McCabe & Thiele - TM -1- Jan 2012

download McCabe & Thiele - TM -1- Jan 2012

of 38

Transcript of McCabe & Thiele - TM -1- Jan 2012

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    1/38

    05/02/16 Dr.T.M 1

    McCabe-Thiele Method 

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    2/38

    05/02/16 Dr.T.M 2

    The objective is:

      To understand the distillation process

      To make material balance for a distillation system

      To understand the concept of equilibrium staes and their

    estimation

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    3/38

    05/02/16 Dr.T.M !

    Total condenser 

    Feed

    Overhead vapor

    Boilup

    N

    2

    1

    Distillation

    Reflux drum 

    Rectifying section stages 

    Stripping section stages 

    Feed Stage 

    Bottoms

    Partial reboiler 

    Reflux Distillate 

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    4/38

    05/02/16 Dr.T.M "

    Total condenser 

    Feed (L/V)

    Overhead vapor

    Boilup

    N

    2

    1

    Distillation

    Reflux drum 

    Rectifying section stages 

    Stripping section stages 

    Feed Stage 

    Bottoms

    Partial reboiler 

    Reflux Distillate 

    LK mole fraction zF

    LK mole fraction xD

    LK mole fraction xB

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    5/38

    05/02/16 Dr.T.M 5

    The general countercurrent-flow, multistage, binary distillation 

    column shown below consists of:

    •  A column of N theoretical stages.

    •  A total condenser to produce a reflux liquid to act as an

    absorbent and a liquid distillate.

    •  A partial reboiler to produce boilup vapor to act as a stripping

    agent and a bottoms product.

    •  An intermediate feed stage.

    This configuration allows one to achieve a sharp separation,

    except in cases where an azeotrope exists where one of the

    products will approach the azeotropic concentration.

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    6/38

    05/02/16 Dr.T.M 6

      McCabe-Thiele Method:Equilibrium Curve

    relative volatility can be defined in terms of the mole

    fractions of the lighter compound in a binary mixture as

    follows:

    α 1,2 =  K 1 / K 2 =  y

    1

     /  x1

     y2  /  x2 =  y

    1

     /  x1

    1− y1( ) / 1− x1( ) = y1

      1− x1( ) x1  1− y1( )

    α  will be nearly constant in the column.

    Solving for the mole fraction of the Lighter compound

    in the vapor gives:

     y1 =α 1,2 x1

    1+ x1  α 1,2  −1( )

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    7/3805/02/16 Dr.T.M #

    For components which do not have close boiling points α will

    vary depending on composition. The equilibrium curve willappear similar to that of fixed α, but won’t fit the equation

    above for constant α. 

    y1

    x1

    Equilibrium

    curve

    45° line

    y1

    x1

    45° line

    Increasing

    relative

    volatility

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    8/3805/02/16 Dr.T.M $

    Feed (L/V)

    Boilup

    N

    2

    1

    Bottoms

    Reflux 

    F,xF

    D, xD

    B, xB

    Distillate

    A total mass balance around the

    column gives:F  =  D+ B

    A mass balance in the Lighter

    component

     B D F   Bx Dx Fx

    +=

       

      

     −−

    = B D

     B F 

     x x

     x x

     F 

     D

       

      

     −−

    = B D

     F  D

     x x

     x x

     F 

     B

    Overall mass Balance

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    9/3805/02/16 Dr.T.M %

    Rectifying Section

    n

    1 Reflux 

     L0 , x

     D= x

    0

    Distillate

    xD

     L

     xn

     yn+1

    The rectifying section extends from stage 1

    to the stage just above the feed stage. If we

    perform a material balance in the lighter

    compound around the n stages of therectifying section including the condenser:

    V n+1 yn+1 = Ln xn + Dx DOn rearranging

     yn+1 =  Ln

    V n+1 xn +

      D

    V n+1 x D

    If L and V  are constant in the column from stage to stage, then

    this is a straight line.

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    10/3805/02/16 Dr.T.M 10

    Constant Molar Overfow

    Feed ( L / V )

    BoilupN

    n

    1

    Bottoms

    Reflux 

     Z F

     L, x D= x0

     x B

    Distillate

     x D

     yn+1 =  Ln

    V n+1 xn +

      D

    V n+1 x D

    For this condition the amount of

    vapor transferred to the liquid

    stream in each stage is equal to

    the amount of liquid transferred tothe vapor stream. Thus the liquid

    and vapor stream flow rates are

    constant in the entire section.

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    11/3805/02/16 Dr.T.M 11

    Feed (L/V)

    BoilupN

    n

    1

    Bottoms

    Reflux 

     F,

     X  F

     

    B,xB

    Distillate

     D, x

     D

    & ' (/DL

     

    )peratin line for rectification section 

     D

    n

    n

    n

    nn   x

     D L

     D x

     D L

     L y

    ++

    +=+1

    *+ 1   D Lv nn   +=+

      Di,ide by -D

     D

    n

    n

    n

    nn   x

     D D L D D x

     D D L D L y

    /*+/*+

    /*+/*+

    1 ++

    +=+

    111

    +

    +

    +

    =+ R

     x x

     R

     R y   Dnn

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    12/3805/02/16 Dr.T.M 12

     x

    Equilibrium

    curve

    45° line

     x0= xD x1

    y

     y1

     y2

     y =1

     R+1 x D

    Rectifying Section

    Operating line

    Slope= L / V = R /( R+1)

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    13/38

    05/02/16 Dr.T.M 1!

