R

nr×nt, V ∈ Cnt×nt

7

Page 9: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

➮ Introduce transform: y = UΛV H︸ ︷︷ ︸

H

x + e

y , UHy = ΛV Hx︸ ︷︷ ︸

,x

+UHe︸ ︷︷ ︸e

➮ e is white noise, N(0, N0I)

➮ x is precoded TX data. Note: E[||x||2] = E[||x||2]

➮ Equivalent model with parallel channels: (n = rank(H))

y1 = λ1x1 + e1

...

yn = λnxn + en

8

Page 10: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

➮ No gain by coding across streams ➠ xk independent

➮ Operational meaning is multistream beamforming:

x = V x =

n∑

k=1

xkvk

➠ n indep. streams {xk} are transmitted over orthogonal beams {vk}➠ We’ll assume that each stream xk has power Pk

➠ In the special case of n = 1 (rank one channel), then we have MRT:

H = λuvH ⇒ x = xv

9

Page 11: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Architecture

x1

x2

xnt

x1

x2

xn

e1

enr

y1

y2

ynr

y1

y2

yn

HV :,1:n UH:,1:n

➮ xk are independent streams with powers Pk and rates Rk

10

Page 12: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Optimal power allocation over n subchannels

➮ Each subchannel can offer the rate

Ck = log2

(

1 +Pk

N0λ2

k

)

(bits/cu)

➮ The power constraint is

E[||x||2] = E[||x||2] =

n∑

k=1

Pk ≤ P

➮ Optimal power allocation P ∗1 , ..., P ∗

n

maxPk,Pn

k=1 Pk≤P

n∑

k=1

Ck ⇔ maxPk,Pn

k=1 Pk≤P

n∑

k=1

log2

(

1 +Pk

N0λ2

k

)

11

Page 13: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Waterfilling solution

➮ Problem: maxPk,Pn

k=1 Pk≤P

n∑

k=1

log2

(

1 +Pk

N0λ2

k

)

➮ Solution: (need solve for µ)

C =

n∑

k=1

log2

(

1 +P ∗

k λ2k

N0

)

P ∗k =

(

µ − N0

λ2k

)+

,

n∑

k=1

P ∗k = P

➮ Special case: H = λuvH. Transmit one stream

C = log2

(

1 +P

N0λ2

)

= log2

(

1 +P

N0‖H‖2

)

12

Page 14: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Waterfilling solution

1 2 3... n k

N0

λ2k

µ

P∗ 1

=0

P∗ 2

P∗ 3

=0

P∗ 4

P∗ 5

=0

13

Page 15: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Waterfilling at high SNR

➮ At high SNR, the water is deep, so P ∗k ≈ P

n and

C =

n∑

k=1

Ck ≈n∑

k=1

log2

(

1 +P

N0

λ2k

n

)

≈ n · log2

(P

N0

)

+

n∑

k=1

log2

(λ2

k

n

)

➮ With SNR , P/N0, we have C ∼ n log2(SNR). We say that

The channel offers n = rank(H) degrees of freedom (DoF)

➮ Best capacity for well conditioned H (all λk’s equal)

➮ Transmit n equipowered data streams spread on orthogonal beams

➮ Channel knowledge ∼unimportant

➮ No coding across streams14

Page 16: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Waterfilling at high SNR

������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������������������������������������������������������������������������

����������������������������������������������������������������

��������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�����������������������������������������������������������������

�����������������������������������������������������������������

1 2 3... n k

N0

λ2k

P ∗k ≈ P

n

15

Page 17: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Waterfilling at low SNR

➮ At low SNR, the water is shallow. Then

P ∗k =

{

P, k = argmax λ2k

0, else

C = log2

(

1 +P

N0λ2

max

)

≈(

P

N0λ2

max

)

· log2(e)

➮ MIMO provides an array gain (power gain of λ2max) but no DoF gains.

➮ Channel rank does not matter, only power matters.

➮ Transmit one beam in the direction associated with largest λk

➮ Knowing H is very important! (to select what beam to use)

16

Page 18: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Waterfilling at low SNR

1 2 3... n k

N0

λ2k

µ

P∗ 4

=P

17

Page 19: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

In practice

➮ Feedback of channel state information, requires quantization

➮ Potentially, by scheduling only “good” users, one may always operate athigh SNR

➮ Selection of modulation scheme

— e.g., M -QAM per subchannel, different M

— better channel, larger constellation

— should be done with outer code in mind

➮ Imperfect CSI ➠ cross-talk!

18

Page 20: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

MIMO channel models

➮ MIMO channel modeling is a rich research field, with both empirical(measurement) work and theoretical models.

➮ We will explore the main underlying physical phenomena of MIMOpropagation and how they connect to the DoF concept.

19

Page 21: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Line-of-sight SIMO channel

➮ Consider m-ULA at TX and RX, wavelength λ = c/fc, ant. spacing ∆

TX

RX array

φ

➮ Let u(φ) ,

1

e−j2πλ ∆ cos φ

...

e−j(m−1)2πλ ∆ cos φ

➮ Signal from point source impinging on RX array (large TX-RX distance):y = αu(φ) · s + e, (α ∈ C, dep. on distance) 20

Page 22: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Line-of-sight MIMO channel

TX array

RX arrayφr

φt

➮ MIMO channel: y = α · u(φr)︸ ︷︷ ︸nr×1

·H

u(φt)︸ ︷︷ ︸nt×1

︸ ︷︷ ︸H

·x + e, n = rank(H) = 1

➮ The LoS-MIMO channel has rank one, so no DoF gain! 21

Page 23: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Lobes and resolvability

➮ Consider unit-power point sources at φ1, φ2 with sign. u(φ1), u(φ2).How similar do these signatures look?

1

m‖s1u(φ1) − s2u(φ2)‖2

= 2 − 2Re

s∗1s2 ·1

muH(φ1)u(φ2)

︸ ︷︷ ︸

|·|=f(·)

where the lobe pattern f(cos(φ1) − cos(φ2)) , 1m|uH(φ1)u(φ2)|.

➮ If f(·) < 1, then φ1, φ2 resolvable.

➮ Resolvability criterion: | cos φ1 − cos φ2| ≥ 2πA , A , (m − 1)∆

➮ Grating lobes avoided if ∆ ≤ λ

2⇒ A ≤ (m − 1)

λ

2.

22

Page 24: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Two separated point sources and an m-receive-array

TX1

TX2

RX array

φ1

φ2

➮ Define H = [h1 h2], hi = αiu(φi)

➮ Condition number κ(H) =λmax(H)

λmin(H)=

1 + f(cos(φ1) − cos(φ2))

1 − f(cos(φ1) − cos(φ2))

➮ κ(H) is small if f(· · · ) 6= 1 ⇔ φ1, φ2 resolvable ⇔ | cos φ1−cos φ2| > 2πA23

Page 25: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

MIMO with two plane scatters

TX array

RX array

A

B

➮ Here, HTX-RX = HAB-RX · HTX-AB

➮ We have rank(HTX-RX) = 2only if rank(HAB-RX) = 2 and rank(HTX-AB) = 2

➮ For H to offer 2 DoF, A and B must be sufficiently separated in angle,as seen both from TX and RX

24

Page 26: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Angular decomposition of MIMO channel

➮ For φ1, φ2, ..., φm define

U ,1√m

[u(φ1) · · · u(φm)]

➮ Can show: With cos(φk) = k/m, {u(φk)} forms ON-basis.Then UHU = I.

