Linear’Quadra+c’Gaussian’Control’of’Wind’...

20
Linear Quadra+c Gaussian Control of Wind Turbines Abdulrahman Kalbat Columbia University in the City of New York (Teaching Assistant at UAE University “Currently on leave”) October 3 rd , 2013

Transcript of Linear’Quadra+c’Gaussian’Control’of’Wind’...

Page 1: Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbinesak3369/conference_presentations/LQG_Wind_Turbine... · Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbines

Linear  Quadra+c  Gaussian  Control  of  Wind  Turbines  

Abdulrahman  Kalbat  Columbia  University  in  the  City  of  New  York  

(Teaching  Assistant  at  UAE  University  “Currently  on  leave”)  

   

October  3rd,  2013  

 

Page 2: Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbinesak3369/conference_presentations/LQG_Wind_Turbine... · Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbines

10/03/2013   /19  

Paper  Structure  

•  Linear  Quadra+c  Gaussian  (LQG)  Control  –  General  problem  formulaMon  

–  AssumpMons  

–  Design  procedures  

•  Real  system  simula+on  –  Controls  Advanced  Research  Turbine  (CART)  

–  State  space  model  of  CART  

•  Results  and  Discussion  –  SimulaMon  results  

–  LimitaMon  of  LQG  

Abdulrahman  Kalbat   Columbia  University   2  

Page 3: Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbinesak3369/conference_presentations/LQG_Wind_Turbine... · Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbines

10/03/2013   /19  

Linear  Quadra+c  Gaussian  (LQG)  Control  

•  LQG  is  rooted  in  opMmal  stochasMc  control  theory  

•   It  is  simply  a  combinaMon  of:  

–  Linear  Quadra+c  Regulator  (LQR):  for  full  state  feedback  

–  Kalman  Filter:  for  state  esMmaMon  

•  Linear  QuadraMc  Gaussian  (LQG)  –  Linear  system  model  

–  Quadra+c  cost  funcMon  

–  Gaussian  noises  

Abdulrahman  Kalbat   Columbia  University   3  

Page 4: Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbinesak3369/conference_presentations/LQG_Wind_Turbine... · Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbines

10/03/2013   /19  

Linear  Quadra+c  Gaussian  (LQG)  Control  

•  LQG  block  diagram  

Abdulrahman  Kalbat   Columbia  University   4  

u(t)B

G

w(t)

R

A

C

v(t)

++ x(t) x(t)+

y(t)

+

+

BR

A

C

Kk

Kf

+

+˙x(t) x(t) y(t)

+

+

y(t)� y(t)

+

Kalman-Bucy Filter

Noisy System

Determinisric Optimal Controller

Page 5: Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbinesak3369/conference_presentations/LQG_Wind_Turbine... · Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbines

10/03/2013   /19  

LQG  General  Form  

•  The  state  space  equaMons  of  the  open  loop  plant  for  a  standard  LQG  problem:  

where  

Abdulrahman  Kalbat   Columbia  University   5  

x(t) = Ax(t) +Bu(t) +Gw(t)

y(t) = Cx(t) + v(t)

x(t) : state vector

u(t) : control input vector

y(t) : measured output vector

w(t) : process noise

v(t) : measurement noise

A : state matrix

B : control input gain matrix

G : plant noise gain matrix

C : measured state matrix

Page 6: Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbinesak3369/conference_presentations/LQG_Wind_Turbine... · Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbines

10/03/2013   /19  

LQG  General  Form  

•  The  state  space  equaMons  of  the  Kalman  Filter:  

where  

Abdulrahman  Kalbat   Columbia  University   6  

˙x(t) = (A�KkC)x(t) +Bu(t) +Kky(t)

y(t) = Cx(t)

x(t) : estimated state vector

y(t) : estimated output vector

Kk : optimal state estimation gain vector

Page 7: Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbinesak3369/conference_presentations/LQG_Wind_Turbine... · Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbines

10/03/2013   /19  

LQG  General  Form  

•  AssumpMons:    

Abdulrahman  Kalbat   Columbia  University   7  

E[w(t)w(⌧)T ] =

⇢W, if t = ⌧

0, if t 6= ⌧

E[v(t)v(⌧)T ] =

⇢V, if t = ⌧

0, if t 6= ⌧

E[w(t)v(⌧)T ] =

⇢R12, if t = ⌧

0, if t 6= ⌧

E[x(0)] = x

o

E[w(t)] = 0

E[v(t)] = 0

E[x(0)w(t)T ] = 0

E[x(0)v(t)T ] = 0

White  Gaussian  noises  

Covariance  

UncorrelaMon  of  iniMal  states  with  the  noises  

Page 8: Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbinesak3369/conference_presentations/LQG_Wind_Turbine... · Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbines

