MHD JET ACCELERATION AMR SIMULATIONS Claudio Zanni, Attilio Ferrari, Silvano Massaglia Università...

24
MHD JET ACCELERATION MHD JET ACCELERATION AMR SIMULATIONS AMR SIMULATIONS Claudio Zanni, Attilio Ferrari, Silvano Massaglia Università di Torino in collaboration with Gianluigi Bodo, Paola Rossi Osservatorio Astronomico di Torino Timur Linde, Robert Rosner University of Chicago

Transcript of MHD JET ACCELERATION AMR SIMULATIONS Claudio Zanni, Attilio Ferrari, Silvano Massaglia Università...

Page 1: MHD JET ACCELERATION AMR SIMULATIONS Claudio Zanni, Attilio Ferrari, Silvano Massaglia Università di Torino in collaboration with Gianluigi Bodo, Paola.

MHD JET MHD JET ACCELERATION AMR ACCELERATION AMR

SIMULATIONSSIMULATIONS Claudio Zanni, Attilio Ferrari, Silvano Massaglia

Università di Torino

in collaboration withGianluigi Bodo, Paola Rossi

Osservatorio Astronomico di TorinoTimur Linde, Robert Rosner

University of Chicago

Page 2: MHD JET ACCELERATION AMR SIMULATIONS Claudio Zanni, Attilio Ferrari, Silvano Massaglia Università di Torino in collaboration with Gianluigi Bodo, Paola.

AGN & YSOAGN & YSO

• Highly collimated supersonic/relativistic

jets from small regions

• Jet-disk connection

Page 3: MHD JET ACCELERATION AMR SIMULATIONS Claudio Zanni, Attilio Ferrari, Silvano Massaglia Università di Torino in collaboration with Gianluigi Bodo, Paola.

AGN

Central black hole or star

Subsonic/supersonic inflow

Supersonic (relativistic) outflow

The jet/disk The jet/disk paradigmparadigm

Page 4: MHD JET ACCELERATION AMR SIMULATIONS Claudio Zanni, Attilio Ferrari, Silvano Massaglia Università di Torino in collaboration with Gianluigi Bodo, Paola.

• CompositionComposition: ion/electron and/or electron/positron plasma and/or Poynting flux

• Driving force Driving force pushing matter into winds and jets ?

• Thermal gas pressure gradient• Radiation pressure• Magnetic pressure• Electrodynamic Lorentz force

• How are mass flow rate and jet mass flow rate and jet velocity connected with disk velocity connected with disk accretion rateaccretion rate and other physical parameters ?

Page 5: MHD JET ACCELERATION AMR SIMULATIONS Claudio Zanni, Attilio Ferrari, Silvano Massaglia Università di Torino in collaboration with Gianluigi Bodo, Paola.

Ingredients of modelsIngredients of models• Central object: star or black

hole• Accretion disk• Wind• Jet• Magnetic fields: turbulent in

disk, ordered in magnetosphere • Boundary layer disk-star/BH

jet

starBH

disk

wind

magnetic lines

Theoretical Theoretical issues issues • Highly nonlinear problem• Analytic stationary solutions• Numerical experiments• Physics to test

Role of ordered Role of ordered magnetic fieldsmagnetic fields (and currents)

Page 6: MHD JET ACCELERATION AMR SIMULATIONS Claudio Zanni, Attilio Ferrari, Silvano Massaglia Università di Torino in collaboration with Gianluigi Bodo, Paola.

MechanismsMechanisms– Twin-exhaust scheme

(Blandford & Rees 1972)

– Radiation pressure in accretion funnels (FRT 1985)

– Electrodynamic effects in accretion funnels and Poynting flux jets (Lovelace 1976, Blandford 1976)

– Magneto-centrifugal acceleration (Blandford & Payne 1982)

– Simulations: magnetic sweeping pinch, etc. (Uchida & Shibata 1985)

– … and many more (see Hawley, Keppens, Kato,

Krasnopolski…)

Page 7: MHD JET ACCELERATION AMR SIMULATIONS Claudio Zanni, Attilio Ferrari, Silvano Massaglia Università di Torino in collaboration with Gianluigi Bodo, Paola.