➮ Let U r and U t be the U matrices associated with the TX and RXarrays. Note that UH

r U r = I and UHt U t = I

➮ If ∆ = λ/2, then u(φi) correspond to simple, perfectly resolvable beams,with a single mainlobe.

➮ We assume ∆ = λ/2 from now on.The case of ∆ 6= λ/2 is more involved. 25

Page 27: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Angular decomposition, cont.

1

2

3

4

5

1

2

3

4

5

TX

RX

26

Page 28: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Angular decomposition, cont.

➮ Now defineHa , UH

r HU t

⇒ Ha,(k,l) = uH(φrk)Hu(φt

l)

uH(φrk)

[∑

i

αiu(φ′ri )uH(φ′t

i )

]

︸ ︷︷ ︸

physical model

u(φtl)

=∑

i

αi

uH(φr

k)u(φ′ri )

︸ ︷︷ ︸

=0 unless φ′ri falls in lobe φr

k

·

uH(φ′ti )u(φt

l)︸ ︷︷ ︸

=0 unless φ′ti falls in lobe φt

l

➮ Elements of Ha correspond to different propagation paths

➮ Ha,(k,l)=gain of ray going out in TX lobe l and arriving in RX lobe k27

Page 29: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Angular decomposition, key points

➮ “Rich scattering” if all angular bins filled (Ha has “no zeros”)

➮ “Diversity order”= measure of error resilience= number of propagation paths= number of nonzero elements in Ha

➮ Number of DoF= rank(H)= rank(Ha)

➮ If Ha,(k,l) are i.i.d. then Hk,l are i.i.d.

➮ With i.i.d. Ha and many terms in∑

, then we get i.i.d. Rayleigh fading.

28

Page 30: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Fast fading, no CSI at TX

➮ Each codeword spans ∞ number of H

➮ The V-BLAST architecture is optimal hereNote: Reminiscent of architecture for slow fading and full CSI@TX

➮ Transmit vectorsx = Qx

where x1, ..., xn are independent streams with powers Pk and rates Rk

29

Page 31: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

V-BLAST architecture

x1

x2

xnt

x1

x2

xn

e1

enr

y1

y2

ynr

HQ optimalreceiver

30

Page 32: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

➮ Transmit covariance: Kx , cov(x) = Q

P1 0 · · · 00 P2

. . . ...... . . . . . . 00 · · · 0 Pn

QH

➮ Achievable rate, for fixed H:

R = log2

∣∣∣∣I +

1

N0HKxHH

∣∣∣∣

➮ Intuition: Volume of noise ball is |N0I|N .Volume of signal ball is |HKxHH + NoI|N .

31

Page 33: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

➮ Fast fading, coding over ∞ number of H matrices gives ergodic capacity

C = E

[

log2

∣∣∣∣I +

1

N0HKxHH

∣∣∣∣

]

➮ Choose Q and Pk to

maxKx,Tr(Kx)≤P

E

[

log2

∣∣∣∣I +

1

N0HKxHH

∣∣∣∣

]

➮ Optimal Kx depends on the statistics of H

32

Page 34: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

➮ In i.i.d. Rayleigh fading, K∗x = P

ntI (i.i.d. streams) and

C = E

[

log2

∣∣∣∣I +

P

N0

1

ntHHH

∣∣∣∣

]

=n∑

k=1

E

[

log2

(

1 +SNR

ntλ2

k

)]

wheren = rank(H) = min(nr, nt)

SNR ,P

N0

{λk} are the singular values of H

➠ Antennas then transmit separate streams.

➠ Coding across antennas is unimportant.

33

Page 35: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Some special cases

➮ SISO: nt = nr = 1

C = E[log2(1 + SNR|h|2)

]

At high SNR, the loss is -0.83 bpcu relative to AWGN channel

➮ SIMO: nt = 1 (power gain relative to SISO)

C = E

[

log2

(

1 + SNR

nr∑

k=1

|hk|2)]

➮ MISO: nr = 1 (no power gain relative to SISO)

C = E

[

log2

(

1 +SNR

nt

nt∑

k=1

|hk|2)]

34

Page 36: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Large arrays (infinite apertures)

➮ Large MISO (nt TX, 1 RX) becomes AWGN channel:

C = E

[

log2

(

1 +SNR

nt

nt∑

k=1

|hk|2)]

→ log2(1 + SNR)

➮ Large SIMO (1 TX, nr RX)

C = E

[

log2

(

1 + SNR

nr∑

k=1

|hk|2)]

≈ log2(nrSNR) = log2(nr)+log2(SNR)

➮ Large square MIMO (nt TX, nr RX, nr = nt = n): Linear incr. with n:

C ≈ n ·(

1

π

∫ 4

0

(

log2(1 + t · SNR)

1

t− 1

4

)

dt

)

35

Page 37: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Fast fading, no CSI at TX, high SNR

➮ Here

C =

n∑

k=1

E

[

log2

(

1 +SNR

ntλ2

k

)]

≈ n log2(SNR) + const

➮ Both nr and nt must be large to provide DoF gain

➮ “Capacity grows as min(nr, nt)”

36

Page 38: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Fast fading, no CSI at TX, low SNR

➮ Here

C =

n∑

k=1

E

[

log2

(

1 +SNR

ntλ2

k

)]

≈ log2(e) ·SNR

nt·

n∑

k=1

E[λ2k]

= log2(e) ·SNR

nt· E[||H||2︸ ︷︷ ︸

=nrnt

] = log2(e) · nr · SNR

➮ Capacity independent of nt!

➮ No DoF gain. All what matters here is power

➮ Relative to SISO, a power gain of nr (array/beamforming gain)

➮ Multiple TX antennas do not help here

(but with CSI at TX, things are very different)37

Page 39: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

V-BLAST in practice

➮ Transmitter architecture “simple” but the receiver must separate thestreams ➠ major challenge

➮ Problems are conceptually similar to uplink MUD in CDMA and toequalization for ISI channels

➮ Stream-by-stream receivers: Successive-interference-cancellation

➠ MMSE-SIC is theoretically optimal but suffers from error propagation

➠ Rate allocation necessary

➮ Iterative architectures

➠ Iteration between outer code and demodulator

➠ Demodulator design is major problem

➮ Receivers for MIMO to be discussed more in lecture 338

Page 40: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Fast fading, full CSI at TX

➮ The transmitter can do waterfilling over both space and time

➮ Parallel channels: yk[m] = λk[m]xk[m] + ek[m]

➠ Waterfilling over space (k) and time (m).

➠ Optimal powers P ∗k [m]

➠ Capacity

C =

n∑

k=1

E

[

log2

(

1 +P ∗(λk)λ

2k

N0

)]

39

Page 41: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

➮ High SNR: P ∗(λk) ≈ Pn (equal power)

C ≈n∑

k=1

E

[

log2

(

1 +SNR

nλ2

k

)]

, n D.o.F.

