Lecture«Robot Dynamics»: Intro toDynamics - ETH Z · Robot Dynamics -Dynamics 1 117.10.2017...

22
| | 151-0851-00 V lecture: CAB G11 Tuesday 10:15 – 12:00, every week exercise: HG E1.2 Wednesday 8:15 – 10:00, according to schedule (about every 2nd week) Marco Hutter, Roland Siegwart, and Thomas Stastny 17.10.2017 Robot Dynamics - Dynamics 1 1 Lecture «Robot Dynamics»: Intro to Dynamics

Transcript of Lecture«Robot Dynamics»: Intro toDynamics - ETH Z · Robot Dynamics -Dynamics 1 117.10.2017...

Page 1: Lecture«Robot Dynamics»: Intro toDynamics - ETH Z · Robot Dynamics -Dynamics 1 117.10.2017 Lecture«Robot Dynamics»: Intro toDynamics. ... 28.11.2017 Case Studies 2 Rotor CraftCase

||

151-0851-00 Vlecture: CAB G11 Tuesday 10:15 – 12:00, every weekexercise: HG E1.2 Wednesday 8:15 – 10:00, according to schedule (about every 2nd week)

Marco Hutter, Roland Siegwart, and Thomas Stastny

17.10.2017Robot Dynamics - Dynamics 1 1

Lecture «Robot Dynamics»: Intro to Dynamics

Page 2: Lecture«Robot Dynamics»: Intro toDynamics - ETH Z · Robot Dynamics -Dynamics 1 117.10.2017 Lecture«Robot Dynamics»: Intro toDynamics. ... 28.11.2017 Case Studies 2 Rotor CraftCase

|| 17.10.2017Robot Dynamics - Dynamics 1 2

19.09.2017 Intro and Outline Course Introduction; Recapitulation Position, Linear Velocity26.09.2017 Kinematics 1 Rotation and Angular Velocity; Rigid Body Formulation, Transformation 26.09.2017 Exercise 1a Kinematics Modeling the ABB

arm

03.10.2017 Kinematics 2 Kinematics of Systems of Bodies; Jacobians 03.10.2017 Exercise 1b Differential Kinematics of the ABB arm

10.10.2017 Kinematics 3 Kinematic Control Methods: Inverse Differential Kinematics, Inverse Kinematics; Rotation Error; Multi-task Control

10.10.2017 Exercise 1c Kinematic Control of the ABB Arm

17.10.2017 Dynamics L1 Multi-body Dynamics 17.10.2017 Exercise 2a Dynamic Modeling of the ABB Arm

24.10.2017 Dynamics L2 Floating Base Dynamics 24.10.201731.10.2017 Dynamics L3 Dynamic Model Based Control Methods 31.10.2017 Exercise 2b Dynamic Control Methods

Applied to the ABB arm

07.11.2017 Legged Robot Dynamic Modeling of Legged Robots & Control 07.11.2017 Exercise 3 Legged robot14.11.2017 Case Studies 1 Legged Robotics Case Study 14.11.201721.11.2017 Rotorcraft Dynamic Modeling of Rotorcraft & Control 21.11.2017 Exercise 4 Modeling and Control of

Multicopter28.11.2017 Case Studies 2 Rotor Craft Case Study 28.11.201705.12.2017 Fixed-wing Dynamic Modeling of Fixed-wing & Control 05.12.2017 Exercise 5 Fixed-wing Control and

Simulation12.12.2017 Case Studies 3 Fixed-wing Case Study (Solar-powered UAVs - AtlantikSolar, Vertical

Take-off and Landing UAVs – Wingtra)19.12.2017 Summery and Outlook Summery; Wrap-up; Exam

Page 3: Lecture«Robot Dynamics»: Intro toDynamics - ETH Z · Robot Dynamics -Dynamics 1 117.10.2017 Lecture«Robot Dynamics»: Intro toDynamics. ... 28.11.2017 Case Studies 2 Rotor CraftCase

||

Kinematics = description of motions Translations and rotations Various representations (Euler, quaternions, etc.) Instantaneous/Differential kinematics Jacobians and geometric Jacobians Inverse kinematics and control Floating base systems (unactuated base and contacts)

17.10.2017Robot Dynamics - Dynamics 1 3

Recapitulation of Kinematics

Page 4: Lecture«Robot Dynamics»: Intro toDynamics - ETH Z · Robot Dynamics -Dynamics 1 117.10.2017 Lecture«Robot Dynamics»: Intro toDynamics. ... 28.11.2017 Case Studies 2 Rotor CraftCase

|| 17.10.2017Robot Dynamics - Dynamics 1 4

Dynamics in Robotics

Page 5: Lecture«Robot Dynamics»: Intro toDynamics - ETH Z · Robot Dynamics -Dynamics 1 117.10.2017 Lecture«Robot Dynamics»: Intro toDynamics. ... 28.11.2017 Case Studies 2 Rotor CraftCase

|| 17.10.2017Robot Dynamics - Dynamics 1 5

Dynamics in Robotics

Page 6: Lecture«Robot Dynamics»: Intro toDynamics - ETH Z · Robot Dynamics -Dynamics 1 117.10.2017 Lecture«Robot Dynamics»: Intro toDynamics. ... 28.11.2017 Case Studies 2 Rotor CraftCase

||

Description of “cause of motion” Input Force/Torque acting on system Output Motion of the system

