Signal Fundamentals

download Signal Fundamentals

of 56

Transcript of Signal Fundamentals

  • 8/12/2019 Signal Fundamentals

    1/56

    Fundamentals of Signals Overview Definition

    Examples

    Energy and power Signal transformations

    Periodic signals

    Symmetry Exponential & sinusoidal signals

    Basis functions

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 1

  • 8/12/2019 Signal Fundamentals

    2/56

    Equation for a line

    t

    t0

    m

    x(t)

    x(t) =m(t t0) You will often need to quickly write an expression for a line given

    the slope and x-intercept

    Will use often when discussing convolution and Fourier transforms

    You should know how to apply this

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 2

  • 8/12/2019 Signal Fundamentals

    3/56

    Examples of SignalsDefinition: an abstraction of any measurable quantity that is afunction of one or more independent variables such as time or space.

    Examples:

    A voltage in a circuit

    A current in a circuit

    The Dow Jones Industrial average

    Electrocardiograms

    A sin(t + )

    Speech/music

    Force exerted on a shock absorber

    Concentration of Chlorine in a water supply

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 3

  • 8/12/2019 Signal Fundamentals

    4/56

    Synthetic Impulse Response

    0 5 10 15 20 25

    1

    0.5

    0

    0.5

    1

    Time (sec)

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 4

  • 8/12/2019 Signal Fundamentals

    5/56

  • 8/12/2019 Signal Fundamentals

    6/56

    Electrocardiogram

    0 0.5 1 1.5 2 2.5

    6.5

    7

    7.5

    8

    8.5

    Time (sec)

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 6

  • 8/12/2019 Signal Fundamentals

    7/56

    Arterial Blood Pressure

    0 0.5 1 1.5 2 2.5

    60

    70

    80

    90

    100

    110

    120

    Time (sec)

    ABP(mmHg)

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 7

  • 8/12/2019 Signal Fundamentals

    8/56

    Speech

    1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65

    0.4

    0.3

    0.2

    0.1

    0

    0.1

    0.2

    0.3

    0.4

    Time (sec)

    Linus: Philosophy of Wet Suckers

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 8

  • 8/12/2019 Signal Fundamentals

    9/56

    Chaos

    0 50 100 150 200 250 300 350 400 450

    15

    10

    5

    0

    5

    10

    15

    Time (samples)

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 9

  • 8/12/2019 Signal Fundamentals

    10/56

    Discrete-time & Continuous-time We will work with both types of signals

    Continuous-time signals

    Will always be treated as a function oft

    Parentheses will be used to denote continuous-time functions

    Example: x(t)

    t is a continuous independent variable (real-valued)

    Discrete-time signals Will always be treated as a function ofn

    Square brackets will be used to denote discrete-time functions

    Example: x[n]

    n is an independent integer

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 10

  • 8/12/2019 Signal Fundamentals

    11/56

    Signal Energy & Power For most of this class we will use a broad definition of power and

    energy that applies to any signal x(t) orx[n]

    Instantaneous signal power

    P(t) = |x(t)|2 P[n] = |x[n]|2

    Signal energy

    E(t0, t1) = t1t0|x(t)|

    2

    dt E(n0, n1) =

    n1n=n0

    |x[n]|2

    Average signal power

    P(t0, t1) = 1

    t1 t0 t1t0|x(t)|2 dt

    P(n0, n1) = 1

    n1 n0+ 1

    n1

    n=n0|x[n]|2

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 11

  • 8/12/2019 Signal Fundamentals

    12/56

  • 8/12/2019 Signal Fundamentals

    13/56

    Example 1: Energy & PowerDetermine whether the energy and average power of each of thefollowing signals is finite.

    x(t) =

    8 |t| 0

    0 otherwise

    x[n] = ejn

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 13

  • 8/12/2019 Signal Fundamentals

    14/56

    Example 1: Workspace (1)

