MHD Fundamentals

download MHD Fundamentals

of 26

Transcript of MHD Fundamentals

  • 8/6/2019 MHD Fundamentals

    1/26

    History Equations Energy Dimensions Approximations Effects

    Fundamentals of MHD

    Thierry Alboussiere

    LGIT, University of Grenoble, France

    Ecole dete sur la Dynamo

    Les Houches

    30 July 23 August 2007week 1 and week 4

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/6/2019 MHD Fundamentals

    2/26

    History Equations Energy Dimensions Approximations Effects

    Plan

    1. A short history of MHD

    2. Governing equations

    3. Energetics

    4. Dimensionless parameters5. MHD approximations

    6. MHD physical effects

    7. Stability of MHD flows

    8. MHD turbulence

    9. Measurement techniques

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/6/2019 MHD Fundamentals

    3/26

    History Equations Energy Dimensions Approximations Effects

    A short history of MHD

    The hydrodynamics chain

    The electromagnetism chain

    A short history of magnetohydrodynamics

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/6/2019 MHD Fundamentals

    4/26

    History Equations Energy Dimensions Approximations Effects

    The hydrodynamics chain

    Newton (16421727) Principia mathematicaphilosophi naturalis, 1687

    f = ma

    Euler (17011783) Memoires de lacademie des

    sciences de Berlin, 1757

    u

    t+ (u )u = p

    t + (u) = 0

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/6/2019 MHD Fundamentals

    5/26

    History Equations Energy Dimensions Approximations Effects

    The hydrodynamics chain

    Navier (17851836) French Engineer. Navier-Stokes equation, 1821

    u

    t+ (u )u = p+ 2u

    Stokes (18191903) On the theories of the in-ternal friction of fluids in motion, 1845

    H E E D A E

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/6/2019 MHD Fundamentals

    6/26

    History Equations Energy Dimensions Approximations Effects

    The electromagnetism chain

    Volta (17451827) voltaic pile or battery,letter to the Royal Society, 1800

    Ampere (17751836) unification of electricityand magnetism, 1820

    H E E D A E

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/6/2019 MHD Fundamentals

    7/26

    History Equations Energy Dimensions Approximations Effects

    The electromagnetism chain

    Ohm (17891854) Die galvanische Kette,mathematisch bearbeitet, 1827

    j = E

    Faraday (17911867) the law of induction,1831

    V = d

    dt

    History Equations Energy Dimensions Approximations Effects

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/6/2019 MHD Fundamentals

    8/26

    History Equations Energy Dimensions Approximations Effects

    The electromagnetism chain

    Maxwell (18311879) synthesis of electromag-netismOn Faradays lines of force, 1855-1856

    History Equations Energy Dimensions Approximations Effects

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/6/2019 MHD Fundamentals

    9/26

    History Equations Energy Dimensions Approximations Effects

    A short history of magnetohydrodynamics

    Faraday (17911867) the dynamo disk

    History Equations Energy Dimensions Approximations Effects

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/6/2019 MHD Fundamentals

    10/26

    History Equations Energy Dimensions Approximations Effects

    Faradays six principles

    Have a little pad and take notes at all times

    Exchange letters with other scientists

    Have collaborations Check everything

    Avoid controversy

    Never make general assumptions too quickly, speak and write

    as precisely as possible

    History Equations Energy Dimensions Approximations Effects

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/6/2019 MHD Fundamentals

    11/26

    History Equations Energy Dimensions Approximations Effects

    A short history of magnetohydrodynamics

    Siemens (18161892) self-excited dynamo,1866

    History Equations Energy Dimensions Approximations Effects

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/6/2019 MHD Fundamentals

    12/26

    s or qu o s rg s o s ro o s c s

    A short history of magnetohydrodynamics

    Siemens (18161892) self-excited dynamo,1866

    Anyos Jedlik (18001895) first (?) self-exciteddynamo, 1861

    History Equations Energy Dimensions Approximations Effects

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/6/2019 MHD Fundamentals

    13/26

    q

    A short history of magnetohydrodynamics

    Self-excited Faraday disk

    History Equations Energy Dimensions Approximations Effects

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/6/2019 MHD Fundamentals

    14/26

    A short history of magnetohydrodynamics

    Larmor (18571942), dynamo action for theSun and the Earth, 1919

    Hartmann stabilizing effect of externally im-posed magnetic fields, 1937

    History Equations Energy Dimensions Approximations Effects

    http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/6/2019 MHD Fundamentals

    15/26

    A short history of magnetohydrodynamics

    Alfven (19081995) the mechanism of Alfvenwaves, 1942

    Alfven wave demonstration Lundquist

    (1949), Lehnert (1953) and Jameson (1964) inliquid sodium. Bostik and Levine (1952), Allenet al. (1959), De Silva (1961) and Spillman(1963) in plasmas

    Elsasser (19041991) father of Earths dynamomagnetism

    History Equations Energy Dimensions Approximations Effects

    http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/6/2019 MHD Fundamentals

    16/26

    A short history of magnetohydrodynamics

    Shercliff (19271983) structure of flows underan imposed magnetic field

    History Equations Energy Dimensions Approximations Effects

    http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/6/2019 MHD Fundamentals

    17/26

    A short history of magnetohydrodynamics

    Kulikovskii (1933) characteristic surfaces,1971

    dl

    B= Cst

    History Equations Energy Dimensions Approximations Effects

    http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/6/2019 MHD Fundamentals

    18/26

    A short history of magnetohydrodynamics

    Demonstration of dynamo action Lowes and Wilkinson (1963) in

    an homogeneous solid with rotating cylinders. Gailitis (1999), Muhler(1999) and VKS team (2007) with liquid sodium

    History Equations Energy Dimensions Approximations Effects

    http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/6/2019 MHD Fundamentals

    19/26

    Governing equations

    History Equations Energy Dimensions Approximations Effects

    http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/6/2019 MHD Fundamentals

    20/26

    Governing equationsNavier-Stokes

    ut

    + (u.)u = p+ g + Lorentz force+ [u]

    t+ (u) = 0

    Maxwell B = 0

    E = q/

    B = j + E

    t

    E = B

    tq

    t+ j = 0

    Ohm

    s law

    History Equations Energy Dimensions Approximations Effects

    http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/6/2019 MHD Fundamentals

    21/26

    Ohms law

    Correct Ohms law (in a material reference system)

    j = E

    Non-relativistic change of coordinates (G. Rousseaux, EuroPhys.

    Lett. 71, 2005)

    E = E + u B and B = B

    General Ohms law (with Hall effect)

    j = qu + (E + u B) +|B|

    j B

    History Equations Energy Dimensions Approximations Effects

    http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/6/2019 MHD Fundamentals

    22/26

    Lorentz force

    qE + j B

    History Equations Energy Dimensions Approximations Effects

    http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/6/2019 MHD Fundamentals

    23/26

    Electrical charge equation

    q

    t+ (u )q

    + q = (u B)

    When / is much smaller than any timescale of the flow, then

    q = (u B)

    It can then be seen that qu is negligible in Ohms law. Similarly,qE is negligible in the Lorentz force and the displacement current

    E/t is negligible in Maxwells equations.

    This is the so-called magneto-static approximation.

    History Equations Energy Dimensions Approximations Effects

    http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/6/2019 MHD Fundamentals

    24/26

    Magneto-static approximation /

  • 8/6/2019 MHD Fundamentals

    25/26

    Magneto-static approximation /

  • 8/6/2019 MHD Fundamentals

    26/26

    End of lecture 1

    http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-