Principle of virtual work Newton’s law for particles Conservation of impulse and angular momentum

3 methods to get the EoM Newton-Euler: Free cut and conservation of impulse & angular momentum for each body Projected Newton-Euler (generalized coordinates) Lagrange II (energy)

Introduction to dynamics of floating base systems External forces

17.10.2017Robot Dynamics - Dynamics 1 6

DynamicsOutline

, Tc c M q q b q q g q τ J F

Generalized coordinates Mass matrix

, Centrifugal and Coriolis forces

Gravity forces Generalized forces

External forcesContact Jacobian

c

c

qM q

b q q

g qτFJ

τq

Page 7: Lecture«Robot Dynamics»: Intro toDynamics - ETH Z · Robot Dynamics -Dynamics 1 117.10.2017 Lecture«Robot Dynamics»: Intro toDynamics. ... 28.11.2017 Case Studies 2 Rotor CraftCase

||

Principle of virtual work (D’Alembert’s Principle) Dynamic equilibrium imposes zero virtual work

Newton’s law for every particle in direction it can move

17.10.2017Robot Dynamics - Dynamics 1 7

Principle of Virtual Work

d external forces acting on element acceleration of element

mass of element virtual displacement of element

ext ii

dm ii

Fr

r

dF

rdm

mF a

r

S

m r F r a

d mdt

p

F v p

Impulse orlinear momentum

force

d mdt

N

Γ r v N

angular momentummoment

variational parameter

Page 8: Lecture«Robot Dynamics»: Intro toDynamics - ETH Z · Robot Dynamics -Dynamics 1 117.10.2017 Lecture«Robot Dynamics»: Intro toDynamics. ... 28.11.2017 Case Studies 2 Rotor CraftCase

||

Rigid body Kinematics

Applied to principle of virtual work

17.10.2017Robot Dynamics - Dynamics 1 8

Virtual Displacements of Single Rigid Bodies

Page 9: Lecture«Robot Dynamics»: Intro toDynamics - ETH Z · Robot Dynamics -Dynamics 1 117.10.2017 Lecture«Robot Dynamics»: Intro toDynamics. ... 28.11.2017 Case Studies 2 Rotor CraftCase

||

Use the following definitions

Conservation of impulse and angular momentum

17.10.2017Robot Dynamics - Dynamics 1 9

Impulse and angular momentum

External forces and moments

Change in impulse and angular momentum

Newton

Euler

A free body can move In all directions

Page 10: Lecture«Robot Dynamics»: Intro toDynamics - ETH Z · Robot Dynamics -Dynamics 1 117.10.2017 Lecture«Robot Dynamics»: Intro toDynamics. ... 28.11.2017 Case Studies 2 Rotor CraftCase

||

Cut all bodies free Introduction of constraining force Apply conservation and to individual bodies

System of equations 6n equation Eliminate all constrained forces (5n)

Pros and Cons+ Intuitively clear + Direct access to constraining forces− Becomes a huge combinatorial problem for large MBS

17.10.2017Robot Dynamics - Dynamics 1 10

1st Method for EoMNewton-Euler for single bodies

{I}

iOSr

ivia

ΨΩ

gF

1iF

2iF

im

Page 11: Lecture«Robot Dynamics»: Intro toDynamics - ETH Z · Robot Dynamics -Dynamics 1 117.10.2017 Lecture«Robot Dynamics»: Intro toDynamics. ... 28.11.2017 Case Studies 2 Rotor CraftCase

||

Find the equation of motion

17.10.2017Robot Dynamics - Dynamics 1 11

Free CutCart pendulum example

g

,p pm

,c cm {I}

l

Page 12: Lecture«Robot Dynamics»: Intro toDynamics - ETH Z · Robot Dynamics -Dynamics 1 117.10.2017 Lecture«Robot Dynamics»: Intro toDynamics. ... 28.11.2017 Case Studies 2 Rotor CraftCase

||

For multi-body systems Express the impulse/angular momentum in generalized coordinates

Virtual displacement in generalized coordinates

With this, the principle of virtual work transforms to

17.10.2017 15

Newton-Euler in Generalized Motion Directions

M q ,b q q g q

0 W= T q q

Robot Dynamics - Dynamics 1

Page 13: Lecture«Robot Dynamics»: Intro toDynamics - ETH Z · Robot Dynamics -Dynamics 1 117.10.2017 Lecture«Robot Dynamics»: Intro toDynamics. ... 28.11.2017 Case Studies 2 Rotor CraftCase

||

Equation of motion Directly get the dynamic properties of a multi-body system with n bodies

