Millimeter-wave overlay HetNet for 5G - MiWEBA · Millimeter-wave overlay HetNet for 5G ―System...

1
Millimeter-wave overlay HetNet for 5G ―System level simulation for spectrum assessment― Millimeter-wave overlay HetNet for 5G Spectrum allocation status in US, EU and JP System level simulation Mobile traffic grows exponentially every year and cur- rent cellular network cannot deal with this traffic explo- sion. In order to overcome this problem, many research- ers try to achieve more than 1000x higher system rate by using ultra wideband millimeter wave technologies. BBU pool EPC C-RAN Macro BS SmallCell BS (LTE) C/U splitting C-plane U-plane Next generation CPRI interface Ultra high speed mmW smallcell BS Millimeter-wave HetNet architecture ・C-plane/U-plane splitting ・Next generation CPRI interface ・C-RAN (Cloud RAN) driven network ・Ultra high speed mmW smallcell basestation Which band in mm-wave frequency is suitable for 5G? Frequency [GHz] Bandwidth [GHz] Allocaon status JP US EU 27.94-29.45 1.5 FIXED-SATELLITE FIXED-SATELLITE AERONAUTICAL RADIONAVIGATION 31.8-33.4 1.6 Unused RADIONAVIGATION SPACE RESEARCH INTER-SATELLITE RADIONAVIGATION EARTH EXPLORATION-SATELLITE (acve) SPACE RESEARCH (acve) 40.5-43.5 3 FIXED FIXED-SATELLITE FIXED, RADIONAVIGATION 45.5-47.0 1.5 Unused MOBILE FIXED 47.2-50.2 3 Unused FIXED FIXED 55.78-57.0 20.22 FIXED MOBILE EARTH EXPLORATION- SATELLITE (passive) MARITIME RADIONAVIGATION 57.0-66.0 Unlicensed Unlicensed (-64) Unlicensed 66.0-71.0 Unused FIXED FIXED 71.0-76.0 FIXED, MOBILE FIXED FIXED 81.0-86.0 5 FIXED MOBILE FIXED EARTH EXPLORATION-SATELLITE FIXED RADIO NAVIGATION From the point of view of this allocation status, ①31.8-33.4, ②45.5-47.0, ③47.2-50.2, ④55.78-76.0, ⑤81.0-86.0 are useful bands. Pathloss model for mm-wave bands Pathloss model is generated by using frequen- cy domain interpolation ( ) 0,28GHz 10 28GHz / log 2 . 29 0 . 72 d d PL + = NYU 28GHz: ( ) 0,60GHz 10 60GHz / log 6 . 23 02 . 82 d d PL + = MiWEBA 60GHz: ( ) 0,73GHz 10 73GHz / log 9 . 26 7 . 82 d d PL + = NYU 73GHz: Original model ( ) b f a PL + = 10 log () () ( ) ( ) ( ) ( ) () () ( ) ( ) ( ) () () ( ) d b d a J d b d a f f PL d f PL d b d a J d b d a I i i i , min arg ˆ , ˆ , , , , 1 2 o = = = subject to () d a 20 Least square method 10 0 10 1 10 2 70 80 90 100 110 120 130 140 150 160 Distance [m] Pathloss [dB] 28GHz (Original) 28GHz (Interpolation) 60GHz (Original) 60GHz (Interpolation) 73GHz (Original) 73GHz (Interpolation) 10 0 10 1 10 2 70 80 90 100 110 120 130 140 150 Distance [m] Pathloss [dB] 32.6GHz 46.2GHz 48.7GHz 65.9GHz 83.5GHz Original Candidate bands Good approx. 10dB x2 Parameter Value Number of macro BSs 7 (evaluate: 1, interference: 6) Number of smallcell BSs 0-80 / macrocell BS antenna height (macro / small) 25 m / 4 m Number of UEs 5000 Number of BS antennas (macro / small) 4 / 1 Number of UE antennas 2 Macro ISD 500 m Antenna beam pattern 3GPP / 11ad Antenna gain (macro / small) 17 dBi / 25dBi@60GHz Tx power (macro / small) 46 dBm / 10 dBm/channel 62 kbps/user / 62 Mbps/user Average traffic demand (current / 10 years later) By using our developed system level simulator, we assessed each candidates from two aspects 1. System rate gain vs Number of smallcell BSs 2. System rate gain vs Average traffic demand Symulation parameters 0 10 20 30 40 50 60 70 80 0 500 1000 1500 2000 2500 Number of smallcells System rate gain 32.6GHz (BW: 1.6GHz) 46.2GHz (BW: 1.5GHz) 48.7GHz (BW: 3GHz) 65.9GHz (BW: 20.22GHz) 83.5GHz (BW: 5GHz) 3.5GHz (BW: 100MHz) 60GHz (BW: 2.16GHz) 10 1 10 2 10 3 10 4 0 2000 4000 6000 8000 10000 Average traffic value [/current value] System rate gain 32.6GHz (BW: 1.6GHz) 46.2GHz (BW: 1.5GHz) 48.7GHz (BW: 3GHz) 65.9GHz (BW: 20.22GHz) 83.5GHz (BW: 5GHz) System rate gain vs Number of smallcell System rate gain vs Average traffic demand Although coverage becomes narrower as carrier frequency increases, the difference of total bandwidth is dominant in the result of comparison with number of smallcells. Addition- ally, the difference of the system rate gain is very big in high traffic case. Therefore 66GHz band (④) which has 20GHz bandwidth should be selected for the future 5G cellular net- work. Kei Sakaguchi, Tokyo Institute of Technology

Transcript of Millimeter-wave overlay HetNet for 5G - MiWEBA · Millimeter-wave overlay HetNet for 5G ―System...

