Mass transfer in eccentric White Dwarf Neutron Star...

20
Mass transfer in eccentric White Dwarf – Neutron Star binaries Alexey Bobrick, Melvyn B. Davies, Ross P. Church Lund University Department of Astronomy and Theoretical Physics 2015

Transcript of Mass transfer in eccentric White Dwarf Neutron Star...

Page 1: Mass transfer in eccentric White Dwarf Neutron Star binariescompact-merger.astro.su.se/MICRA2015/slides/AlexeyBobrick.pdfMass transfer in eccentric White Dwarf { Neutron Star binaries

Mass transfer in eccentricWhite Dwarf – Neutron Star binaries

Alexey Bobrick, Melvyn B. Davies, Ross P. Church

Lund UniversityDepartment of Astronomy and Theoretical Physics

2015

Page 2: Mass transfer in eccentric White Dwarf Neutron Star binariescompact-merger.astro.su.se/MICRA2015/slides/AlexeyBobrick.pdfMass transfer in eccentric White Dwarf { Neutron Star binaries

Introduction

Image credit: Copyright Mark A. Garlick.

White Dwarf (WD) and a Neutron Star (NS)

Page 3: Mass transfer in eccentric White Dwarf Neutron Star binariescompact-merger.astro.su.se/MICRA2015/slides/AlexeyBobrick.pdfMass transfer in eccentric White Dwarf { Neutron Star binaries

Why are WD-NS systems interesting

• May power a special type of GRBs (King et al. 2007)

• Likely source of Ca-rich gap transients (Kasliwal 2012)

• Nuclear burning possibly important (Metzger 2012).

• Main UCXB progenitors (van Haaften et al. 2012).

• Good source for space-based GW missions(Antoniadis 2014).

• High mass loss – possible implications for galacticchemistry.

• Often contain millisecond pulsars (Wijnands 2010).

• Second largest fraction of doubly compact binaries(Nelemans et al. 2001).

Page 4: Mass transfer in eccentric White Dwarf Neutron Star binariescompact-merger.astro.su.se/MICRA2015/slides/AlexeyBobrick.pdfMass transfer in eccentric White Dwarf { Neutron Star binaries

Summary on WD-NS systems

• Form at a above ∼ R�

• Inspiral to contact due to GWemission

• Two possibilities after MT starts:• Low mass WD:

• Stable MT on ∼ τGW

• Seen as UCXB• Fade after a few Gyr

• High mass WD:

• Unstable MT on ∼ τdyn• Transient event

Page 5: Mass transfer in eccentric White Dwarf Neutron Star binariescompact-merger.astro.su.se/MICRA2015/slides/AlexeyBobrick.pdfMass transfer in eccentric White Dwarf { Neutron Star binaries

WD-NS observations

• Detached systems – binary pulsars (radio):• ∼ 250 known (ATNF catalogue)• 2.2 · 106 expected in the Galaxy (Nelemans et al. 2001)• Merger rate of 1.4 · 10−4 yr−1 per galaxy (Nelemans et al.

2001)

• Transferring systems (low mass WDs) – UCXBs (x-ray):• 13 confirmed (van Haaften et al. 2012)• ∼ 500 expected with P < 70min (Belczynski & Taam 2004)

• Transients (high mass WDs):• ∼ 10 gap transients seen, e.g. Kasliwal (2011)

Page 6: Mass transfer in eccentric White Dwarf Neutron Star binariescompact-merger.astro.su.se/MICRA2015/slides/AlexeyBobrick.pdfMass transfer in eccentric White Dwarf { Neutron Star binaries

Our work

• Modified SPH simulations of mass transfer

• Which systems are stable? Mcrit – ?

• How do they look like?• Extract non-conservative mass transfer parameters• Apply binary stellar evolution

log10ρ, g/cm3

5.

4.5

4.