MHD windsMHD winds• Blandford & Payne (1982) include inertia and assume MHD

conditions

• Stationary axisymmetric MHD flow• The transfield equation

• Self-similar analysis

• Solutions scale with spherical radius along a given direction• Magneto-centrifugal acceleration• A wind is launched when the inclination angle of magnetic

lines on the disk is < 60°• After launch the flow is dominated by the toroidal magnetic

field imposed by rotation • Collimation along the magnetic axis

0)/1( BvE c

zBz

B

zz

P

Bv

4

1

8

1 2

zv

2/1000 /)(),(),()(',),( rGMfgfrr vr

Page 8: MHD JET ACCELERATION AMR SIMULATIONS Claudio Zanni, Attilio Ferrari, Silvano Massaglia Università di Torino in collaboration with Gianluigi Bodo, Paola.

• Close to disk:– Centrifugal acceleration drive the gas out– Acceleration by magnetic pressure– Force-free type magnetic fields

• Far away from disk:– Acceleration by Lorentz force– Asymptotic speed ~ vφ,disk

– Field predominantly toroidal– Narrow jets in balance between

hoop stress (inward) and magnetic pressure (outward)

• Two super-Alfvénic flows:– Poynting flux dominated– Matter dominated

• Stability ?• Extension to relativistic flows

(Li, Chiueh, Begelman 1992)

poloidal velocity

toroidal velocity

Page 9: MHD JET ACCELERATION AMR SIMULATIONS Claudio Zanni, Attilio Ferrari, Silvano Massaglia Università di Torino in collaboration with Gianluigi Bodo, Paola.

NONLINEAR NONLINEAR MODELLINGMODELLING

• Evolution towards a stationary solution

• Dynamical timescales

– YSO days

– AGN days

• Stability

• Role of dissipation – “thermally loaded” jets (Casse & Ferreira 2000)

k

t

2

0

2/1

2/30

0/

AU1.0/8.10

sunMM

rt

sunSchw M

M

r

rt

8

2/3

00 1010

3

Page 10: MHD JET ACCELERATION AMR SIMULATIONS Claudio Zanni, Attilio Ferrari, Silvano Massaglia Università di Torino in collaboration with Gianluigi Bodo, Paola.

Use of an adaptive mesh code to simulate longer spatial and temporal scales – FLASHFLASH (Univ.of Chicago)

Implementation of the required physics and modules: geometry, resistivity, semi-relativistic module

Godunov type numerical scheme: characteristics linear reconstruction, HLLE solver, second order Hancock predictor

2.5 ( 3) dimensions - viscosity - resistivity

NUMERICAL APPROACHNUMERICAL APPROACH

Page 11: MHD JET ACCELERATION AMR SIMULATIONS Claudio Zanni, Attilio Ferrari, Silvano Massaglia Università di Torino in collaboration with Gianluigi Bodo, Paola.

• In this work:– High resolution – Consistent treatment of disk and

jet starting from equilibrium (thick disk, Abramowicz 1980)

– No forcing of accretion, starting with an ordered poloidal magnetic field aligned with the rotation axis

– Long time scales of integration to reach steady-state configurations

– Test physical parameters

Page 12: MHD JET ACCELERATION AMR SIMULATIONS Claudio Zanni, Attilio Ferrari, Silvano Massaglia Università di Torino in collaboration with Gianluigi Bodo, Paola.

""0.1

"mid"5.0

high""1

nessdisk thick1.0

/exp

212

2

2

0

4

low

rH

HzcH

t

pE

pEt

E

pt

t

Alfven

BBuuBB

BBuu

BBguBBuuBB

gBBIBB

uuu

u

Page 13: MHD JET ACCELERATION AMR SIMULATIONS Claudio Zanni, Attilio Ferrari, Silvano Massaglia Università di Torino in collaboration with Gianluigi Bodo, Paola.

INITIAL CONDITIONSINITIAL CONDITIONSOutflow

Ref

lect

ive

Ref

lect

ive

Outflow

Disk + Inflow

Reflective

Hydrostatic + Inflow

AMR – 6 levels of refinement with 8x8 cells blocks Disk:

256 x 768 equivalent resolution

Atmosphere:

Magnetic field (at the disk midplane):

33.32

2

z

diskplasma B

p

3/51

1

01.011

5.0

20

20

1

12

5.0

00

diskdisk

k

sdisk

k

p

v

c

rR

r

rvv “Keplerian” disk ε

~ 1

41

20

21

1

101

4.01

atm

k

saatm

p

v

ca

Page 14: MHD JET ACCELERATION AMR SIMULATIONS Claudio Zanni, Attilio Ferrari, Silvano Massaglia Università di Torino in collaboration with Gianluigi Bodo, Paola.