An SNR gain (compared to no CSI) of

nt

n=

nt

min(nt, nr)=

nt

nr, if nt ≥ nr

➮ Low SNR: Even larger gain, so here multiple antennas do help!

40

Page 42: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Slow fading, no CSI at TX

➮ Reliable communication for fixed H if log2

∣∣∣I + 1

N0HKxHH

∣∣∣ > R

➮ Outage probability, for fixed R: Pout = P[

log2

∣∣∣I + 1

N0HKxHH

∣∣∣ < R

]

➮ Optimal Kx as function of H’s statistics:

K∗x = argmin

Kx,Tr Kx≤PP

[

log2

∣∣∣∣I +

1

N0HKxHH

∣∣∣∣< R

]

For H i.i.d. Rayleigh fading:

➠ K∗x = P

ntI optimal at large SNR

➠ K∗x = P

n′ diag{1, ..., 1, 0, ..., 0} at low SNR (n′ < nt)41

Page 43: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

➮ Notion of diversity: Pout behaves as SNR−d where d=diversity order

➮ Maximal diversity: d = nrnt

➮ To achieve diversity, we need coding across streams

➮ V-BLAST does not work here.Each stream has diversity at most nr, while the channel offers nrnt

➮ Architectures for slow fading:

➠ Theoretically, D-BLAST is optimal

➠ Pragmatic approaches include STBC combined with FEC

42

Page 44: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Example: Outage probability at rate R = 2 bpcu

−5 0 5 10 15 20 25 30 35 4010

−4

10−3

10−2

10−1

SNR

FE

R

nt=1, n

r=1 (SISO)

nt=2, n

r=1

nt=1, n

r=2

nt=2, n

r=2

43

Page 45: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

D-BLAST architecturereplacements

xA(1)

xB(1)

xA(2)

xB(2)

xA(3)

➮ Decoding in steps:1. Decode xA(1)2. Decode xB(1), suppressing xA(2) via MMSE3. Strip off xB(1), and decode xA(2)4. Decode xB(2), suppressing xA(3) via MMSE

➮ One codeword: x(i) = [xA(i) xB(i)]

➮ Requires appropriate rate allocation among xA(i),xB(i)

➮ In practice, error propagation and rate loss due to initialization

44

Page 46: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Le 2: Low-complexity MIMO

45

Page 47: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Antenna diversity basics

➮ Recall transmission model (single time interval):

y1...

ynr

︸ ︷︷ ︸y (RX data)

=

h1,1 · · · h1,nt... ...

hnr,1 · · · hnr,nt

︸ ︷︷ ︸H (channel)

x1...

xnt

︸ ︷︷ ︸x (TX data)

+

e1...

enr

︸ ︷︷ ︸e (noise)

➮ Transmission model (N time intervals):

[y1,1 · · · y1,N

......

ynr,1 · · · ynr,N

]

︸ ︷︷ ︸Y

=

[h1,1 · · · h1,nt

......

hnr,1 · · · hnr,nt

]

︸ ︷︷ ︸H

[x1,1 · · · x1,N

......

xnt,1· · · xnt,N

]

︸ ︷︷ ︸X∈X

“code matrix”

+

[e1,1 · · · e1,N

......

enr,1 · · · enr,N

]

︸ ︷︷ ︸E

46

Page 48: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Introduction and preliminaries

➮ Transmitting with low error probability at fixed rate requires N large.

➮ For practical systems, it is often of interest to design short space-timeblocks (small N) with good error probability performance. Outer FECcan then be used over these blocks.

➮ Throughout, we will assume Gaussian noise,

e ∼ N(0, N0I)

Usually, we assume i.i.d. Rayleigh fading,

Hi,j i.i.d. N(0, 1)

Sometimes, for SIMO/MISO, we take

h ∼ N(0, Q) 47

Page 49: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Receive diversity (nt = 1)

➮ Suppose s transmitted, and h known at RX.

➮ Receive: y = hs + e

➮ Detection of s via maximum-likelihood (in AWGN):

‖y − hs‖2 = ... = ‖h‖2 ·∣∣∣s − s

∣∣∣

2

+ const., where s ,hHy

‖h‖2

➮ MRC+scalar detection problem!

➮ Distribution of s determines performance:

s ,hHy

‖h‖2∼ N

(

s,N0

‖h‖2

)

, SNR|h =‖h‖2

N0· E[|s|2]

︸ ︷︷ ︸=P

= ‖h‖2 · P

N0︸︷︷︸

SNR48

Page 50: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Diversity order (n × 1 fading vector h)

➮ P (e|h) = Q

(√

SNR · ‖h‖2

)

and h ∼ N(0,Q) (SNR up to a constant)

➮ Then P (e) = E[P (e|h)] ≤∣∣∣∣I +

SNR

2Q

∣∣∣∣

−1

=

n∏

k=1

(

1 +SNR

2λk(Q)

)−1

➮ As SNR → ∞, P (e) ≤(

SNR

2

)− rank(Q)

· 1∏rank(Q)

k=1 λk(Q)

➮ Diversity order d , −log P (e)

log SNR= rank(Q)

➮ Note that

(n∏

k=1

λk

)1/n

≤ 1

n

n∑

k=1

λk =1

nTr{Q} =

1

nE[‖h‖2

]

with eq. if λ1 = · · · = λn so Q ∝ I minimizes the bound on P (e) 49

Page 51: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Diversity order

10−1

10−2

10−3

10−4

10−5

0 10 20 30 40 50

d = 1

d = 2

d = 3

P (e)

SNR 50

Page 52: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Transmit diversity, H known at transmitter

➮ Try transmit w · s where w is function of H! (as we did in Le 1)

➮ RX data is y = Hws+e and optimal decision minimizes the ML metric:

‖y − Hws‖2 = ... = ‖Hw‖2 · |s − s|2 + const.

where s ,wHHHy

‖Hw‖2∼ N

(

s,N0

‖Hw‖2

)

➮ The SNR|H in s is max for w=normalized dominant RSV of H

➮ Resulting SNR|H = 1N0

λmax(HHH)

︸ ︷︷ ︸

≥‖H‖2/nt

·E[|s|2]≥ 1

N0

‖H‖2

nt· E[|s|2].

➮ Diversity order: d = nrnt

➮ For nr = 1 take wopt = h∗‖h‖ so SNR|h = ‖h‖2

N0E[|s|2]

(same as for RX-d)51

Page 53: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Transmit diversity, H unknown at transmitter

➮ From now on, TX does not know H!

➮ Consider Y = HX + E. Optimal receiver in AWGN (H known at RX):

maxX

P (X|Y ,H) ⇔ minX

‖Y − HX‖2

➮ Pairwise error probability P (X0 → X|H) = Q

(√‖H(X0−X)‖2

2N0

)

➮ Consider P (X0 → X) = E[P (X0 → X|H)]. For i.i.d. Rayleigh fading,

P (X0 → X) ≤∣∣∣I +

1

4N0(X0 − X)(X0 − X)H

∣∣∣

−nr

︸ ︷︷ ︸

∼“

1N0

”−d∼SNR−d

d=“diversity order”. Note: d ≤ nrnt and d = nrnt if X0 − X full rank52

Page 54: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Linear space-time block codes (STBC)

➮ STBC maps ns complex symbols onto nt × N matrix X:

{s1, . . . , sns} → X

➮ Linear STBC:

X =

ns∑

n=1

(snAn + isnBn)

where {An, Bn} are fixed matrices

➮ Typically N small. Need N ≥ nt for max diversity (why?)