3.5

-1

-2

-3

-4

-5

x, RWD

y,RWD

-6 -4 -2 0 2 4 6-6

-4

-2

0

2

4

6

Page 7: Mass transfer in eccentric White Dwarf Neutron Star binariescompact-merger.astro.su.se/MICRA2015/slides/AlexeyBobrick.pdfMass transfer in eccentric White Dwarf { Neutron Star binaries

Eccentricity importance

• Eccentric population with a heavy WD (Davies et al. 2002)• At least ∼ 0.1 of all WD-NS in the field (Nelemans et al.

2001)• Contact e is ∼ 10−2.5 from GWs only• WD atmospheres are thin: hρ ∼ 10−5RWD

• MT turns on and off during the orbit• UCXBs in GCs are often eccentric, e.g. 4U 1820-30, also

Prodan & Murray (2015).

Mass transfers

Mass stays bound

0 π 2 π 3 π 4 π

-4

-2

0

2

4

Orbital phase

Δr/h ρ

Page 8: Mass transfer in eccentric White Dwarf Neutron Star binariescompact-merger.astro.su.se/MICRA2015/slides/AlexeyBobrick.pdfMass transfer in eccentric White Dwarf { Neutron Star binaries

Stable mass transfer in SPH

• Hard to model in standard SPH

• Need ∼ 1012 particles

• Typical UCXBs transfer ∼ 10−12MWD per orbit

• Cannot use too different particle masses

• Oil on water approach (Church et al. 2009)

• Treat stellar body and atmosphere separately

Page 9: Mass transfer in eccentric White Dwarf Neutron Star binariescompact-merger.astro.su.se/MICRA2015/slides/AlexeyBobrick.pdfMass transfer in eccentric White Dwarf { Neutron Star binaries

OW method scheme

r, RWD

log 10ρ,g/cm

3

ρtheor

ρwat

105ρoil

0.6 0.7 0.8 0.9 1.0 1.1 1.25.5

6.0

6.5

7.0

7.5

log10ρ, g/cm3

8.5

8.

7.5

7.

6.5

6.

2.

1.5

1.

0.5

x, RWD

y,RWD

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Page 10: Mass transfer in eccentric White Dwarf Neutron Star binariescompact-merger.astro.su.se/MICRA2015/slides/AlexeyBobrick.pdfMass transfer in eccentric White Dwarf { Neutron Star binaries

Numerical method 1: Oil layer

• Has to be thick

• Support by artificial T (ideal gas, applies forM < 10−5M�/yr)

• No self-gravity: O(Noil) complexity

• Equations scale-free in moil

log10ρ, g/cm3

8.5

8.

7.5

7.

6.5

6.

2.

1.5

1.

0.5

x, RWD

y,RWD

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Page 11: Mass transfer in eccentric White Dwarf Neutron Star binariescompact-merger.astro.su.se/MICRA2015/slides/AlexeyBobrick.pdfMass transfer in eccentric White Dwarf { Neutron Star binaries

Numerical method 2: The binary

• Quadrupole interactions important

• Keplerian ϕ causes effective e ∼ 0.01

• M swing of ∼ 0.5 dex, e.g. Dan et al. (2011)

MWD,M� 0.15 0.6 1.0 1.3

δequadr 4.0 · 10−3 7.0 · 10−3 6.8 · 10−3 7.0 · 10−3

Page 12: Mass transfer in eccentric White Dwarf Neutron Star binariescompact-merger.astro.su.se/MICRA2015/slides/AlexeyBobrick.pdfMass transfer in eccentric White Dwarf { Neutron Star binaries

Numerical method 3: R?(a) dependence

• R? changes with a

• Indirectly observed by Dan et al. (2011)

• Typical change ∼ 5%

• Important for constructing waveforms

He 0.15M⊙

CO 0.6M⊙

ONe 1.0M⊙

ONe 1.3M⊙

1.16 1.18 1.20 1.22 1.24 1.26 1.28 1.300.00

0.05

0.10

0.15

0.20

a/aRLO,Eggl

δR

*/R

*,∞

Page 13: Mass transfer in eccentric White Dwarf Neutron Star binariescompact-merger.astro.su.se/MICRA2015/slides/AlexeyBobrick.pdfMass transfer in eccentric White Dwarf { Neutron Star binaries

