Lecture11 of 12

download Lecture11 of 12

of 25

Transcript of Lecture11 of 12

  • 8/8/2019 Lecture11 of 12

    1/25

    LECTURE 11OF 12

    TOPIC : 2.0 TRIGONOMETRIC FUNCTIONS

    SUBTOPIC : 2.7 Integration Of TrigonometricFunction

    1

  • 8/8/2019 Lecture11 of 12

    2/25

    LEARNING OUTCOMES:

    At the end of the lesson,students should be able to:

    b. Discuss the following integrals:

    iii.

    c. Evaluate integrals using integration by parts; ,

    where and and

    .

    dx,bxcosaxsin dx,bxcosaxcos

    dxbxsinaxsin dxaxsinxn

    dxaxcosx n 2en dxbxsineax

    dxbxcose ax

    2

  • 8/8/2019 Lecture11 of 12

    3/25

    b. iii. To solve

    by using;

    ? A

    ? A

    ? AQPQPQP

    QPQPQP

    QPQPQP

    !

    !

    !

    coscos2

    1coscos

    coscos21sinsin

    sinsin2

    1cossin

    dx,bxcosaxsin dx,bxcosaxcos dxbxsinaxsin

    3

  • 8/8/2019 Lecture11 of 12

    4/25

    Example 1 :

    Solve

    dx2xcosxcos2)a

    dx2xcos3xcos)b dx2xsin4xcos)c

    dx2xsinsin x)d

    4

  • 8/8/2019 Lecture11 of 12

    5/25

    Solution:

    dx2xcosxcos2)a

    ? A

    ? A

    csinx3xsin

    3

    1

    dxxcos3xcos

    dxx)-2x(cos2x)(xcos

    !

    !

    !

    5

  • 8/8/2019 Lecture11 of 12

    6/25

    dx2xcos3xcos)b

    ? A

    ? A

    csin x215xsin

    101

    csin5

    sin5x

    2

    1

    dxxcos5xcos2

    1

    dx2x)-3x(cos2x)(3xcos2

    1

    !

    -

    !

    !

    !

    x

    6

  • 8/8/2019 Lecture11 of 12

    7/25

    dx2xsin4xcos)c

    ? A

    ? A

    c7xsin14

    1-xcos2

    1

    ccos7

    cos7x-

    2

    1

    dxsin x7xsin2

    1

    dx3x)-4x(sin-3x)(4xsin2

    1

    !

    -

    !

    !

    !

    x

    7

  • 8/8/2019 Lecture11 of 12

    8/25

    dx2xsinsin x)d

    ? A

    ? A

    cxx

    c

    !

    -

    !

    !

    !

    6

    3sin

    2

    sin

    sinx-3xsin3

    1

    2

    1-

    dxsin x-3xcos2

    1

    dxx)-(2xcos-x)2(xcos2

    1

    8

  • 8/8/2019 Lecture11 of 12

    9/25

    Exercise:

    dxsin x3xcos2)1 Answer: ? A c4xcos-2xcos241

    dx4xcos2xcos)2

    Answer:

    ? A c 2xsin36xsin121

    dxsin x3xsin2)3

    Answer:

    ? A c4xsin-2xsin2

    4

    1

    9

  • 8/8/2019 Lecture11 of 12

    10/25

    dx2xcos4xsin)4 Answer: ? A c 2xcos36xcos

    12

    1

    4

    0dsin5sin)5 UUU Answer:

    12

    1

    4

    6

    dx2xcos3xsin)6 T Answer: 0.13

    10

  • 8/8/2019 Lecture11 of 12

    11/25

    c. To evaluate integrals using integration by

    parts;

    ,dxaxsinxi. n dxaxcosxn where 2en

    ! duvvudvu

    By Parts Method

    Formula:

    (The choice must be suitable)

    11

  • 8/8/2019 Lecture11 of 12

    12/25

    Example 1:

    Solve the following integration:

    dxxcosx)a

    dx2xsinx)b

    dxxcosx) 2c

    dx2xsinx)2d

    12

  • 8/8/2019 Lecture11 of 12

    13/25

    Solution:

    dxxcosx)a

    cxcossin xx

    cxcos--sin xx

    dxsin x-sin xxsin xv

    d

    xdu

    dxxcosdvxu

    !

    !

    !

    !!

    !!

    13

  • 8/8/2019 Lecture11 of 12

    14/25

    dx2xsinx)b

    !

