Lecture04 Fedder ECE 18 200 Fall2004

download Lecture04 Fedder ECE 18 200 Fall2004

of 21

Transcript of Lecture04 Fedder ECE 18 200 Fall2004

  • 8/11/2019 Lecture04 Fedder ECE 18 200 Fall2004

    1/21

    09/14/03 Fedder 1

    MEMS in ECE at CMUGary K. Fedder

    Department of Electrical and Computer Engineering

    and The Robotics Institute

    Carnegie Mellon UniversityPittsburgh, PA 15213-3890

    [email protected]://www.ece.cmu.edu/~mems

    18-200 - September 23, 2004

  • 8/11/2019 Lecture04 Fedder ECE 18 200 Fall2004

    2/21

    09/14/03 Fedder 2

    What is MEMS?

    MEMS have mechanical components with

    dimensions measured in microns and

    numbers measured from a few to millions

    MEMS is a way to make both mechanical andelectrical components

    MEMS is manufacturing using integrated-circuitbatch fabrication processes

  • 8/11/2019 Lecture04 Fedder ECE 18 200 Fall2004

    3/21

    09/14/03 Fedder 3

    Why work on MEMS?

    Miniaturization portable and remote applications

    Lighter, faster, lower power sensors and

    actuators Multiplicity of devices

    More complexity allowed

    arrayed systems (e.g., imagers) possible Cost reduction possible

    Microelectronic integration

    smart and aware systems on chip

    Mixed electrical, mechanical, thermal, optical,

    fluidic, chemical, biochemical systems

  • 8/11/2019 Lecture04 Fedder ECE 18 200 Fall2004

    4/21

    09/14/03 Fedder 4

    MEMS in Embedded Systems

    Information systems arepervasive in our lives

    Trend is toward portability,

    autonomy,

    context awareness

    Creating demand for

    miniature sensor and

    actuation systems

    Ultimately, the embeddedsystem is a MEMS

    physical

    world

    node 1

    MEMS

    node 2

    MEMS

    node i

    MEMS

  • 8/11/2019 Lecture04 Fedder ECE 18 200 Fall2004

    5/21

    09/14/03 Fedder 5

    Bulk (Substrate) Micromachining

    Preferential etching of

    silicon, glass, and other

    substrates

    Examples:

    Grooves for fiber-opticalignment

    Membranes for

    pressure sensors,microphones

    Nozzles for ink-jetprinting, drug delivery

    nozzle

    membrane

    well

    substrate

    groovecantilevers

    bridge

  • 8/11/2019 Lecture04 Fedder ECE 18 200 Fall2004

    6/2109/14/03 Fedder 6

    Surface (Thin Film) Micromachining

    Mechanics from thin films on surface

    Etching of sacrificial material under microstructure

    Suspended structures for inertial sensing, thermal

    sensing, resonators, optics, fluidics...

    anchor

    substrate

    electricallyinsulating

    layer

    suspendedmicrostructure

    microchannel

  • 8/11/2019 Lecture04 Fedder ECE 18 200 Fall2004

    7/2109/14/03 Fedder 7

    Micromechanical Structural Material

    Survives process steps

    Stiffness

    Yield strength

    Density

    Electrical conductivity or isolation

    Thermal conductivity or isolation

    Residual stress

    Residual stress gradient

    structural

    curl

  • 8/11/2019 Lecture04 Fedder ECE 18 200 Fall2004

    8/2109/14/03 Fedder 8

    Example: Multi-level Polysilicon Processes

    MUMPS

    Process

    Bottom

    polysilicon

    interconnect

    Two

    movablepolysilicon

    layers

    anchored poly0

    top poly2

    middle poly1gold dimple

    www.memscap.com

  • 8/11/2019 Lecture04 Fedder ECE 18 200 Fall2004

    9/2109/14/03 Fedder 9

    Post-CMOS Micromachining

    One focus of MEMS research in ECE at CMU Structures made starting from CMOS electronics

