MESB 374 System Modeling and Analysis Laplace Transform and Its Applications.

18
MESB 374 System Modeling and Analysis Laplace Transform and Its Applications

Transcript of MESB 374 System Modeling and Analysis Laplace Transform and Its Applications.

Page 1: MESB 374 System Modeling and Analysis Laplace Transform and Its Applications.

MESB 374 System Modeling and Analysis

Laplace Transform and Its Applications

Page 2: MESB 374 System Modeling and Analysis Laplace Transform and Its Applications.

Laplace Transform

• Motivation• Laplace Transform

– Review of Complex Numbers

– Definition

– Time Domain vs s-Domain

– Important Properties

• Inverse Laplace Transform• Solving ODEs with Laplace Transform

Page 3: MESB 374 System Modeling and Analysis Laplace Transform and Its Applications.

Motivation

A quick way tosolve for the solution of a linear-time-invariant (LTI) ODE

for various inputs with either zero or non-zero ICs

Time domainmodel

Frequency domainmodel

L

Time domainsolutionClassic calculus techniques

Integration & Convolution

0

t

td

Frequency domainsolutionAlgebraic techniques

Free ResponseForced Responsedue to . .due to input ( )

( ) ( ) ( )F N

I C sU s

Y s Y s Y s 1-L

d

dt

s

( )y t

( )Y s

( ) ( ) ( )FY s G s U s

Page 4: MESB 374 System Modeling and Analysis Laplace Transform and Its Applications.

Review of Complex Numbers

• Common Forms of a Complex Number:

– Coordinate Form:

– Phasor (Euler) Form:

• Moving Between Representations– Phasor (Euler) Form Coordinate Form

– Coordinate Form Phasor (Euler) Form

Az x j y

z Ae A jj (cos sin )

1

2 21

1

tan ( ) when is in the 1st or 4th quadrant

atan2( , ) tan ( ) when is in the 2nd quadrantatan2( , )

tan ( ) when is in the 3rd quadrant

yx

yx

yx

zA x y

y x zy x

z

Real

Img.

z

y

x

x A

y Ae jj

cos

sincos sin

Page 5: MESB 374 System Modeling and Analysis Laplace Transform and Its Applications.

Definition of Laplace Transform

• Laplace Transform– One Sided Laplace Transform

where s is a complex variable that can be represented by s=j f (t) is a function of time that equals to 0 when t < 0.

• Inverse Laplace Transform

0( ) ( ) ( )£ stF s f t f t e dt

11

( ) ( ) ( )2£

c j

c j

stf t F s F s e dsj

A function ofcomplex variable s

A function oftime t

A function oftime t

A function ofcomplex variable s

Page 6: MESB 374 System Modeling and Analysis Laplace Transform and Its Applications.

Laplace Transforms of Common Functions

Some simple examplesStepsExponentialsRampsTrigonometricImpulses

t

y 0

00

( ) ( )

1

1

st

st st

Y s y t e dt

e dt es

s

t

y0

( )

0

( )

1 1

t st

s t

Y s e e dt

es s

t

y

0

2

( )

1

stY s te dt

s

Unit Step

Unit Ramp

Exponential

Page 7: MESB 374 System Modeling and Analysis Laplace Transform and Its Applications.

Laplace Transforms of Common Functions

0 0

00

2 2

( ) sin2

1 1

2 2

y y

y y

y y

j t j tst st

y

j s t j s tj s t j s t

y y

y

y

e eY s t e dt e dt

j

e ee e dt

j j j s j s

s

0

0 0 00

0

( ) ( ) ( ) 0

( ) 1

st st stY s t e dt t e dt e dt

t dt

t

y

t

y

Trigonometric

Unit Impulse

( ) sin yy t t

( ) ( )y t t

Page 8: MESB 374 System Modeling and Analysis Laplace Transform and Its Applications.

Important Properties• Linearity

Given

a and b are arbitrary constants,then

Q: If u(t) = u1(t) + 4 u2(t) what is the Laplace transform of u(t) ?