10/03/2013   /19  

LQG  Design  Procedure  

Step  1:    Check  opMmal  gain  existance  criteria:  

 

 

Step  2:  OpMmal  state  esMmaMon  gain  calculaMon:  

Abdulrahman  Kalbat   Columbia  University   8  

(A,B) is Controllable

(A,C) is Observable

Jk = E

�(x� x)T (x� x)

APk + PkAT +GWG

T � PkCTV

�1CPk = 0

Kk = PkCTV

�1

Filter  Algebraic  RiccaM  EquaMon  (FARE)    

Page 9: Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbinesak3369/conference_presentations/LQG_Wind_Turbine... · Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbines

10/03/2013   /19  

LQG  Design  Procedure  

Step  3  

•  OpMmal  State  Feedback  Gain  CalculaMon:  

 

 

 

•  Weighing  Matrices  SelecMon:  

 

Abdulrahman  Kalbat   Columbia  University   9  

Jf =

Z T

0(zTQfz + uTRfu)dt

ATPf + PfA� PfBR�1f BTPf +Qf = 0

Kf = R�1f BTPf

Q = CTC

R = ⇢I

Qii =1

Max (x2ii)

Rii =1

Max (u2ii)

or   (Bryson’s  Rule)  

Control  Algebraic  RiccaM  EquaMon  (CARE)    

Page 10: Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbinesak3369/conference_presentations/LQG_Wind_Turbine... · Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbines

10/03/2013   /19  

LQG  Design  Procedure  

Step  4:  Linear  QuadraMc  Gaussian  Regulator  by  combining  

OpMmal  State  EsMmaMon  and  OpMmal  State  Feedback:  

 

 

 

 

where  

 

 

Abdulrahman  Kalbat   Columbia  University   10  

x(t)e(t)

�=

A�BKf BKf

0 A�KkC

� x(t)e(t)

+

G 0G �Kk

� w(t)v(t)

y(t) =⇥C 0

⇤ x(t)e(t)

�+

⇥0 1

⇤ w(t)v(t)

e(t) = x(t)� x(t) (state estimation error)

Page 11: Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbinesak3369/conference_presentations/LQG_Wind_Turbine... · Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbines

10/03/2013   /19  

Controls  Advanced  Research  Turbine  (CART)  

•  Used  by  the  NaMonal  Wind  Technology  Center  (NWTC)  and  

operated  by  the  NaMonal  Renewable  Energy  Laboratory  

(NREL)  and  located  at  Boulder,  Colorado  

•  Used  for:    –  Exploring  potenMal  control  innovaMons    

–  Field  test  advanced  control  systems.    

•  Very  flexible:  –  More  than  80  sensors  

–  CollecMve  Blade  Pitching  +  Individual  Blade  Pitching  

Abdulrahman  Kalbat   Columbia  University   11  

Page 12: Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbinesak3369/conference_presentations/LQG_Wind_Turbine... · Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbines

10/03/2013   /19  

Controls  Advanced  Research  Turbine  (CART)  

Abdulrahman  Kalbat   Columbia  University   12  

Page 13: Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbinesak3369/conference_presentations/LQG_Wind_Turbine... · Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbines

10/03/2013   /19  

Numerical  Example  using  MATLAB  

•  The  model  was  created  by  linearizing  the  moMon  equaMons  at  

a  control  design  point  of:  

–  18  m/s  for  wind  speed  

–  12  degress  for  rotor  collecMve  pitch  

–  42  RPM  for  rotor  speed.  

•  The  main  objecMve  is  to  operate  the  machine  as  a  variable  

speed  wind  turbine  in  region  3  

–  by  applying  constant  torque  to  the  generator  

–  by  maintaining  a  constant  rotor  speed  

–  through  the  collecMve  rotor  blade  pitching.  

Abdulrahman  Kalbat   Columbia  University   13  

Page 14: Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbinesak3369/conference_presentations/LQG_Wind_Turbine... · Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbines

10/03/2013   /19  

Numerical  Example  using  MATLAB  

•  CART’s  state  space  model:  

Abdulrahman  Kalbat   Columbia  University   14  

x(t) =

2

4x1(t)x2(t)x3(t)

3

5where

8<

:

x1(t) : is rotor speed

x2(t) : is drive train torsion

x3(t) : is generator speed

u(t) =

w(t)v(t)