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 14

  • 8/12/2019 Signal Fundamentals

    15/56

    Example 1: Workspace (2)

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 15

  • 8/12/2019 Signal Fundamentals

    16/56

    Signal Energy & Power Tips There are a few rules that can help you determine whether a

    signal has finite energy and average power

    Signals with finite energy have zero average power:

    E< P= 0

    Signals of finite duration and amplitude have finite energy:x(t) = 0 for|t| > c E<

    Signals with finite average power have infinite energy:P>0 E=

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 16

  • 8/12/2019 Signal Fundamentals

    17/56

    Signal Transformations Time shift: x(t t0) and x[n n0]

    Ift0 >0 orn0 >0, signal is shifted to the right

    Ift0 >0, signal appears stretched

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 17

  • 8/12/2019 Signal Fundamentals

    18/56

    Example 2: Signal Transformationsx(t)

    1

    1 2 3 4-1

    -1

    -2-3-4 t

    t

    1

    1 2 3 4-1

    -1

    -2-3-4

    t

    1

    1 2 3 4-1

    -1

    -2-3-4

    Use the signal shown above to draw the following: x(t), x(t 1),x(t + 2), x( t2 ), x(2t), x(2 2t).

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 18

  • 8/12/2019 Signal Fundamentals

    19/56

    Example 2: Axes for x(t + 2) & x(t

    2 )

    x(t)1

    1 2 3 4-1

    -1

    -2-3-4

    t

    t

    1

    1 2 3 4-1

    -1

    -2-3-4

    t

    1

    1 2 3 4-1

    -1

    -2-3-4

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 19

  • 8/12/2019 Signal Fundamentals

    20/56

    Example 2: Axes for x(2t) & x(2 2t)x(t)

    1

    1 2 3 4-1

    -1

    -2-3-4

    t

    t

    1

    1 2 3 4-1

    -1

    -2-3-4

    t

    1

    1 2 3 4-1

    -1

    -2-3-4

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 20

  • 8/12/2019 Signal Fundamentals

    21/56

    Even & Odd Symmetry

    xe(t) = 1

    2(x(t) + x(t))

    xo(t) = 1

    2(x(t) x(t))

    x(t) = xe(t) + xo(t)

    The symmetry of a signal under time reversal will be useful laterwhen we discuss transforms

    A signal is even if and only ifx(t) =x(t) A signal is odd if and only ifx(t) = x(t)

    cos(k0t) is an even signal

    sin(k

    0t) is an odd signal

    Any signal can be written as the sum of an odd signal and an evensignal

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 21

  • 8/12/2019 Signal Fundamentals

    22/56

    Example 3: Even Symmetryx(t)

    1

    1 2 3 4-1

    -1

    -2-3-4 t

    t

    1

    1 2 3 4-1

    -1

    -2-3-4

    t

    1

    1 2 3 4-1

    -1

    -2-3-4

    Draw the even component of the signal shown above.

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 22

  • 8/12/2019 Signal Fundamentals

    23/56

    Example 4: Odd Symmetryx(t)

    1

    1 2 3 4-1

    -1

    -2-3-4 t

    t

    1

    1 2 3 4-1

    -1

    -2-3-4

    t

    1

    1 2 3 4-1

    -1

    -2-3-4

    Draw the odd component of the signal shown above.

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 23

  • 8/12/2019 Signal Fundamentals

    24/56

    Example 5: Even & Odd Symmetry

    t

    1

    1 2 3 4-1

    -1

    -2-3-4

    t

    1

    1 2 3 4-1

    -1

    -2-3-4

    t

    1

    1 2 3 4-1

    -1

    -2-3-4

    Show that the sum of the even and odd components of the signal isequal to the original signal graphically.