• DifferentiationGiven

The Laplace transform of the derivative of f (t) is:

– For zero initial condition:

1 1

2 2

( ) ( )

( ) ( )

££

F s f t

F s f t

1 2

1 2

( ) ( )

( ) ( )

£ a f t b f t

aF s bF s

0

0 0

0

2

( ) ( )

(0) ( ) (0)

( ) ( ) ( ) (0)

( ) (0) (0)( ) (0) (0)

( ) ( ) ( ) (

£

£ £ £

£ £ £

st

st st

st

dfddt dt

ddt

ddt

f t e dt

e f f de

f s fe dt sF s f

f t f t s f t f

s sF s f fs F s sf f

f t f t s f t f

2

3 2

0)

( ) (0) (0) (0)

( ) (0) (0) (0)

s s F s sf f f

s F s s f sf f

1 Multiplication by

Differentiation

££

£ s

ds

dt

( ) ( )£F s f t

1 2

1 2

( ) 4 ( )

( ) 4 ( )

£ u t u t

U s U s

Page 9: MESB 374 System Modeling and Analysis Laplace Transform and Its Applications.

Important Properties• Integration

Given

The Laplace transform of the definite integral of f (t) is:

– Conclusion:

Q : Given that the Laplace transforms of a unit step function u(t) = 1 and f(t) = sin(2t) are

What is the Laplace transform of 0 0 0

0 00

0

( ) ( )

1 1( ) ( )

10 ( )

1( )

£ t tst

tst st

st

f d f d e dt

e f d e f t dts s

f t e dts

F ss

1

0

Integration Division by

£1

££

t

s

ds

2

1( ) 1

2( ) sin(2 )

4

£

£

U ss

F s ts

e t t t t( ) cos( ) 2 3 5 4 22

( ) ( )£F s f t

2

( ) 2 3 10 20 0

22 3

42 3 4

£ ( ) £ 1 £ 1 £ £ sin(2 )

22 3 10 2 sin 2 04

2 3 10

t tE s

s

s

de t dt d t

dt

sss s s

s s s

Page 10: MESB 374 System Modeling and Analysis Laplace Transform and Its Applications.

Obtaining Time Information from Frequency Domain

• Initial Value Theorem

Ex:

• Final Value Theorem

Ex:

f sF ss

( ) lim ( )0

f f t sF st s

( ) lim ( ) lim ( ) 0

1

lim)0(

)(lim)0(

22

2

s

sy

ssYy

s

s

t

y

22)(

s

ssY

y(t)£

1

lim)(

)(lim)(

0

0

ass

say

ssYy

s

s

Note: FVT applies only when f (∞) exists !

t

y ass

asY

)(

y(t)£

Page 11: MESB 374 System Modeling and Analysis Laplace Transform and Its Applications.

Inverse Laplace TransformGiven an s-domain function F(s), the inverse Laplace transform is used to obtain the corresponding time domain function f (t). Procedure:

– Write F(s) as a rational function of s.

– Use long division to write F(s) as the sum of a strictly proper rational function and a quotient part.

– Use Partial-Fraction Expansion (PFE) to break up the strictly proper rational function as a series of components, whose inverse Laplace transforms are known.

– Apply inverse Laplace transform to individual components.

Page 12: MESB 374 System Modeling and Analysis Laplace Transform and Its Applications.

One Example

• Find inverse Laplace transform of2

3

6 8( )

4

sF s

s s

2 2

1 2 33

6 8 6 8( )

4 2 2 2 2

s s a a aF s

s s s s j s j s s j s j

1 0 0( ) lim ( ) 2

s sa sF s sF s

2 22 ( ) 2

s ja s j F s

3 2

2 ( ) 2s j

a s j F s

2

2 2 2 2( ) 4

2 2 4

sF s

s s j s j s s

1 1 12 4 2

1£ ( ) £ £

42 4cos(2 )

f ts

F ss s

t

• Residual Formula

Page 13: MESB 374 System Modeling and Analysis Laplace Transform and Its Applications.

Use Laplace Transform to Solve ODEs

Y(s): Solution in Laplace Domain

y(t): Solution in Time Domain

Differential Equations (ODEs)

+Initial Conditions (ICs)

(Time Domain)

Algebraic Equations

( s-domain )

L [ ] L -1 [ ]

Solve ODE

Solve Algebraic Equation

Page 14: MESB 374 System Modeling and Analysis Laplace Transform and Its Applications.

