Maxwell’s Equations in Matter in vacuum in matter .E = / o .D = free Poisson’s Equation .B =...

11
Maxwell’s Equations in Matter in vacuum in matter .E = r /e o .D = r free Poisson’s Equation .B = 0 .B = 0 No magnetic monopoles x E = -∂B/∂t x E = -∂B/∂t Faraday’s Law x B = m o j + m o e o E/∂t x H = j free + ∂D/∂t Maxwell’s Displacement D = e o e E = e o (1+ c)E Constitutive relation for D H = B/(m o m) = (1- c B )B/m o Constitutive relation for H Solve with: model e for insulating, isotropic matter, m = 1,r free = 0, j free = 0

Transcript of Maxwell’s Equations in Matter in vacuum in matter .E = / o .D = free Poisson’s Equation .B =...

Page 1: Maxwell’s Equations in Matter in vacuum in matter .E =  /  o .D =  free Poisson’s Equation .B = 0 .B = 0 No magnetic monopoles  x E = -∂B/∂t

Maxwell’s Equations in Matter in vacuum in matter

.E = r /eo .D = rfree Poisson’s Equation

.B = 0 .B = 0 No magnetic monopoles

x E = -∂B/∂t x E = -∂B/∂t Faraday’s Law

x B = moj + moeo∂E/∂t x H = jfree + ∂D/∂t Maxwell’s Displacement

D = eo e E = eo(1+ c)E Constitutive relation for D

H = B/(mom) = (1- cB)B/mo Constitutive relation for H

Solve with: model e for insulating, isotropic matter, m = 1,rfree = 0, jfree = 0model e for conducting, isotropic matter, m = 1,rfree = 0, jfree = s(w)E

Page 2: Maxwell’s Equations in Matter in vacuum in matter .E =  /  o .D =  free Poisson’s Equation .B = 0 .B = 0 No magnetic monopoles  x E = -∂B/∂t

Bound and Free Charges

Bound chargesAll valence electrons in insulators (materials with a ‘band gap’)Bound valence electrons in metals or semiconductors (band gap absent/small )

Free chargesConduction electrons in metals or semiconductors

Mion k melectron k MionSi ionBound electron pair

Resonance frequency wo ~ (k/M)1/2 or ~ (k/m)1/2 Ions: heavy, resonance in infra-red ~1013HzBound electrons: light, resonance in visible ~1015HzFree electrons: no restoring force, no resonance

Page 3: Maxwell’s Equations in Matter in vacuum in matter .E =  /  o .D =  free Poisson’s Equation .B = 0 .B = 0 No magnetic monopoles  x E = -∂B/∂t

Bound and Free Charges

Bound chargesResonance model for uncoupled electron pairs

Mion k melectron k Mion

tt

t

t

t

t

e Em

qe )A(

m

k

e Em

qx(t)

m

k

hereafter) assumed (Re{} x(t)(t)x x(t)(t)x

solution trial }e )Re{A(x(t)

}Re{e Em

qx

m

kxx

}Re{e qEkxxmxm

o

o

o

o

ii

i

i

i

i

i

i

i

2

2

2

Page 4: Maxwell’s Equations in Matter in vacuum in matter .E =  /  o .D =  free Poisson’s Equation .B = 0 .B = 0 No magnetic monopoles  x E = -∂B/∂t

Bound and Free Charges

Bound chargesIn and out of phase components of x(t) relative to Eo cos(wt)

Mion k melectron k Mion

22222222

22

22222222

22

22

222

oo

o

oo

o

o

oo

-i-i-i

i

i

t)sin(t)cos(

m

qE

})}Im{eIm{A(})}Re{eRe{A(})eRe{A( x(t)

m

qE )}Im{A(

m

qE )}Re{A(

1

m

qE )A(

m

k1

m

qE )A(

o

oo

o

o

ttt

in phase out of phase

Page 5: Maxwell’s Equations in Matter in vacuum in matter .E =  /  o .D =  free Poisson’s Equation .B = 0 .B = 0 No magnetic monopoles  x E = -∂B/∂t

Bound and Free Charges

Bound chargesConnection to c and e

function dielectric model

Vm

q1)( 1 )(

Vm

q )}(Im{

Vm

q )}(Re{

(t)eERemV

q(t)

qx(t)/V volume unit per moment dipole onPolarisati

2

22

o

2t

2222

22

22222222

22

22222222

22

o

o

o

ooo

o

o

o

oo

o

i

i -i EP

1 2 3 4

4

2

2

4

6 ( )e w

/w wo

= w wo

Im{ ( )e w }

Re{ ( )e w }

Page 6: Maxwell’s Equations in Matter in vacuum in matter .E =  /  o .D =  free Poisson’s Equation .B = 0 .B = 0 No magnetic monopoles  x E = -∂B/∂t

Bound and Free Charges

Free chargesLet wo → 0 in c and e jpol = ∂P/∂t

tyconductivi Drude

1

V

1N qe

m

Ne

mV

q)(

mV

q

mV

q

mV

q)(

LeteVm

q

t

(t)(t)

eVm

q

t

(t)(t)

e1

Vm

q(t)

tyconductivi (t)(t)density Current

2222

free

222

free

o

2

free

o

2

pol

o

2

t

t

t

0

0

2224

23

2

2

22

22

ii

i

i

i

i

i

i

i

oo

o

ooo

ooo

-i

-i

-i

EP

j

EP

j

EP

Ej

1 2 3 4

4

2

2

4

6

w

wo = 0

Im{ ( )s w }

( )s w

Re{ ( )e w }

Drude ‘tail’