    L

    xm

    V

     ym+1

    Boilup

    N

    Bottoms

    B, xB

    m+1

    L, xN

    V, yB

    Stripping Section

     B

    m

    m

    m

    mm   x

     B L

     B x

     B L

     L y

    =+1

    *+ 1   B Lv mm   −=+

     B

    m

    m

    m

    mm   x

     B x

     L y

    11

    1

    +++   −=

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    14/38

    05/02/16 Dr.T.M 1"

    x

    Equilibrium

    curve

    45° line

    xNx

    B

    y

    yB

    yN

    xm

    Ym+1

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    15/38

    05/02/16 Dr.T.M 15

    Feed Stage Conditions

    1. If the feed is subcooled Liquid

    F

    L V  <  V 

    V  L  >  F +  L 

    q - moles of liquid flow in the striping section whichresults from the introduction of one mole of feed 

     L  - Flow of liquid in the stripping section

    Flow of vapor in the stripping section

     V 

    q > 1 q > 1 

    λ 

    *+1

      F bp pL   T T C q

    +=

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    16/38

    05/02/16 Dr.T.M 16

    F

    L

    V  = V 

     L =  F +  L 

    2. The feed is at its Bubble Point (Liquid)

    q = 1

     

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    17/38

    05/02/16 Dr.T.M 1#

    F

    L

    V  = V F  +V 

     L =  L +  L F 

    3. If the feed is Partially Vaporized

    ! q ! 1 

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    18/38

    05/02/16 Dr.T.M 1$

    F

    L

    V = F +V 

     L = L

    4. If the fees is at its Dew Point ( Vapor) 

    q =  

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    19/38

    05/02/16 Dr.T.M 1%

    F

    L

    V >  F +V 

     L

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    20/38

    05/02/16 Dr.T.M 20

      "n general we have two operating lines

     yV  =  Lx + Dx D   yV  =  Lx −  Bx B

    The q-line

    #ubtracting the equations 

     y V − V ( )=   L − L( ) x + Dx D +  Bx B*+  F  B D   Fx Bx Dx   =+( ) ( )   F  Fx x L LV V  y   +−=−

    qF  L L +=   qF  L L =−  i.e.

     F qV V    *1+   −+= i.e.  F qV V    *1+   −=−

    #ubstituting the values 

       

      

     −

    −   

      

     −

    =11   q

     x x

    q

    q y   F 

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    21/38

    05/02/16 Dr.T.M 21

    q=1   q>1

    0

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    22/38

    05/02/16 Dr.T.M 22

    Equilibrium

    curve

    45° line

    xFxB

    y

    yB

    yN

    Stripping Section:

    Operating line

    Slope=

    xD

     q-line

     y =  L

    V  x +

     D

    V  x D

     y =  L

     x − B

     x B

     y =  q

    q −1

     

     

     

       x −

      zF 

    q −1

     

     

     

      

    Rectifying Section:Operating line

    Slope= L / V = R /( R+1)

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    23/38

    05/02/16 Dr.T.M 2!

    Equilibrium

    curve

      xF  x B

     y

     y B

     y N 

     x D

    1

    2

    3

    4

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    24/38

    05/02/16 Dr.T.M 2"

     x=xF  x B

     y

     y B

     y N 

     x D   x=xF  x B

     y

     y B

     y N 

     x D

    1

    2

    3

    4

    1

    2

    3

    4

    5

    Feed stage located one tray too low. Feed stage located one tray too high.

    Feed Stage Location singMcCabe-Thiele Method

    Equilibrium

    curve

    Equilibrium

    curve

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    25/38

    05/02/16 Dr.T.M 25

    Equilibrium

    curve

      xFxB

    y

    yB

    yN

    xD

    Equilibrium

    curve

     xFxB

    y

    yB

    yN

    xD

    1

    2

    3

    4

    1

    2

    3

    4

    5

    Feed stage located one tray too low. Feed stage located one tray too high.

    6

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    26/38

    05/02/16 Dr.T.M 26

    Equilibriumcurve

    xFxB

    y

    yB

    yN

    xD

    1

    2

    3

    4

    Optimum feed stage location.

    inary Distillation 26

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    27/38

    05/02/16 Dr.T.M 2#

    Minimum Reux for

    McCabe-ThieleEquilibrium

    curve

    xFxB

    y

    yB

    yN

    xD

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    28/38

    05/02/16 Dr.T.M 2$

    Construction !or the McCabe-Thiele

    MethodStep 1: Plot equilibrium curve and 45 degree line.

    Step 2: Plot given compositions (XF, X

    B,X

    D)

    Step 3: Draw q-line

    45° line

      xFxB

    y

    xD

    equilibrium

    curve

    x

    45° line

    y

    equilibrium

    curve

    1. 2.

      xFxB xD

    y

    equilibrium

    curve

    3.