➮ Rate: R ,N

nsbits/channel use

53

Page 55: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

STBC with a single symbol

➮ Transmit one symbol s during N time intervals, weighted by W :

X = W · s, Y = HX + E = HW s + E

➮ Average error probability in Rayleigh fading:

P (s0 → s) ≤ |WW H|−nr|s − s0|−2nrnt

( 1

4N0

)−nrnt

➮ What is the optimum W ? Try to maximize:

maxW

|WW H|

s.t. Tr{WW H

}= ‖W ‖2 ≤ 1 (power constraint)

➮ Solution: WW H = 1nt

I, (antenna cycling). Diversity but rate 1/N ! 54

Page 56: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Alamouti scheme for nt = 2

➮ X = 1√2

[s1 s∗2s2 −s∗1

]

. That is:

Time 1 Time 2

Ant 1 s1/√

2 s∗2/√

2

Ant 2 s2

√2 −s∗1/

√2

➮ RX data:

[y1

y2

]

= 1√2

[h1s1 + h2s2

h1s∗2 − h2s

∗1

]

+

[e1

e2

]

➮ Consider

[y1

y∗2

]

= 1√2

[h1s1 + h2s2

h∗1s2 − h∗

2s1

]

+

[e1

e∗2

]

= 1√2

[h1 h2

−h∗2 h∗

1

] [s1

s2

]

+

[e1

e∗2

]

➮ ML detector

mins1,s2

∥∥∥∥∥∥∥∥∥

[y1

y∗2

]

︸ ︷︷ ︸y

− 1√2

[h1 h2

−h∗2 h∗

1

]

︸ ︷︷ ︸

,G

[s1

s2

]

︸︷︷︸s

∥∥∥∥∥∥∥∥∥

2

55

Page 57: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

➮ Observation: GHG = 12

[hH

1 −hT2

hH2 hT

1

] [h1 h2

−h∗2 h∗

1

]

= ‖h1‖2+‖h2‖2

2 I

➮ Hence min ‖y − Gs‖2 ⇔ min ‖s − s‖2, s = 2

GHy

‖h1‖2+ ‖h2‖2

➮ Distribution of s:

s = 2GHy

‖h1‖2+ ‖h2‖2 = 2

GH(Gs + e)

‖h1‖2+ ‖h2‖2 ∼ N

(

s,2N0

‖H‖2I

)

➮ SNR|H =‖H‖2

2N0. For 2 × 1 system, 3 dB less than 1 × 2 with MRC

➮ Diversity order: 2nr

56

Page 58: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Overview of 2-antenna systems

Method SNR rate TX knows h1, h2

1 TX, 2 RX, MRC|h1|2 + |h2|2

N01 no

2 TX, 1 RX, BF|h1|2 + |h2|2

N01 yes

2 TX, 1 RX, ant. cycl.|h1|2 + |h2|2

2N01/2 no

2 TX, 1 RX, Alamouti|h1|2 + |h2|2

2N01 no

2 TX, 1 RX, Ant. sel. ≥ |h1|2 + |h2|22N0

1 partly

➮ For antenna selection, note that

max |hn|2N0

≥ 1

2

|h1|2 + |h2|2N0

57

Page 59: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

2-antenna systems, cont

10−1

10−2

10−3

10−4

10−5

0 10 20 30 40 50

1 RX, 1 TX

2 RX, 1 TX, MRC

or 1 TX, 2 RX, BF

1 RX, 2 TX, antenna selection

1 RX, 2 TX, Alamouti

P (e)

SNR58

Page 60: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Orthogonal STBC (OSTBC)

➮ Important special case of linear STBC:

X =

ns∑

n=1

(snAn+isnBn) for which XXH =

ns∑

n=1

|sn|2 · I = ‖s‖2 · I

Notation: (·)=real part, (·)=imaginary part

➮ This is equivalent to requiring for n = 1, . . . , ns, p = 1, . . . , ns

AnAHn = I,BnBH

n = I

AnAHp = −ApA

Hn , BnBH

p = −BpBHn , n 6= p

AnBHp = BpA

Hn

59

Page 61: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Proof

➮ To prove ⇒), expand:

XXH =

ns∑

n=1

ns∑

p=1

(snAn + isnBn)(spAp + ispBp)H

=

ns∑

n=1

(s2nAnAH

n + s2nBnBH

n )

+

ns∑

n=1

ns∑

p=1,p>n

(

snsp(AnAHp + ApA

Hn ) + snsp(BnBH

p + BpBHn ))

+ i

ns∑

n=1

ns∑

p=1

snsp(BnAHp − ApB

Hn )

➮ Proof of ⇐), see e.g., EL&PS book.60

Page 62: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Some properties of OSTBC

➮ Manifests the intuition that unitary matrices are good

➮ Alamouti code is an OSTBC (up to 1/√

2 normalization)

➮ Pros

➠ Diversity of order nrnt

➠ Detection of {sn} is decoupled

➠ Converts space-time channel into ns AWGN channels

➠ Combination with outer coding is straightforward

➮ Cons

➠ Rate loss for nt > 2, i.e., nt > 2 ⇒ R =ns

N< 1

➠ Information loss except for when nt = 2, nr = 161

Page 63: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Diversity order of OSTBC

➮ Suppose {s0n}ns

n=1 are true symbols and {sn} are any other symbols.Then

X − X0 =

ns∑

n=1

(

(sn − s0n)An + i(sn − s0

n)Bn

)

⇒ (X − X0)(X − X0)H =

ns∑

n=1

|sn − s0n|2 · I

➮ Full rank ➠ full diversity for i.i.d. Gaussian channel

62

Page 64: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Derivation of decoupled detection

➮ Write the ML metric as

‖Y − HX‖2

=‖Y ‖2 − 2ReTr{Y HHX

}+ ‖HX‖2

=‖Y ‖2 − 2

ns∑

n=1

ReTr{Y HHAn

}sn + 2

ns∑

n=1

Im Tr{Y HHBn

}sn

+ ‖H‖2 · ‖s‖2

=

ns∑

n=1

(

− 2ReTr{Y HHAn

}sn + 2 Im Tr

{Y HHBn

}sn + |sn|2‖H‖2

)

+ const.

