Michel Chavance INSERM U1018, CESP, Biostatistique

31
Michel Chavance INSERM U1018, CESP, Biostatistique Use of Structural Equation Models to estimate longitudinal relationships

description

Michel Chavance INSERM U1018, CESP, Biostatistique. Use of Structural Equation Models to estimate longitudinal relationships. Restrained Eating and weight gain. Restrained eating = tendency to consciously restrain food intake to control body weight or promote weight loss - PowerPoint PPT Presentation

Transcript of Michel Chavance INSERM U1018, CESP, Biostatistique

Page 1: Michel Chavance INSERM U1018, CESP,  Biostatistique

Michel Chavance

INSERM U1018, CESP, Biostatistique

Use of Structural Equation Models to estimate longitudinal relationships

Page 2: Michel Chavance INSERM U1018, CESP,  Biostatistique

Restrained Eating and weight gain

• Restrained eating = tendency to consciously restrain food intake to control body weight or promote weight loss

• Positive association between Restrained Eating and fat mass

• Paradoxical hypothesis : induction of weight gain through frequent episodes of loss of control and dishinibited eating

Page 3: Michel Chavance INSERM U1018, CESP,  Biostatistique

CRS1

Adp1

CRS0

Adp0

UXXXX

Page 4: Michel Chavance INSERM U1018, CESP,  Biostatistique

X

Y

U

X

Y

In both cases, we observe

In 1) it is not a structural equation, because E[Y|do(X=x)] ≠ +x While in 2) it is a structural equation becauseE[Y|do(X=x)] = +x

A structural equation is true when the right side variables are observed AND when they are manipulated

2,0 NXY

1 2

U

Page 5: Michel Chavance INSERM U1018, CESP,  Biostatistique

X

Y

U

X

Y

. variablesexogenous

,C , variablesendogenous Y

XTwith

Y

X

Y

X

Y

X

11

0

0

Z

BIABI

CZTAZBIBAZ

XZY

ZX

yxyzyy

xzxx

Z

zx

xy

x

y

zy

Is the model identified ???

Page 6: Michel Chavance INSERM U1018, CESP,  Biostatistique

Cross-sectional and longitudinal effects

• Cross-sectional model (time 0)

• Model for changes

(changes are negatively correlated with baseline values)

• Longitudinal extension

000 XY C

jjLCj XXXY 00

0100 XXYY jLj

Page 7: Michel Chavance INSERM U1018, CESP,  Biostatistique

C

A

CRS0

Adp0

U X

Page 8: Michel Chavance INSERM U1018, CESP,  Biostatistique

FLVS II study• Fleurbaix Laventie Ville Santé Study (risk factors

for weight and adiposity changes)

• 293/394 families recruited on a voluntary basis

• 2 measurements (1999 and 2001)

• 4 anthropometric measurements– BMI = weight / height2

– WC = Waist Circumference– SSM = Sum of Skinfold Thicknesses (4 measurements)– PBF = % body fat (foot to foot bioimpedance analyzer)

• Cognitive restrained scale

Page 9: Michel Chavance INSERM U1018, CESP,  Biostatistique

Structural Equation and Latent Variable models

• Latent variable : several observed variables are imperfect measurements of a single latent concept (e.g. for subject i, 4 indicators Ii

k of adiposity Ai)

• The measurement model

postulates relationships between the unobserved value of adiposity A for subject i and its 4 observed measurements Ik, and thus between the observed measurements

0)cov

),0 iid , 2

(A,

N(AI kikikikk

k

i

Page 10: Michel Chavance INSERM U1018, CESP,  Biostatistique

Measurement model and factor analysis

• Identification problem: the parameters depend on the measurement scale of the latent variable A

• Usual solution : constraint l1=1 (i.e. same scale for A and its 1st observed measurement)

lklk

kkikk

iiAikik

ikikik

AVII

AVIVIE

AN(AN(

AI

AI

,cov

0

0 ,cov , ),0 iid , ),0 iid

1ncol(A))nline( :factor 1 centered

22

Page 11: Michel Chavance INSERM U1018, CESP,  Biostatistique

Estimation and tests

• Aim = modeling the covariance structure

• Maximum likelihood estimator (assuming normal distributions)

with the predicted and S the observed covariance matrix

• Likelihood ratio test of compared to saturated model (deviance)

ˆˆlog2

ˆ 1 StrN

L

)dim(logˆˆlog1ˆ

log2 1 SSStrNL

L

s

Page 12: Michel Chavance INSERM U1018, CESP,  Biostatistique

Estimation and tests

Variance of the estimator

Confidence intervals and Wald’s tests

2

2

ˆ

L

V

Page 13: Michel Chavance INSERM U1018, CESP,  Biostatistique

Overal model fit

• Normed fit index (Bentler and Bonett, 1980) relative change when comparing deviances of model 1 (D1) and model 0 assuming independence (D0)

• RMSEA=Root Mean Squared Error Approximation measures a « distance » between  the true and the model covariance matrices at the population level

0

10

D

DDNFI

0,1

1max

ndf

F

Page 14: Michel Chavance INSERM U1018, CESP,  Biostatistique

Studied population in 1999mean (standard deviation)

** sex difference (p<0.01) *** sex difference (p<0.001)

Similar findings in 2001

Beware the sign of the differences ……..