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 24

  • 8/12/2019 Signal Fundamentals

    25/56

    Periodic SignalsA signal is periodic if there is a positive value ofT orN such that

    x(t) =x(t + T) x[n] =x[n + N]

    The fundamental period,T0, for continuous-time signals is thesmallest positive value ofT such that x(t) =x(t + T)

    The fundamental period,N0

    , for discrete-time signals is thesmallest positive integer ofN such that x[n] =x[n + N]

    Signals that are not periodic are said to be aperiodic

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 25

  • 8/12/2019 Signal Fundamentals

    26/56

    Exponential and Sinusoidal SignalsExponential signals

    x(t) =Aeat x[n] =Aean

    where A and a are complex numbers.

    Exponential and sinusoidal signals arise naturally in the analysis oflinear systems

    Example: simple harmonic motion that you learned in physics

    There are several distinct types of exponential signals

    A and a real

    A and a imaginary

    A and a complex (most general case)

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 26

  • 8/12/2019 Signal Fundamentals

    27/56

    Example 6: Aean

    , A= 1 and a= 1

    5

    10 5 0 5 10 15 20 25 300

    200

    400

    600

    10 5 0 5 10 15 20 25 300

    2

    4

    6

    8

    Time (n)

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 27

  • 8/12/2019 Signal Fundamentals

    28/56

    Example 6: MATLAB Coden = -10:30; % Time indexsubplot(2,1,1);

    y = exp(n/5); % Growing exponentialh = stem(n,y);set(h(1),Marker,.);

    set(gca,Box,Off);subplot(2,1,2);

    y = exp(-n/5); % Decaying exponentialh = stem(n,y);set(h(1),Marker,.);set(gca,Box,Off);xlabel(Time (n));

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 28

  • 8/12/2019 Signal Fundamentals

    29/56

    Sinusoidal Exponential Signal Comments

    x(t) =Aeat =A(ea)t =At x[n] =Aean =A(ea)n =An

    When a is imaginary, then Eulers equation applies:

    ejt = cos(t) + j sin(t)

    ejn = cos(n) + j sin(n)

    Since |ejt| = 1, this looks like a coil in a plot of the complex

    plane versus time

    ejt is Periodic with fundamental period T = 2

    Real part is sinusoidal: Re{Aejt} =A cos(t)

    Imaginary part is sinusoidal: Im{Aejt

    } =A sin(t) These signals have infinite energy, but finite (constant) average

    power, P

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 29

  • 8/12/2019 Signal Fundamentals

    30/56

    Example 7: Aeat

    , A= 1 and a=j

    100

    1020

    30 1

    0

    1

    1

    0.5

    0

    0.5

    1

    Imaginary Part

    Complex:Blue Real:Red Imaginary:Green

    Time (s)

    RealPart

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 30

  • 8/12/2019 Signal Fundamentals

    31/56

    Example 7: MATLAB Codefs = 500; % Sample rate (Hz)t = -10:1/fs:30; % Time index (s)a = j;A = 1;y = A*exp(a*t);

    h = plot3(t,imag(y),real(y),b);hold on;

    h = plot3(t,ones(size(t)),real(y),r);h = plot3(t,imag(y),-ones(size(t)),g);hold off;

    grid on;xlabel(Time (s));ylabel(Imaginary Part);zlabel(Real Part);title(Complex:Blue Real:Red Imaginary:Green);view(27.5,22);

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 31

  • 8/12/2019 Signal Fundamentals

    32/56

    Sinusoidal Exponential Harmonics In order for ejt to be periodic with period T, we require that

    ejt = ej(t+T) = ejtejT for all t

    This implies ejT = 1 and therefore

    T = 2k where k= 0,1,2, . . .

    There is more than one frequency that satisfies the constraintx(t) =x(t + T) where T = 2k

    The fundamental frequency is given by k= 1:

    0= 2

    T0

    The other frequencies that satisfy this constraint are then integermultiples of0

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 32

  • 8/12/2019 Signal Fundamentals

    33/56

    Sinusoidal Exponential Harmonics ContinuedA harmonically related set of complex exponentials is a set ofexponentials with fundamental frequencies that are all multiples of asingle positive frequency 0

    k(t) = ejk0t where k= 0,1,2, . . .