ExamplesQ: Use LT to solve the free response of a

1st Order System.

Q: Use LT to find the step response of a 1st Order System.

( )y y y y 0 0 0

( )y y K y 1 0 0

£ £ 0y y

( ) (0) ( ) 0sY s y Y s

01 ( )s Y s y

0( )1

yY s

s

01 1( )

1

0

1£ ( ) £

1y t y

t

Y ss

y e

£ £y y K

( ) (0) ( )K

sY s y Y ss

1 ( )K

s Y ss

1

1 1( )

1 1( 1) ( )

KY s K K

s s ss s s

1( ) 1£ ( )t

y t K eY s

( ) 5 ( )K

sY s Y ss

5

( )1 1

KY s

s s s

1( ) 1 5£ ( )t t

y t K e eY s

Q: What is the step response when the initial condition is not zero, say y(0) = 5.

Page 15: MESB 374 System Modeling and Analysis Laplace Transform and Its Applications.

Use LT and ILT to Solve for Responses

Find the free response of a 2nd order system with two distinct real characteristic roots:

2

£££

( ) (0) (0) 9 ( ) (0) 18 ( ) 0yyy

s Y s sy y sY s y Y s

( ) ( )y y y y y 9 18 0 0 0 0 3where and

1 2

2

3 3( )

9 18 3 6 3 6

a aY s

s s s s s s

1 33 ( ) 1

sa s Y s

2 6

6 ( ) 1s

a s Y s

1 21 1 1( )

3 6

1 1£ ( ) £ £

3 6

1 ( 1)

y t a a

t t

Y ss s

e e

Page 16: MESB 374 System Modeling and Analysis Laplace Transform and Its Applications.

Use LT and ILT to Solve for Responses

Find the free response of a 2nd order system with two identical real characteristic roots:

2

25

5 ( ) 10s

a s Y s

( ) ( )y y y y y 10 25 0 0 1 0 5where and

2

£££

( ) (0) (0) 10 ( ) (0) 25 ( ) 0yyy

s Y s sy y sY s y Y s

1 2

2 22

15 15( )

10 25 55 5

s s a aY s

s s ss s

2

1 2 15 5

15 ( ) 15 1

2 1 ! s s

d da s Y s s

ds ds

1 2

1 1 1( ) 2

5 5

1 1£ ( ) £ £

5 5

10

y t a a

t t

Y ss s

e te

Page 17: MESB 374 System Modeling and Analysis Laplace Transform and Its Applications.

Use LT and ILT to Solve for Responses

Find the free response of a 2nd order system with complex characteristic roots:

2

£££

( ) (0) (0) 6 ( ) (0) 25 ( ) 0yyy

s Y s sy y sY s y Y s

( ) ( )y y y y y 6 25 0 0 1 0 3where and

1 2

221 2

3 3( )

6 25 3 16

s s a aY s

s s s p s ps

1,2 3 4p j

1

1 1

1( )

2s pa s p Y s

22 2 1

1( )

2s pa s p Y s a

1 2

1 1

1 1 1( )

1 2

1 1

1 1

11 111 1

3 4 3

1 1£ ( ) £ £

1 1£ £

2Re

12Re cos(4 )

2

y t a a

a a

p tp t p t

j t t

Y ss p s p

s p s p

a e a e a e

e e t

Page 18: MESB 374 System Modeling and Analysis Laplace Transform and Its Applications.

Use LT and ILT to Solve for Responses

Find the unit step response of a 2nd order system:

2

££ £ ££

( ) (0) (0) 6 ( ) (0) 8 ( ) ( ) (0) 3 ( )yy u uy

s Y s sy y sY s y Y s sU s u U s

6 8 3 where (0) 0 and (0) 0y y y u u y y

1 2 3

2 2

3 3 1( ) ( )

6 8 6 8 2 4

s s a a aY s U s

s s s s s s s s

1 0

3( )

8sa sY s

2 2

12 ( )

4sa s Y s

1 2 31 1 1 1( )

2 4

1 1 1£ ( ) £ £ £

2 4

3 1 18 4 8

y t a a a

t t

Y ss s s

e e

3 4

14 ( )

8sa s Y s