Males (n=201) Females (n=256)

Age*** 44.0 (4.9) 42.4 (4.5)

% body fat*** 23.0 (6.2) 33.2 (7.1)

BMI** 25.7 (3.4) 24.7 (4.6)

Skinfold thickness*** 58.6 (25.2) 75.0 (32.2)

Waist circumference***

91.6 (10.4) 79.4 (11.7)

CRS*** 26.9 (19.7) 40.4 (21.3)

Page 15: Michel Chavance INSERM U1018, CESP,  Biostatistique

Measurement model

1) 4 separate analyses by sex and time

2) 2 separate analyses (identical loadings at each time)

3) all subjects together

Adp

%BF log(BMI) Log(SST) Log(WC)

Page 16: Michel Chavance INSERM U1018, CESP,  Biostatistique

* model with equality constraints

The same measurement model holds for both years, but not for both sexes

Males Females

1999 2001 Both Years*

1999 2001 Both Years

NFI 0.999 0.997 0.96 0.988 0.996 0.96

Page 17: Michel Chavance INSERM U1018, CESP,  Biostatistique

Measurement model for changes

• Measurement model at time j

n,4 n,1 1,4 n,4

• Because the loadings are identical at both times, the same measurement model holds for the changes

2,0 jjjjj NAI

2

0101

01

01

0,N

A

j

A

AA

II

AA

Page 18: Michel Chavance INSERM U1018, CESP,  Biostatistique
Page 19: Michel Chavance INSERM U1018, CESP,  Biostatistique

Estimated Loadings of the Global Measurement Model (Females)

Standardized coefficients

Estimate Estimate Standard Dev. Standardized Estimates

Baseline Change

%BF 1.000 - 0.955 0.603

log(BMI) 0.024 0.0007 0.956 0.996

log(SST) 0.055 0.0021 0.879 0.558

log(WC) 0.019 0.0006 0.938 0.647

ikik

k

ik

A

i

k

Ak

k

ikikikik

A

AIAI

*

Page 20: Michel Chavance INSERM U1018, CESP,  Biostatistique

Structural Equation Model:Regression Coefficients (Females)

Baseline Adiposity

covariates sd CI95

Age 0.254 0.096 [0.07, 0.44]

Baseline CRS

0.051 0.020 [.012, .090]

Page 21: Michel Chavance INSERM U1018, CESP,  Biostatistique

Structural Equation Model:Regression Coefficients (Females)

Adiposity Change

covariates sd CI95

Adiposity0 -0.024 0.021 [-0.07, 0.02]

Age0 0.038 0.030 [-0.02, 0.10]

CRS0 -0.010 0.007 [-.04, 0.02]

CRS change -0.014 0.010 [-0.03, 0.01]

Page 22: Michel Chavance INSERM U1018, CESP,  Biostatistique

Structural Equation Model:Regression Coefficients (Females)

CRS Change

covariates sd CI95

Adiposity0 0.438 0.134 [0.17, 0.70]

Age0 0.023 0.200 [-0.37, 0.42]

CRS0 -0.286 0.042 [-0.37, -0.20]

Page 23: Michel Chavance INSERM U1018, CESP,  Biostatistique
Page 24: Michel Chavance INSERM U1018, CESP,  Biostatistique

Direct and Indirect Effects of Baseline CRS on Adiposity change

standard errors obtained by bootstrapping the sample 1,000 times

Estimate sd

1: direct -0.0096 0.0069

2: indirect through CRS change

0.0040 0.0031

3: indirect through baseline adiposity

-0.0012 0.0011

1+2 (partial) -0.0056 0.0064

1+2+3 (total) -0.0068 0.0064

Page 25: Michel Chavance INSERM U1018, CESP,  Biostatistique

• Often useful to model the changes rather than the successive outcomes.

• Structural equation modeling = translation of a DAG, but some models are not identified.

• We still need to assume that all confounders of the effect of interest are observed.

Page 26: Michel Chavance INSERM U1018, CESP,  Biostatistique
Page 27: Michel Chavance INSERM U1018, CESP,  Biostatistique
Page 28: Michel Chavance INSERM U1018, CESP,  Biostatistique
Page 29: Michel Chavance INSERM U1018, CESP,  Biostatistique
Page 30: Michel Chavance INSERM U1018, CESP,  Biostatistique

CRS1

Adp1

CRS0

Adp0

UXXXX

Page 31: Michel Chavance INSERM U1018, CESP,  Biostatistique

CRS1

Adp1

CRS0

Adp0

UXXXX