=‖H‖2 ·ns∑

n=1

∣∣∣∣∣sn − ReTr

{Y HHAn

}− i Im Tr

{Y HHBn

}

‖H‖2

∣∣∣∣∣

2

+ const.63

Page 65: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Decoupled detection, again

➮ Linearity: Y = HX + E ⇔ y = Fs′ + e, s′ , [sT sT ]T

➮ Theorem: X is an OSTBC if and only if

Re{F HF

}= ‖H‖2 · I ∀ H

➮ ML metric:

‖y − Fs′‖2 = ‖y‖2 − 2Re{yHFs′}+ Re

{s′TF HFs′}

= ‖y‖2 − 2Re{yHFs′}+ ‖H‖2 · ‖s′‖2

= ‖H‖2 · ‖s′ − s′‖2 + const.

where s′,

[ˆsˆs

]

=Re{F Hy

}

‖H‖2∼ N

([ss

]

,N0/2

‖H‖2I

)

➮ F is a “Spatial/temporal (code) matched filter”64

Page 66: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Interpretation of decoupled detection

➮ Space-time channel decouples into ns AWGN channels

(a) nt × nr space-time channel

signal 2

signal 1

AWGN

AWGN

AWGN

signal ns

(b) ns independent AWGN channels

➮ SNR per subchannel: SNR|H =N

ns· ‖H‖2

nt· P

N065

Page 67: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Example: Alamouti’s code is an OSTBC

➮ Consider the Alamouti code (re-normalized):

X =

[s1 s∗2s2 −s∗1

]

, XXH = (|s1|2 + |s2|2)I

➮ Identification of An and Bn gives

A1 =

[1 00 −1

]

A2 =

[0 11 0

]

B1 =

[1 00 1

]

B2 =

[0 −11 0

]

66

Page 68: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Examples of OSTBC

➮ Best known OSTBC for nt = 3, N = 4, ns = 3:

X =

s1 0 s2 −s3

0 s1 s∗3 s∗2−s∗2 −s3 s∗1 0

Code rate: 3/4 bpcu

➮ For nt = 4, N = 4, ns = 3:

X =

s1 0 s2 −s3

0 s1 s∗3 s∗2−s∗2 −s3 s∗1 0s∗3 −s2 0 s∗1

Rate is 3/4 bpcu.67

Page 69: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Summary of OSTBC Relations

XXH =

ns∑

n=1

|sn|2 · I = ‖s‖2 · I

m

AnAHn = I , BnBH

n = I

AnAHp = −ApA

Hn , BnBH

p = −BpBHn , n 6= p

AnBHp = BpA

Hn

m

Re{F HF

}= ‖H‖2 · I where F is such that

vec(Y ) = F ·[s

s

]

+ vec(E)68

Page 70: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Mutual Information Properties of OSTBC

➮ Average transmitted energy per antenna and time interval = 1/nt

➮ Channel mutual information, with i.i.d. streams of power 1/nt:

CMIMO(H) = log

∣∣∣∣∣I +

1

nt

HHH

N0

∣∣∣∣∣

➮ Mutual information of OSTBC coded system:

COSTBC(H) =ns

Nlog

(

1 +N

ns

‖H‖2

ntN0

)

➮ Theorem:

CMIMO ≥ COSTBC, equality only for nt = 2, nr = 169

Page 71: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Capacity comparison (1% outage)

0 5 10 15 20 25 30 35 4010

−1

100

101

SNR

Cap

acity

[bits

/sec

/Hz]

Average capacity, 1 TX, 1 RX Outage capacity, 1 TX, 1 RX Average capacity, 2 TX, 2 RX Average capacity, 2 TX, 2 RX − OSTBCOutage capacity, 2 TX, 2 RX Outage capacity, 2 TX, 2 RX − OSTBC

70

Page 72: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Non-orthogonal linear STBC

➮ Also called linear dispersion codes

➮ Different approaches:

➠ Optimization of mutual information between the TX & RX:

max1

2EH

[

log2

∣∣∣I +

2

N0Re{F HF

}∣∣∣

]

(no explicit guarantee for full diversity here)

➠ Quasi-orthogonal codes

➠ Codes based on linear constellation (complex-field) precoding

s′ = Φs

71

Page 73: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Example: A non-OSTBC

➮ Consider the following diagonal code, where |sn| = 1:

X =

[s1 00 s2

]

➮ Then

A1 =

[1 00 0

]

, A2 =

[0 00 1

]

, B1 =

[1 00 0

]

B2 =

[0 00 1

]

➮ ML metric for symbol detection:

‖Y − HX‖2 =‖Y ‖2 − 2ReTr{XHHHY

}+ ‖H‖2

= − 2Re{[HHY ]1,1 · s1

}− 2Re

{[HHY ]2,2 · s2

}+ const.

➮ Decoupled detection, but not OSTBC, and not full diversity72

Page 74: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

More examples of linear but not orthogonal STBC

➮ Alamouti code with forgotten conjugates

X =

[s1 s2

s2 −s1

]

➮ “Spatial multiplexing” (R = nt, N = 1, ns = nt, d = nr).For nt = 2:

A1 =

[10

]

,A2 =

[01

]

B1 =

[10

]

,B2 =

[01

]

73

Page 75: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Linearly precoded STBC

➮ Transmit WX where W ∈ {W 1, . . . ,W K}. Data model:

Y = HWX + E

➮ Fact: If rank{W k} = nt then same diversity order as but without W

➮ Consider correlated fading: R = E[hhH] = RTt ⊗ Rr, h = vec(H)

➮ Error probability:

EH[P (X0 → X)] ≤ const. ·˛

˛

˛I +1

N0

(X0 − X)(X0 − X)H · W

HRtW

˛

˛

˛

−nr

➮ For OSTBC, (X0−X)(X0−X)H ∝ I. Hence, minW

∣∣∣I +

ns

N0W HRtW

∣∣∣

74

Page 76: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Ex. OSTBC with One-Bit Feedback for nt = 2

➮ One bit used to choose between

W 1 =

[|a| 0

0√

1 − |a|2]

︸ ︷︷ ︸

if ‖h1‖>‖h2‖

, W 2 =

[√

1 − |a|2 00 |a|

]

︸ ︷︷ ︸

if ‖h2‖>‖h1‖

➮ Let Pc be the probability that the feedback bit is correct

➮ For Pc = 1 (reliable feedback), a = 1 is optimal ➠ antenna selection

W may be multiplied with fixed unitary matrix ➠ grid of beams

➮ For Pc < 1 (erroneous feedback),

EH[P (X0 → X)] ≤ 2

SNR2 ·( Pc

|a|2 +1 − Pc

1 − |a|2)

(for nr = 1)

75

Page 77: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2010

−5

10−4

10−3

10−2

10−1

SNR

BE

RUnweighted OSTBC. Optimal weighting (No feedback error). Optimal weighting with feedback error. Error tolerant weighting (No feedback error),Error tolerant weighting with feedback error

76

Page 78: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

MIMO with feedback - optimized transmission

ssxH

ny

I I(H)

UW (I)Encoder Decoder

H

➮ Here

➠ U depends on long-term feedback

➠ I depends on short-term (few bits) feedback

➮ State-of-the art designs rely on vector quantization techniques77

Page 79: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Frequency-selective channels

➮ Maximum diversity order (with ML detection) will be nrntL whereL=length of CIR

➮ Variety of techniques to achieve maximum diversity

➮ Most widely used transmission technique is MIMO-OFDM

➠ coding across multiple OFDM symbols

➠ coding across subcarriers within one OFDM symbol

➮ Basic model per subcarrier is

Y n = HnXn + En

78

Page 80: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Le 3: MIMO receivers

79

Page 81: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Summary of MIMO receivers

➮ Optimal architectures (from Le 1):

➠ CSI@TX (any fading): linear processing, y = UHy, separates streams➠ no CSI@TX, fast fading: V-BLAST, optimal receiver is more involved

- linear receiver (channel inversion) is grossly suboptimal- successive interference cancellation (SIC)- using soft MIMO demodulator + decoder, possibly iterative

➠ no CSI@TX, slow fading: D-BLAST

➮ Architectures with STBC+outer FEC (from Le 2)

➠ With OSTBC, decoupled detection and thing are simple:

min ‖Y − HX‖ ∼ min(|s1 − s1|2 + |s2 − s2|2

)

➠ With non-OSTBC, min ‖Y − HX‖ does not decouple- problem similar to for V-BLAST 80

Page 82: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Theoretically optimal V-BLAST receiver based on SIC

decoder 1

decoder 2

decoder 3

decoder nt

MMSE 1

MMSE 2

MMSE 3

(MMSE nt)

y = Hs + e

decoded stream 1

decoded stream 2

decoded stream 3

decoded stream nt

➮ Optimality only for fast fading. Requires rate allocation on streams.