Page 7: Maxwell’s Equations in Matter in vacuum in matter .E =  /  o .D =  free Poisson’s Equation .B = 0 .B = 0 No magnetic monopoles  x E = -∂B/∂t

Maxwell’s Equations in Matter in vacuum in matter

.E = r /eo .D = rfree Poisson’s Equation

.B = 0 .B = 0 No magnetic monopoles

x E = -∂B/∂t x E = -∂B/∂t Faraday’s Law

x B = moj + moeo∂E/∂t x H = jfree + ∂D/∂t Maxwell’s Displacement

D = eo e E = eo(1+ c)E Constitutive relation for D

H = B/(mom) = (1- cB)B/mo Constitutive relation for H

Solve with: model e for insulating, isotropic matter, m = 1, r = 0, jfree = 0model e for conducting, isotropic matter, m = 1, r = 0, jfree = s(w)E

Page 8: Maxwell’s Equations in Matter in vacuum in matter .E =  /  o .D =  free Poisson’s Equation .B = 0 .B = 0 No magnetic monopoles  x E = -∂B/∂t

Maxwell’s Equations in Matter

Solution of Maxwell’s equations in matter for m = 1, rfree = 0, jfree = 0

Maxwell’s equations become

x E = -∂B/∂t

x H = ∂D/∂t H = B /mo D = eo e E

x B = moeo e ∂E/∂t

x ∂B/∂t = moeo e ∂2E/∂t2

x (- x E) = x ∂B/∂t = moeo e ∂2E/∂t2

-(.E) + 2E = moeo e ∂2E/∂t2 . e E = e . E = 0 since rfree = 0

2E - moeo e ∂2E/∂t2 = 0

Page 9: Maxwell’s Equations in Matter in vacuum in matter .E =  /  o .D =  free Poisson’s Equation .B = 0 .B = 0 No magnetic monopoles  x E = -∂B/∂t

Maxwell’s Equations in Matter

2E - moeo e ∂2E/∂t2 = 0 E(r, t) = Eo ex Re{ei(k.r - wt)}

2E = -k2E moeo e ∂2E/∂t2 = - moeo e w2E

(-k2 +moeo e w2)E = 0

w2 = k2/(moeoe) moeoe w2 = k2 k = ± w√(moeoe) k = ± √e w/c

Let e = e1 + ie2 be the real and imaginary parts of e and e = (n + ik)2

We need √ e = n + ik

e = (n + ik)2 = n2 - k2 + i 2nk e1 = n2 - k2 e2 = 2nk

E(r, t) = Eo ex Re{ ei(k.r - wt) } = Eo ex Re{ei(kz - wt)} k || ez

= Eo ex Re{ei((n + ik)wz/c - wt)} = Eo ex Re{ei(nwz/c - wt)e- kwz/c)}

Attenuated wave with phase velocity vp = c/n

Page 10: Maxwell’s Equations in Matter in vacuum in matter .E =  /  o .D =  free Poisson’s Equation .B = 0 .B = 0 No magnetic monopoles  x E = -∂B/∂t

Maxwell’s Equations in MatterSolution of Maxwell’s equations in matter for m = 1, rfree = 0, jfree = s(w)E

Maxwell’s equations become

x E = -∂B/∂t

x H = jfree + ∂D/∂t H = B /mo D = eo e E

x B = mo jfree + moeo e ∂E/∂t

x ∂B/∂t = mo s ∂E/∂t + moeo e ∂2E/∂t2

x (- x E) = x ∂B/∂t = mo s ∂E/∂t + moeo e ∂2E/∂t2

-(.E) + 2E = mo s ∂E/∂t + moeo e ∂2E/∂t2 . e E = e . E = 0 since rfree = 0

2E - mo s ∂E/∂t - moeo e ∂2E/∂t2 = 0

Page 11: Maxwell’s Equations in Matter in vacuum in matter .E =  /  o .D =  free Poisson’s Equation .B = 0 .B = 0 No magnetic monopoles  x E = -∂B/∂t

Maxwell’s Equations in Matter

2E - mo s ∂E/∂t - moeo e ∂2E/∂t2 = 0 E(r, t) = Eo ex Re{ei(k.r - wt)} k || ez

2E = -k2E mo s ∂E/∂t = mo s iw E moeo e ∂2E/∂t2 = - moeo e w2E

(-k2 -mo s iw +moeo e w2 )E = 0 s >> eo e w for a good conductor

E(r, t) = Eo ex Re{ ei(√(wsmo/2)z - wt)e-√(wsmo/2)z}

NB wave travels in +z direction and is attenuated

The skin depth d = √(2/wsmo) is the thickness over which incident radiation is attenuated. For example, Cu metal DC conductivity is 5.7 x 107 (Wm)-1

At 50 Hz d = 9 mm and at 10 kHz d = 0.7 mm

)(12

1k k2 iii o