Page 1: Millimeter-wave overlay HetNet for 5G - MiWEBA · Millimeter-wave overlay HetNet for 5G ―System level simulation for spectrum assessment― Millimeter-wave overlay HetNet for 5G

Millimeter-wave overlay HetNet for 5G―System level simulation for spectrum assessment―

Millimeter-wave overlay HetNet for 5G

Spectrum allocation status in US, EU and JP

System level simulation

Mobile traffic grows exponentially every year and cur-rent cellular network cannot deal with this traffic explo-sion. In order to overcome this problem, many research-ers try to achieve more than 1000x higher system rate by using ultra wideband millimeter wave technologies.

BBU pool

EPCC-RAN

Macro BS

SmallCell BS(LTE)

C/U splittingC-plane U-plane

Next generationCPRI interface

Ultra high speedmmW smallcell BS

Millimeter-wave HetNet architecture・ C-plane/U-plane splitting・ Next generation CPRI interface・ C-RAN (Cloud RAN) driven network・ Ultra high speed mmW smallcell basestation

Which band in mm-wave frequency is suitable for 5G?

Frequency[GHz]

Bandwidth[GHz]

Allocation status

JP US EU

27.94-29.45 1.5 FIXED-SATELLITE FIXED-SATELLITE AERONAUTICAL RADIONAVIGATION

31.8-33.4 1.6 UnusedRADIONAVIGATIONSPACE RESEARCHINTER-SATELLITE

RADIONAVIGATIONEARTH EXPLORATION-SATELLITE (active)

SPACE RESEARCH (active)

40.5-43.5 3 FIXED FIXED-SATELLITE FIXED, RADIONAVIGATION

45.5-47.0 1.5 Unused MOBILE FIXED

47.2-50.2 3 Unused FIXED FIXED

55.78-57.0

20.22

FIXEDMOBILE

EARTH EXPLORATION-

SATELLITE (passive)MARITIME RADIONAVIGATION

57.0-66.0 Unlicensed Unlicensed (-64) Unlicensed

66.0-71.0 Unused FIXED FIXED

71.0-76.0 FIXED, MOBILE FIXED FIXED

81.0-86.0 5 FIXEDMOBILE FIXED

EARTH EXPLORATION-SATELLITEFIXED

RADIO NAVIGATION

From the point of view of this allocation status, ①31.8-33.4, ②45.5-47.0, ③47.2-50.2, ④55.78-76.0, ⑤81.0-86.0 are useful bands.

Pathloss model for mm-wave bandsPathloss model is generated by using frequen-cy domain interpolation

( )0,28GHz1028GHz /log2.290.72 ddPL +=NYU 28GHz:( )0,60GHz1060GHz /log6.2302.82 ddPL +=MiWEBA 60GHz:( )0,73GHz1073GHz /log9.267.82 ddPL +=NYU 73GHz:

Original model

( ) bfaPL += 10log

( ) ( )( ) ( ) ( )( )

( ) ( )( )( ) ( )

( ) ( )( )dbdaJdbda

ffPLdfPLdbdaJ

dbda

I

iii

,minargˆ,ˆ

,,,

,

1

2o

=

−= ∑=

subject to ( )da ≧ 20

Least square method

100 101 10270

80

90

100

110

120

130

140

150

160

Distance [m]

Path

loss

[dB

]

28GHz (Original)28GHz (Interpolation)60GHz (Original)60GHz (Interpolation)73GHz (Original)73GHz (Interpolation)

100 101 10270

80

90

100

110

120

130

140

150

Distance [m]

Path

loss

[dB

]

32.6GHz46.2GHz48.7GHz65.9GHz83.5GHz

①②③④⑤

Original Candidate bands

Good approx.10dB

x2

Parameter Value

Number of macro BSs 7 (evaluate: 1, interference: 6)

Number of smallcell BSs 0-80 / macrocell

BS antenna height (macro / small) 25 m / 4 m

Number of UEs 5000

Number of BS antennas (macro / small) 4 / 1

Number of UE antennas 2

Macro ISD 500 m

Antenna beam pattern 3GPP / 11ad

Antenna gain (macro / small) 17 dBi / 25dBi@60GHz

Tx power (macro / small) 46 dBm / 10 dBm/channel

62 kbps/user / 62 Mbps/userAverage traffic demand(current / 10 years later)

By using our developed system level simulator, we assessed each candidates from two aspects1. System rate gain vs Number of smallcell BSs2. System rate gain vs Average traffic demand

Symulation parameters

0 10 20 30 40 50 60 70 800

500

1000

1500

2000

2500

Number of smallcells

Syst

em ra

te g

ain

32.6GHz (BW: 1.6GHz)46.2GHz (BW: 1.5GHz)48.7GHz (BW: 3GHz)65.9GHz (BW: 20.22GHz)83.5GHz (BW: 5GHz)3.5GHz (BW: 100MHz)60GHz (BW: 2.16GHz)

①②③④⑤

101 102 103 1040

2000

4000

6000

8000

10000

Average traffic value [/current value]

Syst

em ra

te g

ain

32.6GHz (BW: 1.6GHz)46.2GHz (BW: 1.5GHz)48.7GHz (BW: 3GHz)65.9GHz (BW: 20.22GHz)83.5GHz (BW: 5GHz)

①②③④⑤

System rate gain vs Number of smallcell System rate gain vs Average traffic demand

Although coverage becomes narrower as carrier frequency increases, the difference of total bandwidth is dominant in the result of comparison with number of smallcells. Addition-ally, the difference of the system rate gain is very big in high traffic case. Therefore 66GHz band (④) which has 20GHz bandwidth should be selected for the future 5G cellular net-work.

Kei Sakaguchi, Tokyo Institute of Technology

②③