➮ Major drawback: Requires long codewords. Prone to error propagation.81

Page 83: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Theoretically optimal D-BLAST receiver based on SIC

xA(1)

xB(1)

xA(2)

xB(2)

xA(3)

➮ One codeword split as x(i) = [xA(i) xB(i)], with rate allocation

➮ Decoding in steps:1. Decode xA(1)2. Decode xB(1), suppressing xA(2) via MMSE3. Strip off xB(1), and decode xA(2)4. Decode xB(2), suppressing xA(3) via MMSE

➮ Drawbacks:

➠ error propagation➠ rate loss due to initialization➠ requires long codewords

82

Page 84: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Receivers for linear STBC architectures

Training Data 2Data 1

➮ Received block: Y = HX + E.

➮ X linear in {s1, ..., sns} so with appropriate F , the ML metric is

‖Y − HX‖2=

∥∥∥∥

[vec(Y )

vec(Y )

]

− F

[s

s

]∥∥∥∥

2

➮ For OSTBC, F TF = ‖H‖2I so detection decouples

➮ Spatial multiplexing (V-BLAST) can be seen a degenerated special caseof this architecture, with

X =

s1...

snt

83

Page 85: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Demodulator+decoder architectures

MIMO demodulator channel decoder

a priori information P (bi)

soft output P (bi|y)y = Hs + e

➮ Demodulator computes P (bi|y) given a priori information P (bi)

➮ Decoder adds knowledge of what codewords are valid

➮ Added knowledge in decoder is fed back to demodulator as a priori

➮ Iteration until convergence (a few iterations, normally)84

Page 86: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

MIMO demodulation (hard)

➮ General transmission model, with Gi,j ∈ R

y︸︷︷︸m×1

= G︸︷︷︸m×n

· s︸︷︷︸n×1

+ e︸︷︷︸m×1

, sk ∈ S

➮ Models V-BLAST architectures, and (non-O)STBC architectures

➮ Other applications: multiuser detection, ISI, crosstalk in cables, ...

➮ Typically, m ≥ n and G is full rank and has no structure.

85

Page 87: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

The problem

➮ If e ∼ N(0, σI) then the problem is to detect s from y

mins∈Sn

‖y − Gs‖2, y ∈ R

m, G ∈ Rm×n

➮ Let G = QL where

{

Q ∈ Rm×n is orthonormal (QTQ = I)

L ∈ Rn×n is lower triangular

Then ‖y − Gs‖2=∥∥∥QQT (y − Gs)

∥∥∥

2

+∥∥∥(I − QQT )(y − Gs)

∥∥∥

2

=∥∥∥Q

Ty − Ls

∥∥∥

2

+∥∥∥(I − QQT )y

∥∥∥

2

so mins∈Sn

‖y − Gs‖2 ⇔ mins∈Sn

‖y − Ls‖ where y , QTy86

Page 88: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Some remarks

➮ Integer-constrained least-squares problem, known to be NP hard

➮ Brute force complexity O(|Sn|)

➮ Typical dimension of problem: n ∼ 8−16, so |S| ∼ 2–8, |Sn| ∼ 256–1014

➮ Needs be solved➠ in real time

➠ once per received vector y

➠ in power-efficient hardware (beware of heavy matrix algebra)➠ possibly fixed-point arithmetics

➠ preferably, in a parallel architecture

➮ In communications, we can accept a suboptimal algorithm that finds thecorrect solution quickly, with high probability

87

Page 89: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Some remarks, cont.

➮ For G ∝ orthogonal (OSTBC), the problem is trivial.

➮ Our focus is on unstructured G

➮ If G has structure (e.g., Toeplitz) then use algorithm that exploits this

➮ Generally, slow fading (no time diversity) is the hard case

88

Page 90: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Zero-Forcing

➮ Lets , arg min

s∈Rn‖y − Gs‖ = arg min

s∈Rn‖y − Ls‖ = L−1y

E.g., Gaussian elimination: s1 = y1/L1,1

s2 = (y2 − s1L2,1)/L2,2

...

➮ Then project onto S: sk = [sk] , arg minsk∈S

|sk − sk|

➮ This works very poorly. Why? Note that

s = s + L−1QTe = s + e, where cov(e)=σ · (LTL)−1

ZF neglects the correlation between the elements of e 89

Page 91: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Decision tree view

min{s1,...,sn}

sk∈S

{f1(s1) + f2(s1, s2) + · · · + fn(s1, . . . , sn)}

where fk(s1, ..., sk) ,

(

yk −k∑

l=1

Lk,lsl

)2

{−1,−1,−1} {−1,−1, 1} {−1, 1,−1} {−1, 1, 1} {1,−1,−1} {1,−1, 1} {1, 1,−1} {1, 1, 1}

s1 = −1 s1 = +1

s2 = −1s2 = −1 s2 = +1s2 = +1

s3 = −1s3 = −1s3 = −1s3 = −1 s3 = +1s3 = +1s3 = +1s3 = +1

f1(−1) = 1 f1(1) = 5

f2(−1,−1) = 2 f2(−1, 1) = 1 f2(1,−1) = 2 f2(1, 1) = 3

f3(· · · ) = 4 f3(· · · ) = 1 3 4 3 1 1 9

1 5

3 2 7 8

7 4 5 6 10 8 9 17

root node

leaves

90

Page 92: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Zero-Forcing with Decision Feedback (ZF-DF)

➮ Consider the following improvement

i) Detect s1 via: s1 =

[y1

L1,1

]

= arg mins1∈S

f1(s1)

ii) Consider s1 known and set s2 =

[y2 − s1L2,1

L2,2

]

= arg mins2∈S

f2(s1, s2)

iii) Continue for k = 3, ..., n:

sk =

[

yk −∑k−1l=1 Lk,lsl

Lk,k

]

= arg minsk∈S

fk(s1, ..., sk−1, sk)

➮ This also works poorly. Why? Error propagation.Incorrect decision on si ➠ most of the following sk wrong as well.

➮ Optimized detection order (start with the best) does not help much.