    For k= 0, k(t) is a constant

    For all other values k(t) is periodic with fundamental frequency|k|0

    This is consistent with how the term harmonic is used in music

    Sinusoidal harmonics will play a very important role when wediscuss Fourier series and periodic signals

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 33

  • 8/12/2019 Signal Fundamentals

    34/56

    Example 8: Continuous-Time Harmonics

    1

    0

    1

    0

    1

    01

    1

    1

    0

    1

    2

    1

    0

    1

    3

    10 5 0 5 10 15 20 25 30 35 401

    01

    4

    Time (s)

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 34

  • 8/12/2019 Signal Fundamentals

    35/56

    Example 9: Discrete-Time Harmonics

    1

    0

    1

    0

    1

    01

    1

    1

    0

    1

    2

    1

    0

    1

    3

    10 5 0 5 10 15 20 25 30 35 401

    01

    4

    Time (n)

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 35

  • 8/12/2019 Signal Fundamentals

    36/56

    Example 9: MATLAB Code

    n = -10:40; % Time index

    omega = 2*pi/20; % Frequency (radians/sample)

    N = 4;

    for cnt = 0:N,

    subplot(N+1,1,cnt+1);

    phi = exp(j*cnt*omega*n);

    h = stem(n,real(phi));

    set([h(1)],Marker,.);ylim([-1.1 1.1]);

    ylabel(sprintf(\\phi_%d,cnt));

    set(gca,YGrid,On)

    if cnt~=N,

    set(gca,XTickLabel,[]);

    end;

    end;

    xlabel(Time (n));

    figure;t = -10:0.01:40; % Time index

    omega = 0.05*2*pi; % Frequency (radians/sec) - 0.05 Hz

    N = 4;

    for cnt = 0:N,

    subplot(N+1,1,cnt+1);

    phi = exp(j*cnt*omega*t);

    h = plot(t,real(phi));

    ylim([-1.1 1.1]);

    ylabel(sprintf(\\phi_%d,cnt));grid on;

    if cnt~=N,

    set(gca,XTickLabel,[]);

    end;

    end;

    xlabel(Time (s));

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 36

  • 8/12/2019 Signal Fundamentals

    37/56

    Damped Complex Sinusoidal Exponentials

    x(t) =Aeat x[n] =Aean

    When a is complex, these becomedampedsinusoidal exponentials

    Let a= +j. Then

    x(t) =Aeat = (Aet) ejt x[n] =Aean = (Aen) ejn

    Thus, these are equivalent to multiplying an complex sinusoid by areal exponential

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 37

  • 8/12/2019 Signal Fundamentals

    38/56

    Example 10: Aean, A= 1 and a= 0.1 + j0.5

    10 5 0 5 10 15 20 25 30 35 4050

    0

    50

    Rea

    lPart

    10 5 0 5 10 15 20 25 30 35 402

    1

    0

    1

    2

    Time (n)

    RealPart

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 38

  • 8/12/2019 Signal Fundamentals

    39/56

    Example 10: MATLAB Code

    n = -10:40; % Time index

    C = 1; subplot(2,1,1);

    a = 0.1 + j*0.5;

    y = real(C*exp(a*n)); % Growing exponential

    t = min(n):0.1:max(n);

    h = plot(t, real(C*exp(real(a)*t)),t,-real(C*exp(real(a)*t)));

    set(h,Color,[0.5 0.5 0.5]);

    hold on;h = stem(n,y);

    set(h(1),Marker,.);

    hold off;

    box off;

    grid on;

    ylim([-50 50]);

    ylabel(Real Part);

    subplot(2,1,2);

    a = -0.1 + j*0.5;y = real(C*exp(a*n)); % Growing exponential

    t = min(n):0.1:max(n);

    h = plot(t, real(C*exp(real(a)*t)),t,-real(C*exp(real(a)*t)));

    set(h,Color,[0.5 0.5 0.5]);

    hold on;

    h = stem(n,y);

    set(h(1),Marker,.);

    hold off;box off;

    grid on;

    ylim([-2 2]);

    xlabel(Time (n));

    ylabel(Real Part);