Simulations: what do we see

Video slide

Page 14: Mass transfer in eccentric White Dwarf Neutron Star binariescompact-merger.astro.su.se/MICRA2015/slides/AlexeyBobrick.pdfMass transfer in eccentric White Dwarf { Neutron Star binaries

Mapping SPH to the general model

• Atmosphere:• Artificially thick• Measure everything in hρ

• Timescales:• Real systems evolve over 102 – 106 orbits• SPH: Represents continuum of stages• Scale-free, quasi-steady

• Mass flows:• Split the simulation into regions

Page 15: Mass transfer in eccentric White Dwarf Neutron Star binariescompact-merger.astro.su.se/MICRA2015/slides/AlexeyBobrick.pdfMass transfer in eccentric White Dwarf { Neutron Star binaries

Instantaneous Mcirc

• M at given a

• Expect Ritter’s formula (Ritter 1988): M ∼ expR? −RRL

hρ• Observed:

Model ONe 1.0M⊙

0.5 orbit

1 orbit

2 orbits

4 orbits inspiral

Ritter 's slope (correct R*)

Ritter 's slope (constant R*)

1.10 1.15 1.20 1.25 1.30 1.351

2

3

4

5

a/aRLO

log 10N.

orb

Page 16: Mass transfer in eccentric White Dwarf Neutron Star binariescompact-merger.astro.su.se/MICRA2015/slides/AlexeyBobrick.pdfMass transfer in eccentric White Dwarf { Neutron Star binaries

Instantaneous Mecc

• Eccentric M : instantaneous response model

• Morb(a, e) = Mcirc(a)f(Re

hρ)

0 1 2 3 4 5 60.00.20.40.60.81.01.21.4

φ

N./N.

c,ref

γ = 0.0

0 1 2 3 4 5 60.00.20.40.60.81.01.21.4

φ

N./N.

c,ref

γ = 0.7

0 1 2 3 4 5 60.00.20.40.60.81.01.21.4

φ

N./N.

c,ref

γ = 1.4

0 1 2 3 4 5 60.00.20.40.60.81.01.21.4

φ

N./N.

c,ref

γ = 2.1

0 1 2 3 4 5 60.00.20.40.60.81.01.21.4

φ

N./N.

c,ref

γ = 2.8

0 1 2 3 4 5 60.00.20.40.60.81.01.21.4

φ

N./N.

c,ref

γ = 3.5

Page 17: Mass transfer in eccentric White Dwarf Neutron Star binariescompact-merger.astro.su.se/MICRA2015/slides/AlexeyBobrick.pdfMass transfer in eccentric White Dwarf { Neutron Star binaries

Parameters we extract

• Long term evolution: importance of mass loss

• Measure parameters (Rappaport 1982):• How much mass is lost: β ≡ −M1/M2

• How much of Jz is lost: α ≡ Jlossmloss

/J12µ

• How much does the envelope affect a: αCE ≡ Eorb/Eej

Page 18: Mass transfer in eccentric White Dwarf Neutron Star binariescompact-merger.astro.su.se/MICRA2015/slides/AlexeyBobrick.pdfMass transfer in eccentric White Dwarf { Neutron Star binaries

Further results

• Boundary masses ∼ 0.2M� for disc wind model

• Constant e does not affect long-term M

• Varying e may drive M

• Observations affected by: CE, rad. feedback, the jet

Unstable MTStable MT

Model He 0.15M⊙

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

β

α

Unstable MTStable MT

Model CO 0.6M⊙

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

β

α

Page 19: Mass transfer in eccentric White Dwarf Neutron Star binariescompact-merger.astro.su.se/MICRA2015/slides/AlexeyBobrick.pdfMass transfer in eccentric White Dwarf { Neutron Star binaries

Conclusions

• WD-NS systems are:• Sources for UCXBs• Likely to produce transients• Often eccentric

• We model them using a modified SPH scheme

• And link the results to a binary evolution model

Page 20: Mass transfer in eccentric White Dwarf Neutron Star binariescompact-merger.astro.su.se/MICRA2015/slides/AlexeyBobrick.pdfMass transfer in eccentric White Dwarf { Neutron Star binaries

Thank you!