91

Page 93: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Zero-Forcing with Decision Feedback (ZF-DF)

r1

1 5

2 1 2 3

4 1 3 4 3 1 1 9

1 5

3 2 7 8

7 4 5 6 10 8 9 17

92

Page 94: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Sphere decoding (SD)

➮ Select a sphere radius, R. Then traverse the tree, but once encounteringa node with cumulative metric > R, do not follow it down

➮ Enumerates all leaf nodes which lie inside the sphere ‖y − Ls‖2 ≤ R

➮ Improvements:➠ Pruning: At each leaf, update R according to R := min(R, M)➠ Improvements: optimal ordering of sk

➠ Branch enumeration

(e.g., sk = {−5,−3,−1,−1, 3, 5} vs. sk = {−1, 1,−3, 3,−5, 5})

➮ Known facts:➠ The algorithm solves the problem, if allowed to finish➠ Runtime is random and algorithm cannot be parallelized➠ Under relevant circumstances, average runtime is O(2αn) for α > 0

93

Page 95: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

SD, without pruning, R = 6

r2

r2a 1 5

2 1 2 3

4 1 3 4 3 1 1 9

1 5

3 2 7 8

7 4 5 6 10 8 9 17

94

Page 96: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

SD, with pruning, R = ∞

r3

r3a 1 5

2 1 2 3

4 1 3 4 3 1 1 9

1 5

3 2 7 8

7 4 5 6 10 8 9 17

95

Page 97: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

“Fixed complexity” sphere decoding (FCSD)

➮ Select a user parameter r, 0 ≤ r ≤ n

➮ For each node on layer r, consider {s1, ..., sr} fixed and solve

(∗) min{sr+1,...,sn}

sk∈S

{fr+1(s1, ..., sr+1) + · · · + fn(s1, ..., sn)}

➮ Subproblem (*) solved using |S|r times

➮ Low-complexity approximation (e.g. ZF-DF) can be used.Why? (*) is overdetermined (equivalent G is tall)

➮ Order can be optimized: start with the “worst”

➮ Fixed runtime, fully parallel structure96

Page 98: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

FCSD, r = 1

r4

r4a 1 5

2 1 2 3

4 1 3 4 3 1 1 9

1 5

3 2 7 8

7 4 5 6 10 8 9 17

97

Page 99: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Semidefinite relaxation (for sk ∈ {±1})

➮ Let s ,

[s

1

]

, S , ssT =

[s

1

][sT 1

], Ψ ,

[LTL −LT y

−yTL 0

]

Then‖y − Ls‖2

= sTΨs + ‖y‖2

= Trace{ΨS} + ‖y‖2

so the problem is to

mindiag{S}={1,...,1}

rank{S}=1sn+1=1

Trace{ΨS}

➮ SDR proceeds by relaxing rank{S} = 1 to S positive semidefinite

➮ Interior point methods used to find S

➮ s recovered, e.g., by taking dominant eigenvector and project onto Sn98

Page 100: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Lattice reduction

➮ Extend Sn to lattice. For example, if S = {−3,−1, 1, 3},then Sn = {. . . ,−3,−1, 1, 3, . . .} × · · · × {. . . ,−3,−1, 1, 3, . . .}.

➮ Decide on orthogonal integer matrix T ∈ Rn×n that maps Sn onto itself:

Tk,l ∈ Z, |T | = 1, and Ts ∈ Sn ∀s ∈ Sn

➮ Find one such T for which LT ∝ I

➮ Then solve s′, arg min

s′∈Sn‖y − (LT )s′‖2, and set s = T−1s

➮ Critical steps:➠ Find suitable T (computationally costly, but amortize over many y)➠ s ∈ Sn, but s /∈ Sn in general, so clipping is necessary

99

Page 101: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

MIMO demodulation (soft)

➮ Data model

y︸︷︷︸m×1

= G︸︷︷︸m×n

· s︸︷︷︸n×1

+ e︸︷︷︸m×1

, sk = S(b1, ..., bp) ∈ S, |S| = 2p

➮ Bits bi a priori indep. with

L(bi) = log

(P (bi = 1)

P (bi = 0)

)

, i = 1, ..., np

➮ Objective: Determine

L(bi|y) = log

(P (bi = 1|y)

P (bi = 0|y)

)

100

Page 102: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Posterior bit probabilities

L(bi|y) = log

P (bi = 1|y)

P (bi = 0|y)

«

(a)= log

P

s:bi(s)=1 P (s|y)P

s:bi(s)=0 P (s|y)

!

(b)= log

P

s:bi(s)=1 p(y|s)P (s)P

s:bi(s)=0 p(y|s)P (s)

!

(c)= log

0

@

P

s:bi(s)=1 p(y|s)“

Qnp

i′=1P (bi′ = bi′(s))

P

s:bi(s)=0 p(y|s)“

Qnp

i′=1P (bi′ = bi′(s))

1

A

= log

0

B

@

P

s:bi(s)=1 p(y|s)“

Qnp

i′=1,i′6=iP (bi′ = bi′(s))

· P (bi = 1)

P

s:bi(s)=0 p(y|s)“

Qnp

i′=1,i′6=iP (bi′ = bi′(s))

· P (bi = 0)

1

C

A

= log

0

B

@

P

s:bi(s)=1 p(y|s)“

Qnp

i′=1,i′6=iP (bi′ = bi′(s))

P

s:bi(s)=0 p(y|s)“

Qnp

i′=1,i′6=iP (bi′ = bi′(s))

1

C

A+ L(bi)

In Gaussian noise p(y|s) = 1(2πσ)m/2 exp

(− 1

2σ‖y − Gs‖2)

so

L(bi|y) = log

0

B

@

P

s:bi(s)=1 exp“

− 12σ‖y − Gs‖2

”“

Qnp

i′=1,i′6=iP (bi′ = bi′(s))

P

s:bi(s)=0 exp“

− 12σ‖y − Gs‖2

”“

Qnp

i′=1,i′6=iP (bi′ = bi′(s))

1

C

A+ L(bi)

101

Page 103: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

➮ With a priori equiprobable bits

L(bi|y) = log

(∑

s:bi(s)=1 exp(− 1

2σ‖y − Gs‖2)

s:bi(s)=0 exp(− 1

2σ‖y − Gs‖2)

)

➮∑

can be relatively well approximated by its largest term

That gives problems of the type

mins∈Sn,bi(s)=β

‖y − Gs‖2

This is called “max-log” approximation

➮ If many candidates s are examined, then use these terms in∑

➠ List-decoding algorithm

102

Page 104: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Incorporating a priori probabilities (BPSK/dim case)

➮ Consider sk ∈ {±1}, and let

sk = 2bk − 1

γk ,1

2log (P (sk = −1)P (sk = 1)) =

1

2log (P (bk = 0)P (bk = 1))

λk , log

(P (sk = 1)

P (sk = −1)

)

= log

(P (bk = 1)

P (bk = 0)

)

= L(bk)

➮ The prior is linear in sk:

log(P (sk = s)) =1

2[(1 + s) log(P (sk = 1)) + (1 − s) log(P (sk = −1))]

=1

2γk +

1

2λksk

103

Page 105: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

➮ Write

L(sk|y) = log

s:sk=1 exp(

−1σ‖y − Gs‖2 + 1

2

∑ni=1,i 6=k (γi + λisi)

)

s:sk=0 exp(

−1σ‖y − Gs‖2 + 1

2

∑ni=1,i 6=k (γi + λisi)