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 39

  • 8/12/2019 Signal Fundamentals

    40/56

    Example 11: A

    e

    at

    ,A

    = 1 anda

    = 0.05 +

    j2

    10 0 10 20 30 20

    22

    0

    2

    Imaginary Part

    Complex:Blue Real:Red Imaginary:Green

    RealPart

    10 0 10 20 30 20

    22

    0

    2

    Imaginary PartTime (s)

    Re

    alPart

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 40

  • 8/12/2019 Signal Fundamentals

    41/56

    Example 11: MATLAB Code

    fs = 500; % Sample rate (Hz)

    t = -10:1/fs:30; % Time index (s)

    subplot(2,1,1);

    a = -0.05 + j*2;

    y = C*exp(a*t);

    h = plot3(t,imag(y),real(y),b);

    hold on;

    h = plot3(t,2*ones(size(t)),real(y),r);h = plot3(t,imag(y),-2*ones(size(t)),g);

    hold off;

    grid on;

    ylabel(Imaginary Part);

    zlabel(Real Part);

    title(Complex:Blue Real:Red Imaginary:Green);

    axis([min(t) max(t) -2 2 -2 2]);

    view(27.5,22);

    subplot(2,1,2);a = +0.05 + j*2;

    y = C*exp(a*t);

    h = plot3(t,imag(y),real(y),b);

    hold on;

    h = plot3(t,2*ones(size(t)),real(y),r);

    h = plot3(t,imag(y),-2*ones(size(t)),g);

    hold off;

    grid on;xlabel(Time (s));

    ylabel(Imaginary Part);

    zlabel(Real Part);

    axis([min(t) max(t) -2 2 -2 2]);

    view(27.5,22);

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 41

  • 8/12/2019 Signal Fundamentals

    42/56

    Discrete-Time Unit Impulse

    n

    1

    0

    The discrete-time unit impulse is defined as

    [n] =

    0, n = 0

    1, n= 0

    Sometimes called the unit sample

    Also called the Kroneker delta

    Note that [n] has even symmetry so [n] =[n]

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 42

  • 8/12/2019 Signal Fundamentals

    43/56

  • 8/12/2019 Signal Fundamentals

    44/56

    Discrete-Time Basis Functions

    There is a close relationship between [n] and u[n]

    [n] = u[n] u[n 1]

    u[n] =

    nk=

    [k]

    u[n] =

    k=0[n k]

    The unit impulse can be used to sample a discrete-time signalx[n]:

    x[0] =

    k=

    x[k

    ]

    [k

    ] x

    [n

    ] =

    k=

    x[k

    ]

    [n

    k]

    This ability to use the unit impulse to extract a single value ofx[n]through multiplication will play an important role later in the term

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 44

  • 8/12/2019 Signal Fundamentals

    45/56

    Continuous-Time Unit Step

    t

    u(t)

    1

    u(t)

    0 t 0

    Sometimes known as the Heaviside function

    Discontinuous at t= 0

    u(0) is not defined

    Not of consequence because it is undefined for an infinitesimalperiod of time

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 45

  • 8/12/2019 Signal Fundamentals

    46/56

    Unit Step for Switches

    vs

    Linear

    Circuit

    t=0

    vsu(t)

    Linear

    Circuit

    LinearCircuit

    t=0

    is

    isu(t) LinearCircuit

    u(t) useful for representing the opening or closing of switches We will often solve for or be given initial conditions at t= 0

    We can then represent independent sources as though they wereimmediately applied at t= 0. More later.