    !!

    !!

    dx2

    2xcos--

    2

    2xcos-x

    2xcos

    2

    1-vdxdu

    dx2xsindvxu

    c

    2

    2xcosx-

    4

    2xsin

    c22xsin

    21

    22xcosx-

    !

    !

    14

  • 8/8/2019 Lecture11 of 12

    15/25

    dxxcosx) 2c

    ? Acsin x2-xcos2xsin xx

    dxxcos--xcosx-2-sin xx

    xcos-vdxdu

    dx2xsindvxu

    dxsin xx2-sin xx

    dx2xsin x-sin xx

    sin xvdx2xdu

    dxxcosdvxu

    2

    2

    2

    2

    !

    !

    !!

    !!

    !

    !

    !!

    !!

    15

  • 8/8/2019 Lecture11 of 12

    16/25

    dx2xsinx) 2d

    c4

    2xcos

    2

    2xsinx

    2

    2xcosx-

    dx22xsin-

    22xsinx

    22xcosx-

    2

    2xsinvdxdu

    dx2xcosdvxu

    dx2x

    2

    2xcos--

    2

    2xcos-x

    2

    2xcos-vdx2xdu

    dx2xsindvxu

    2

    2

    2

    2

    !

    -

    !

    !!

    !!!

    !

    !!

    !!

    16

  • 8/8/2019 Lecture11 of 12

    17/25

    Exercise:

    dx3xsinx)1 Answer: cxxx 3cos33sin91

    dx2xcosx)2 Answer: cxxx 2cos4

    12sin

    2

    1

    dxxsinx)3 2 Answer: cxxxx 2cos2sin228

    1 2

    0sin)4 xdxx Answer: T

    T

    0

    2 sin)5 xdxx Answer: 42 T

    17

  • 8/8/2019 Lecture11 of 12

    18/25

    T

    04sin)6 xdxx Answer: 4

    T

    7)Prove that

    !2

    0

    224

    16

    1sin

    T

    Txdxx.

    18

  • 8/8/2019 Lecture11 of 12

    19/25

    dxbxsineii. ax and dxbxcoseax

    Example 2:

    Solve the following integration:

    dxsin xe)x

    a

    dx2xcose) 2xb

    19

  • 8/8/2019 Lecture11 of 12

    20/25

  • 8/8/2019 Lecture11 of 12

    21/25

    cxcos-sin xe21

    dxsin xe

    cxcose-sin xedxsinxe2therefore;

    xx

    xxx

    !

    !

    21

  • 8/8/2019 Lecture11 of 12

    22/25

    dx2xcose)

    2xb

    2xsin

    2

    1vdx2edu

    dx2xcosdveu

    2x

    2x

    !!

    !!

    partsbyagainanddx2xsine-2xsine2

    1

    dx2e2xsin2

    1-2xsin

    2

    1edx2xcose

    2x2x

    2x2x2x

    !

    !

    22

  • 8/8/2019 Lecture11 of 12

    23/25

    2xcos2

    1-vdx2edu

    dx2xsindveu

    2x

    2x

    !!

    !!

    therefore;

    questiontheassamedx2xcose-2xcose212xsine

    21

    dx2e2xcos2

    1--)2xcos

    2

    1(-e-2xsine

    2

    1dx2xcose

    2x2x2x

    2x2x2x2x

    n!

    !

    c2xcos2xsine4

    1dx2xcose

    c2xcos2xsine2

    1dx2xcose2

    2x2x

    2x2x

    !

    !

    23

  • 8/8/2019 Lecture11 of 12

    24/25

    Exercise:

    dxsin xe)13x

    Answer: cx)cos-sin x3(e10

    1

    3x

    dx3xcose)2 -x Answer: c3x)cos-3xsin3(e101

    x-

    dxxcose)3x Answer: cx)cossin x(e

    21 x

    dxsin xe)4 -x

    Answer:

    cx)cossin x(e2

    1- x-

    dx2xsine)5 xx

    Answer:

    c2x)cos2-2xsin2(e5

    1

    x-

    24

  • 8/8/2019 Lecture11 of 12

    25/25

    Note:

    Whenever we integrate functions of the form

    bxcoseorbxsine axax , we get similar results after

    applying the rule twice.

    Summary:1. From the above examples, we can deduce the following;

    a) If one factor is a power of x, it must be taken as u

    b) If there is no power of x, then the exponential function is

    taken as u.

    25