)

+λk

➮ Define y , [yT 1 · · · 1]T and G ,

[G

Λk

]

where

Λk , diag{

σ4λ1, · · · , σ

4λk−1,σ4λk+1, . . . ,

σ4λn

}

➮ Then

L(sk|y) = log

s:sk=1 exp(

−1σ‖y − Gs‖2 +

∑ni=1,i 6=k

(σλ2

i16 + γi

2

))

s:sk=0 exp(

−1σ‖y − Gs‖2 +

∑ni=1,i 6=k

(σλ2

i16 + γi

2

))

+λk

➮ A priori information on sk ➠ “virtual antennas”104

Page 106: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Example w. iter. decod. 4×4, r = 1/2-LDPC, 1000 bits

0.01

0.1

−4 −3.5 −3 −2.5 −2

Fra

me-e

rror-

rate

(FER)

Normalized signal-to-noise-ratio (SNR) [dB]

Practical method, r = 3, no iteration

Practical method, r = 3, 1 iteration

Practical method, r = 3, 2 iterations

Brute-force, no iteration

Brute-force, 1 iteration

Brute-force, 2 iterations

105

Page 107: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Channel (H) estimation and associated receivers

➮ Very often pilots are used to form a channel estimate.

ConsiderY t = HXt + Et

➮ Estimate H via training:

➠ Maximum likelihood (in Gaussian noise):

H = argminH

‖Y t − HXt‖2 = Y tXHt (XtX

Ht )−1

➠ Can show, estimate is the same also in colored noise (e.g. co-channelinterference in multiuser system)

➠ Can be somewhat improved by using MMSE estimation106

Page 108: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

➮ Estimate noise (co)variance:

Λ = 1Nt

Y tΠ⊥XH

tY H

t , for colored noise

N0 = 1Ntnr

Tr{

Y tΠ⊥XH

tY H

t

}

, for white noise

➠ This estimate can be used to prewhiten the received signal to suppressco-channel interference. E.g.

Y = Λ−1/2Y

➠ At most nr − 1 rank-1 interferers can be suppressed.

The receive array has nr degrees of freedom.

At high SNR, Λ−1 becomes a projection matrix that projects out

interference.

107

Page 109: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

More on training

➮ Training-based detector uses H, N0 and Λ in the coherent detector

➮ Can be improved, e.g., cyclic detection

➮ How should training be designed?

Optimum pilots (in many respects) satisfy XtXHt ∝ I

➮ Inserting pilot-based estimate in LF is not optimal

Cf. the use ofp(X|Y , H) (coherent)p(X|Y , H)|

H:=H(training-based)

p(X|Y , H) (best possible given H)p(X|Y , Y t) (best possible given training data)

Later, we will give p(X|Y , H) on explicit form 108

Page 110: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Example, joint detection and estimation schemes

Re−estimate

No

Yes

Initialize Detect Symbols Convergence?Channel

➮ Re-estimation step may make use of soft decoder output

109

Page 111: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Optimal training

➮ Recall: ML channel estimate H = Y tXHt (XtX

Ht )−1

➮ Let h = vec(H), h = vec(H). Can show:

E[h] = h

Σ , E[(h − h)(h − h)H] = . . . = N0

(XtXHt )

−T ⊗ I”

Tr {Σ} = nrTr˘

(XtXHt )

−1¯N0

➮ Lemma: Suppose Tr{XXH

}≤ nt. Then

Tr{(XXH)−1

}≥ nt with equality if and only if XXH = I

➮ Application of lemma ➠ optimal training block is (semi-)unitary:

XtXHt ∝ I 110

Page 112: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Channel estimation for frequency-selective channels

➮ MIMO channel as matrix-valued FIR filter:

H(z−1) =

L∑

l=0

H lz−l

➮ L is the length of the channel, L = 0 for ISI-free channel

➮ Transfer function:

H(ω) =

L∑

l=0

H le−iωl

➮ Transmission methods:

➠ Single-carrier (block-based)

➠ Multicarrier (e.g. OFDM)111

Page 113: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Training for frequency selective channels

➮ Two basic approaches:

➠ Frequency-domain estimation (estimate H(ω))➠ Time-domain estimation (estimate H l, then compute H(ω) via FT)

➮ Frequency-domain estimation of H(ω) is straightforward:

➠ Estimate in the frequency domain (via ML):

H(ω) = Y t(ω)XHt (ω)(Xt(ω)XH

t (ω))−1

➠ Problem: suboptimal because parameterizations is not parsimonious.It does not exploit structure that

H(ω) =

L∑

l=0

H le−iωl

112

Page 114: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Time-domain estimation of H(ω)

➮ Let x(n) be time-domain training, y(n) received (t-d) training and define

Xt =

xTt (0) · · · · · · · · · xT

t (−L)

xTt (1) . . . xT

t (1 − L)... . . . ...

xTt (N − 1) · · · · · · xT

t (0) · · · xTt (N − 1 − L)

H =

HT0

...

HTL

, Y t =

yTt (0)...

yTt (N − 1)

➮ Then the ML estimate of H(ω) is:

H = (XHt Xt)

−1XHt Y t, H(ω) =

L∑

l=0

H le−iωl

➮ Exploits structure (L unknowns but N equations) 113

Page 115: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Metrics with imperfect CSI (complex y, s,G, e)

➮ G not known perfectly ➠ replacing G with G in p(y|s,G) not optimal!

➮ Instead, need to work with p(y|s, G). Write

y = Gs + e ⇔ y = (sT ⊗ I)h + e, h = vec(G), e = vec(E)

Suppose ‖s‖2 = n and

{

h ∼ N(0, ρI), e ∼ N(0, σI)

h = h + δ, δ ∼ N(0, ǫI)

➮ Then

[y

h

]

∼ N

(

0,

[(nρ + σ)I ρ(sT ⊗ I)ρ(s∗ ⊗ I) (ρ + ǫ)I

])

so

p(y|h, s) =1

πn

1nǫ

1+ǫ/ρ + σexp

(

− 1nǫ

1+ǫ/ρ + σ

∥∥∥∥y −

ρ + ǫ

)

Gs

∥∥∥∥

2)

114

Page 116: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Example: 4 × 4 slow Rayl. fading MIMO, QPSK, est. G

0.01

0.1

1

−5 −4 −3 −2 −1 0 1 2 3

Fra

me-e

rror-

rate

(FER)

Normalized signal-to-noise-ratio (SNR) [dB]

Practical detector

Perfect CSI

Imperfect CSI

Brute-force

Practical detector, mismatched metric

Practical detector, optimal metric

Brute-force, optimal metric

Brute-force, mism.

115

Page 117: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Example: 4 × 4 slow Rayl. fad., QPSK, outdat. G

0.01

0.1

1

−5 −4 −3 −2 −1 0 1 2 3

Fra

me-e

rror-

rate

(FER)

Normalized signal-to-noise-ratio (SNR) [dB]

Practical detector

Perfect CSI

Imperfect CSI

Brute-force

Practical detector, mismatched metricPractical detector, optimal metric

Brute-force, optimal metric

Brute-force, mism.

116

Page 118: MIMO Fundamentals and Signal Processing Course

Linkoping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing

Last slide

117