For actuated systems, include actuation force as external force for each body If actuators act in the direction of generalized coordinates, corresponds to stacked actuator

commands

17.10.2017Robot Dynamics - Dynamics 1 16

Projected Newton-Euler

, M q q b q q g q 0

Page 14: Lecture«Robot Dynamics»: Intro toDynamics - ETH Z · Robot Dynamics -Dynamics 1 117.10.2017 Lecture«Robot Dynamics»: Intro toDynamics. ... 28.11.2017 Case Studies 2 Rotor CraftCase

||

Find the equation of motion

17.10.2017Robot Dynamics - Dynamics 1 17

Projected Newton-EulerCart pendulum example

g

,p pm

,c cm {I}

l

Page 15: Lecture«Robot Dynamics»: Intro toDynamics - ETH Z · Robot Dynamics -Dynamics 1 117.10.2017 Lecture«Robot Dynamics»: Intro toDynamics. ... 28.11.2017 Case Studies 2 Rotor CraftCase

||

Lagrangian

Lagrangian equation

Since

17.10.2017Robot Dynamics - Dynamics 1 19

3rd Method for EoMLagrange II

ddt

τ

q q q T T U

inertial forces gravity vector 12

T q Mq T

11 ,

2

T

T

n

qb

q

g g

M

M q

q q

Mq q q qMq

q

q

M q τ

with

Mqq

T

,

q

q qU UT T

kinetic energy

potential energy

Page 16: Lecture«Robot Dynamics»: Intro toDynamics - ETH Z · Robot Dynamics -Dynamics 1 117.10.2017 Lecture«Robot Dynamics»: Intro toDynamics. ... 28.11.2017 Case Studies 2 Rotor CraftCase

||

Kinetic energy in joint space

Kinetic energy for all bodies

From kinematics we know that

Hence we get

17.10.2017Robot Dynamics - Dynamics 1 20

Lagrange IIKinetic energy

12

T q Mq T

Page 17: Lecture«Robot Dynamics»: Intro toDynamics - ETH Z · Robot Dynamics -Dynamics 1 117.10.2017 Lecture«Robot Dynamics»: Intro toDynamics. ... 28.11.2017 Case Studies 2 Rotor CraftCase

||

Two sources for potential forces

Gravitational forces

Spring forces

17.10.2017Robot Dynamics - Dynamics 1 21

Lagrange IIPotential energy

00 0

0E jk d

r rF r rr r

Page 18: Lecture«Robot Dynamics»: Intro toDynamics - ETH Z · Robot Dynamics -Dynamics 1 117.10.2017 Lecture«Robot Dynamics»: Intro toDynamics. ... 28.11.2017 Case Studies 2 Rotor CraftCase

||

Find the equation of motion

17.10.2017Robot Dynamics - Dynamics 1 22

Lagrange IICart pendulum example

g

,p pm

,c cm {I}

l

Page 19: Lecture«Robot Dynamics»: Intro toDynamics - ETH Z · Robot Dynamics -Dynamics 1 117.10.2017 Lecture«Robot Dynamics»: Intro toDynamics. ... 28.11.2017 Case Studies 2 Rotor CraftCase

||

Given:

Generalized forces are calculated as:

Given:

Generalized forces are calculated

For actuator torques:

17.10.2017Robot Dynamics - Dynamics 1 24

External Forces

Page 20: Lecture«Robot Dynamics»: Intro toDynamics - ETH Z · Robot Dynamics -Dynamics 1 117.10.2017 Lecture«Robot Dynamics»: Intro toDynamics. ... 28.11.2017 Case Studies 2 Rotor CraftCase

||

Equation of motion without actuation

Add actuator for the pendulum Action on pendulum Reaction on cart

Add spring to the pendulum (world attachment point P, zero length 0, stiffness k) Action on pendulum

17.10.2017Robot Dynamics - Dynamics 1 25

External Forces Cart pendulum example

g

,p pm

,c cm {I}

x

la

,s sP x y

l 2 sinx sF k x l x

2 cosy sF k l y

2

2

0cos sinsincos 0

c p p p

pp p p

m m lm lmm gllm m l

b gM

q 0

0 1Rp Ja

p aT c aT 0 0Rc J ,

0T T TR i i Rc c Rp p

a

τ J T J T J T

xs

y

FF

F

2 sin2 cos

1 2 cos0 2 sin

ss

x ll

ll

r

rJq

2 cos sinxT

sx y

F

l F F

τ J F

Page 21: Lecture«Robot Dynamics»: Intro toDynamics - ETH Z · Robot Dynamics -Dynamics 1 117.10.2017 Lecture«Robot Dynamics»: Intro toDynamics. ... 28.11.2017 Case Studies 2 Rotor CraftCase

||

What is the external force coming from the motor

17.10.2017Robot Dynamics - Dynamics 1 26

External Forces Cart pendulum example

g

,p pm

,c cm {I}

x

l

l

M

Page 22: Lecture«Robot Dynamics»: Intro toDynamics - ETH Z · Robot Dynamics -Dynamics 1 117.10.2017 Lecture«Robot Dynamics»: Intro toDynamics. ... 28.11.2017 Case Studies 2 Rotor CraftCase

||

What is the external force coming from the motor

Action on cart

17.10.2017Robot Dynamics - Dynamics 1 27

External Forces Cart pendulum example

g

,p pm

,c cm {I}

x

l

l

actF

actF

c actF F 1 0Pc J 0actT

c

FF

τ J