�where

⇢w(t) : is turbine system noise

v(t) : is measurement noise

A =

2

4�1.4454x10�1 �3.1078x10�6 0.02.6910x107 0.0 �2.6910x107

0.0 1.5601x10�5 0.0

3

5

B =⇥�3.4559 0.0 0.0

⇤T

C =⇥0 0 1

G =⇥7.8938x10�2 0.0 0.0

⇤T

W = E[w(t)w(⌧)T ] = 0.1 (Turbine system noise covariance)

V = E[v(t)v(⌧)T ] = 0.1 (Measurement noise covariance)

Q =

2

41 0 00 1x10�13 00 0 1

3

5 R = 1

Kk =⇥7.6282x10�3 1.2663x102 6.2859x10�2

⇤T

Kf =⇥�2.0336 �2.1225x10�7 6.6055x10�1

x(t) = Ax(t) +Bu(t) +Gw(t)

y(t) = Cx(t) + v(t)

Page 15: Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbinesak3369/conference_presentations/LQG_Wind_Turbine... · Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbines

10/03/2013   /19  

Results  

•  Wind  turbine’s  response  to  different  wind  speeds    

Abdulrahman  Kalbat   Columbia  University   15  

0 10 20 30 40 50 60 70

15

20

Wind Speed (m/sec)

0 10 20 30 40 50 60 7020304050

Generator Speed (RPM)

0 10 20 30 40 50 60 705

10

15Pitch Angle (degrees)

Time sec

Opera+on  point  

18  m/s    

12  degress    

42  RPM    

Page 16: Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbinesak3369/conference_presentations/LQG_Wind_Turbine... · Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbines

10/03/2013   /19  

Discussion  

•  The  simulated  control  system  is  Not  Robust  

–  robust  control  system  works  not  only  for  the  linear  system  which  

serves  as  the  plant  model  but  it  also  works  for  the  real  physical  system  

with  minor  performance  degradaMon  

•  LQR  à  (Robust)  

•  Kalman  Filter  à  (Robust)  

•  LQR  +  Kalman  Filter  à  (Robustness  not  guaranteed)  

•  To  recover  the  robustness  of  LQR  and  Kalman  Filter:  

–  Loop  Transfer  Recovery  (LTR)  

Abdulrahman  Kalbat   Columbia  University   16  

Page 17: Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbinesak3369/conference_presentations/LQG_Wind_Turbine... · Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbines

10/03/2013   /19  

Results  

•  Poles/Zeros  plot  of  the  closed  loop  system  

Abdulrahman  Kalbat   Columbia  University   17  

−4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0−25

−20

−15

−10

−5

0

5

10

15

20

25

Pole−Zero Map

Real Axis

Imag

inar

y Ax

is

Page 18: Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbinesak3369/conference_presentations/LQG_Wind_Turbine... · Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbines

10/03/2013   /19  

Results  

•  Bode  plot  of  the  open  and  closed  loop  systems  

Abdulrahman  Kalbat   Columbia  University   18  

−150

−100

−50

0

50From: In(1)

To: O

ut(1

)

100

−270

−180

−90

0

90

180

To: O

ut(1

)From: In(2)

100

Closed loop)

Frequency (rad/sec)

Mag

nitu

de (d

B) ;

Phas

e (d

eg)

Openclosed

−150

−100

−50

0

50From: In(1)

To: O

ut(1

)

100

−270

−180

−90

0

90

180

To: O

ut(1

)

From: In(2)

100

Closed loop)

Frequency (rad/sec)

Mag

nitu

de (d

B) ;

Phas

e (d

eg)

Openclosed−150

−100

−50

0

50From: In(1)

To: O

ut(1

)

100

−270

−180

−90

0

90

180

To: O

ut(1

)

From: In(2)

100

Closed loop)

Frequency (rad/sec)

Mag

nitu

de (d

B) ;

Phas

e (d

eg)

Openclosed

−150

−100

−50

0

50From: In(1)

To: O

ut(1

)

100

−270

−180

−90

0

90

180

To: O

ut(1

)

From: In(2)

100

Closed loop)

Frequency (rad/sec)

Mag

nitu

de (d

B) ;

Phas

e (d

eg)

Openclosed

Page 19: Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbinesak3369/conference_presentations/LQG_Wind_Turbine... · Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbines

10/03/2013   /19  

Conclusion  

•  LQG  general  formulaMon,  assumpMons  and  design  procedure  

were  stated.  

•  LQG  regulator  for  CART  was  simulated  

•  Robustness  problem  of  LQG  was  shown  

Abdulrahman  Kalbat   Columbia  University   19  

Page 20: Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbinesak3369/conference_presentations/LQG_Wind_Turbine... · Linear’Quadra+c’Gaussian’Control’of’Wind’ Turbines

Thank  You  

Contact  Informa+on  Abdulrahman  Kalbat  

[email protected]  

[email protected]