Low resistivity

EVOLUTION OF THE EVOLUTION OF THE SYSTEMSYSTEM

Page 15: MHD JET ACCELERATION AMR SIMULATIONS Claudio Zanni, Attilio Ferrari, Silvano Massaglia Università di Torino in collaboration with Gianluigi Bodo, Paola.

Mid resistivity

Page 16: MHD JET ACCELERATION AMR SIMULATIONS Claudio Zanni, Attilio Ferrari, Silvano Massaglia Università di Torino in collaboration with Gianluigi Bodo, Paola.

High resistivity

Page 17: MHD JET ACCELERATION AMR SIMULATIONS Claudio Zanni, Attilio Ferrari, Silvano Massaglia Università di Torino in collaboration with Gianluigi Bodo, Paola.

• Extraction of angular momentum by torsional Alfvén waves starts accretion(the system is steady without magnetic field)

• Late stages reach a quasi-steady mass and angular momentum ejection

• The end results are similar for all resistivity values

Page 18: MHD JET ACCELERATION AMR SIMULATIONS Claudio Zanni, Attilio Ferrari, Silvano Massaglia Università di Torino in collaboration with Gianluigi Bodo, Paola.

ACCELERATIONACCELERATION

Lorentz force changes sign at the disk upper boundary

Both Jr and –Jθ change sign at the disk surface

Magnetic pressure associated with Br seems to be dominant

Disk is supported by thermal pressure against gravity and magnetic pinch

Lorentz force accelerates the outflow

Page 19: MHD JET ACCELERATION AMR SIMULATIONS Claudio Zanni, Attilio Ferrari, Silvano Massaglia Università di Torino in collaboration with Gianluigi Bodo, Paola.

ANGULAR MOMENTUM ANGULAR MOMENTUM TRANSPORTTRANSPORT

Toroidal Lorentz forces transfer angular momentum from the disk to the outflow

Jr and Jz changes sign at the disk surface

Outflow centrifugally accelerated

Page 20: MHD JET ACCELERATION AMR SIMULATIONS Claudio Zanni, Attilio Ferrari, Silvano Massaglia Università di Torino in collaboration with Gianluigi Bodo, Paola.

COLLIMATIONCOLLIMATION

Lorentz forces collimate the ouflow

Magnetic pressure pushes outwards

Magnetic “hoop stress” collimates

Page 21: MHD JET ACCELERATION AMR SIMULATIONS Claudio Zanni, Attilio Ferrari, Silvano Massaglia Università di Torino in collaboration with Gianluigi Bodo, Paola.

High resistivityMid resistivityLow resistivity

ASYMPTOTIC VELOCITIESASYMPTOTIC VELOCITIES

Fast

Alfvèn

Super-Alfvenic and super-fast-magnetosonic flow

Asymptotic speed Keplerian speed

Page 22: MHD JET ACCELERATION AMR SIMULATIONS Claudio Zanni, Attilio Ferrari, Silvano Massaglia Università di Torino in collaboration with Gianluigi Bodo, Paola.

ENERGY FLUXESENERGY FLUXES

Asymptotically kinetic flux ~ Poynting flux

Poynting flux: • on the disk scale the - vθBθBz component dominates (extraction of angular momentum)• on the jet scale the Bθ

2vz component dominates (advection)

rrrzr BvBBvvBB 22flux Poynting

zvv2

2

1flux kinetic

Page 23: MHD JET ACCELERATION AMR SIMULATIONS Claudio Zanni, Attilio Ferrari, Silvano Massaglia Università di Torino in collaboration with Gianluigi Bodo, Paola.

Mass outflow / inflow Mass outflow / inflow rate ratiorate ratio

High resistivityMid resistivityLow resistivity

Page 24: MHD JET ACCELERATION AMR SIMULATIONS Claudio Zanni, Attilio Ferrari, Silvano Massaglia Università di Torino in collaboration with Gianluigi Bodo, Paola.

SUMMARIZING …SUMMARIZING … We were able to produce a higly collimated jet starting from a Keplerian disk without forcing accretion and treating the accretion disk consistently

The disk is supported by thermal pressure while gravity and magnetic field pinch it

Accretion and jet acceleration are driven by the magnetic field that also collimates the outflow (magnetic “hoop stress”)

The outflow reaches a steady mass flux (knots ?)

The outflow reaches super-fast magnetosonic speeds and has comparable kinetic and Poynting fluxes

Resistivity slows down the extraction of angular momentum and defines the time of evolution to steady state