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 46

  • 8/12/2019 Signal Fundamentals

    47/56

    Continuous-Time Unit Impulse

    t

    ue(t)

    t-e e

    -e e

    t

    u(t)

    t

    1 1

    e(t)

    (t)

    e(t) due(t)

    dt

    As e 0 ,

    ue(t) u(t)

    e(t) fort= 0 becomes very large

    e(t) fort = 0 becomes zero

    (t) lime0 e(t)

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 47

  • 8/12/2019 Signal Fundamentals

    48/56

    Continuous-Time Unit Impulse Continued

    t

    1(t) (t)

    0 t = 0

    t= 0

    ee

    (t) dt= 1 for any e >0

    Also known as the Dirac delta function

    Is zero everywhere except zero

    The impulse integral serves as a measure of the impulse amplitude

    Drawn as an arrow with unit height

    5(t) would be drawn as an arrow with height of 5

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 48

  • 8/12/2019 Signal Fundamentals

    49/56

    Continuous-Time Unit Impulse Comments

    (t) =

    0 t = 0

    t= 0

    The impulse should be viewed as an idealization

    Real systems with finite inertia do not respond instantaneously

    The most important property of an impulse is its area

    Most systems will respond nearly the same to sharp pulsesregardless of their shape - if

    They have the same amplitude (area)

    Their duration is much briefer than the systems response

    The idealized unit impulse is short enough for any system

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 49

  • 8/12/2019 Signal Fundamentals

    50/56

    Unit Impulse Properties

    (t)x(t) = (t)x(0)

    (at) = 1

    |a|(t)

    (t) = (t)

    (t) = du(t)

    dt

    u(t) = t

    () d

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 50

  • 8/12/2019 Signal Fundamentals

    51/56

    Unit Impulse Sampling Property

    +

    x(t)(t) dt =

    +

    x(0)(t) dt

    = x(0) +

    (t) dt

    = x(0)

    Similarly, +

    x(t)(t t0) dt =

    +

    x(t0)(t t0) dt

    = x(t0) + (t t0) dt

    = x(t0)

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 51

  • 8/12/2019 Signal Fundamentals

    52/56

    Unit Impulse Sampling Property

    x(t) =

    +

    x()( t) d

    This integral does not appear to be useful It will turn out to be very useful

    It states that x(t) can be written as a linear combination of scaledand shifted unit impulses

    This will be a key concept when we discuss convolution next week

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 52

  • 8/12/2019 Signal Fundamentals

    53/56

    Example 12: Continuous-Time Unit-Ramp

    t

    r(t)1

    r(t)

    0 t 0

    t t 0

    What is the first derivative?

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 53

  • 8/12/2019 Signal Fundamentals

    54/56

    Example 13: Continuous-Time Unit-Ramp Integral

    t

    r(t)1

    What is the integral of the unit ramp?

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 54

  • 8/12/2019 Signal Fundamentals

    55/56

    Basis Function Relationships

    u(t) =

    t

    () d

    du(t)dt = (t) t

    u() d = r(t)

    r(t) =

    t

    u() d

    dr(t)dt = u(t) t

    r() d = 12 r(t)2

    If we can write a signal x(t) in terms ofu(t) and r(t), it is easy tofind the derivative

    Similarly, it is easy to integrate

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 55

  • 8/12/2019 Signal Fundamentals

    56/56

    Basis Functions Translated

    t

    u(t-t0)

    t

    1 1

    t

    r(t-t0)

    1

    t0

    t0

    t0

    (t-t0)

    Can write simple expressions for the functions translated in time

    Can scale the amplitude

    Any piecewise linear signal can be written in terms of basisfunctions

    This makes it easy to calculate derivatives and integrals

    Will not discuss howthis term

    Sufficient to know it can be done

    J. McNames Portland State University ECE 222 Signal Fundamentals Ver. 1.15 56