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    29/38

    05/02/16 Dr.T.M 2%

    Step 4: Determine Rmin from intersection of the rectifying section OL and the

    equilibrium curve.

    Step 5: Determine R from R/Rmin

    Step 6: Draw OL for Rectifying section

    Step 7: Draw OL for Stripping section

    x=zFxB xD

    y

    equilibrium

    curve

    R/(R+1)

    x=zFxB xD

    y

    equilibrium

    curve

    x=zFxB xD

    y

    equilibrium

    curve

    Rmin /(Rmin+1)

    4. 5. and 6.7.

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    30/38

    05/02/16 Dr.T.M !0

    Minimum Number of Stages for

    McCabe-ThieleEquilibriumcurve

    xFxB

    y

    yB

    yN

    xD

    1

    2

    3

    4

    By returning all the exiting vapor

    as reflux and all the exiting liquid

    as boilup the operating lines have

    slope of one.

    Although this is the minimum

    number of stages, no product is

    produced (note the feed must then

    go to zero).

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    31/38

    05/02/16 Dr.T.M !1

     

    0

    .1

    .2

    .3

    .4

    .5

    .6

    .7

    .8

    .9

    1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    y

    x

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    32/38

    05/02/16 Dr.T.M !2

    $ continous fractionating column is used to separate % &g moles 'min of a

    binar( mi)ture containing * mole + of ben,ene and the rest toluene The top

    product must contain ./ mol + of ben,ene and the bottom product contains ./

    mole + of toluene $ reflu) ratio of 0% moles to 1 mole of product is to be used

    The feed enters the column at its boiling point

    alculate the moles of overhead product and bottom product

    alculate the minimum reflu) ratio

    alculate the number of ideal stages

    $ssume the relative volatilit( is 00%

    2roblem - 1 

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    33/38

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    34/38

    05/02/16 Dr.T.M !"

    feed of 50 mol3 he4ane and 50mol3 octane is fed into a pipe still throuh a

     pressure reducin ,al,e and then into a flash disenain chamber. The ,apor

    and liquid lea,in the chamber are assumed to be in equilibrium. f the fraction

    of the feed con,erted to the ,apor is 0.5 find the compositions of the top and

     bottoms products. Table 1  belo shos equilibrium data for this system.

      2roblem -  

    Table 1: Liquid and vapor mole fractions of he)ane

    Liquid mole fraction of

    hexane,  x 

    1.00 0.69 0.40 0.19 0.05 0.00

    Vapor mole fraction ofhexane, y 

    1.00 0.93 0.78 0.54 0.18 0.00

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    35/38

    05/02/16 Dr.T.M !5

    1 moles of ben,ene$8 and toluene68 mi)ture containing

    % mol+ of ben,ene is subjected to a differential distillation

    at atm pressure till the composition of the ben,ene in the

    residue is mol + alculate the total moles of the mi)ture

    distilled $ssume a relative volatilit( of 0%

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    36/38

    05/02/16 Dr.T.M !6

    feed to a distillation unit is 10000 k moles /h of a solution of

    alcohol and ater containin "5 mol3 of alcohol is to be

    separated to i,e an o,erhead product of %5mol3 alcohol and

    the bottom product containin 5 mol3 of alcohol. The feed is

    at its boilin point and a total condenser is used. The

    equilibrium relation is i,en belo.

    7 0.01# 0.1! 0.25$ 0."11 0.5$1 0.#$

    8 0.0!% 0.261 0."$6 0.6!2 0.### 0.%

    1. calculate the amount of the alcohol produced per hour.

    2. 9stimate the total number of theoretical staes required

    under total reflu4 conditions.

    !. 9stimate the minimum reflu4 ratio.

    ". f 2 times of the minimum reflu4 is used estimate the

    number of theoretical staes required for the desired

    separation.

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    37/38

    05/02/16 Dr.T.M !#

    2roblem :* $ feed to a pac&ed distillation tower has an overall

    composition of *0 mol+ heptane and the rest as eth(l ben,ene is to be

    distilled at atmospheric pressure to produce a distillate containing .5 mol

    + of heptane and the bottoms containing 11 mol+ of heptane $ partiall(

    vapori,ed feed containing * mol+ of liquid is fed into the tower at a rate

    of 00% mol'h The equilibrium data are given in T$6L; ?

    alculate the following:  i 7oles per hour of distillate and bottoms

    ii 7inimum reflu) ratio

      iii 9umber of theoretical stages3 if the tower is operated under

    total reflu) conditions

    iv 9umber of theoretical stages3 if the tower is operated at a reflu)ratio of 0% : 1

    v Location of feed tra( from the top of the tower

  • 8/17/2019 McCabe & Thiele - TM -1- Jan 2012

    38/38

    T$6L; ?: 9quilibirum data for heptane and ethylben:ene system

    ole fraction of

    heptane in the liquid

    pha!e, x

    ole fraction of

    heptane in the "a!

    pha!e, y

    0.000 0.000

    0.080 0.#3

    0.#50 0.5140.485 0.730

    0.790 0.904

    1.000 1.000