    Dielectriclayers

    ScalableCMOS

    N-metal

    interconnect

    Gate

    polysilicon Silicon

    substrate

    G. Fedder et al., Sensors & Actuators A, v.57, no.2, 1996

  • 8/11/2019 Lecture04 Fedder ECE 18 200 Fall2004

    10/2109/14/03 Fedder 10

    Post-CMOS Micromachining Oxide RIE

    Step 1: reactive-ion etch of dielectric layers

    Top metal layer acts as a mask & protects the

    CMOS

  • 8/11/2019 Lecture04 Fedder ECE 18 200 Fall2004

    11/2109/14/03 Fedder 11

    Post-CMOS Micromachining Si DRIE

    Step 2: DRIE of silicon substrate Spacing between structures and silicon is

    defined

  • 8/11/2019 Lecture04 Fedder ECE 18 200 Fall2004

    12/2109/14/03 Fedder 12

    Post-CMOS Micromachining Release

    Step 3: isotropic etch of silicon substrate

    Structures are undercut & released

  • 8/11/2019 Lecture04 Fedder ECE 18 200 Fall2004

    13/2109/14/03 Fedder 13

    CMOS MEMS Structures

    Made from CMOS

    interconnect layers

    Electronic integration

    Electrostatic and

    thermal actuation can

    be added

    Capacitive and

    resistive sensing can

    be added

    H. Lakdawala, et al., JSSC Mar. 2002.

  • 8/11/2019 Lecture04 Fedder ECE 18 200 Fall2004

    14/2109/14/03 Fedder 14

    sense fingers

    proof mass

    Lateral Low-G Accelerometer Low-G accelerometer to

    study noise sources inCMOS-MEMS

    Limit: air molecules hittingthe structure!

    suspension

  • 8/11/2019 Lecture04 Fedder ECE 18 200 Fall2004

    15/2109/14/03 Fedder 15

    Electrothermal Actuators

    Electrically controllable motion on chip

    Microbeams are electrically heated (Power = I2R)

    Beams bend from material expansion

    10 m self

    actuation

    (25C) 40 m

    200 m

    20 m

    electrothermal

    actuation

    (178C)

  • 8/11/2019 Lecture04 Fedder ECE 18 200 Fall2004

    16/2109/14/03 Fedder 16

    Electrothermal Comb-Finger Capacitor

    Tunable capacitor in 0.35 m CMOS

    Dense comb array provides variable

    capacitance

    Electrothermal

    actuators

    Yoke for moving

    fingers

    Yoke for static

    fingers

    Finger

    motion

    A. Oz, G. K. Fedder, IEEE Transducers 2003 & MTT-S RFIC 2003, June 2003

  • 8/11/2019 Lecture04 Fedder ECE 18 200 Fall2004

    17/2109/14/03 Fedder 17

    Electrothermal Micromirrors

    1 mm by 1 mm by

    25 m-thick mirror

    Thermal actuation of

    25 from 0 to 5 mA

    H. Xie, Y. Pan, G. K. Fedder, IEEE MEMS 02 & Sensors & Actuators 02

    H. Xie, A. Jain, T. Xie, Y. Pan, G. K. Fedder, CLEO 2003

    poly-Si heater

    metal-1 oxide

    Si plate

  • 8/11/2019 Lecture04 Fedder ECE 18 200 Fall2004

    18/2109/14/03 Fedder 18

    Implantable Bone Stress Imager

    Applications:

    Measure bone

    stress in fracturesites

    Measure stress onimplant interface

    Textured surface for

    osteointegration

    100s of stress sensors

    for statistical data

    1mm

    1stgen chip

  • 8/11/2019 Lecture04 Fedder ECE 18 200 Fall2004

    19/2109/14/03 Fedder 19

    The Bottom Line

    MEMS spans many levels

    processing

    physical transduction

    devices

    system-on-chip design

    Work merges ECE areas with other fields

    e.g., mechanical, chemical, biology Emerging area in industry

    lots of hype, lots of opportunity

  • 8/11/2019 Lecture04 Fedder ECE 18 200 Fall2004

    20/2109/14/03 Fedder 20

    Applied Physics Device Sub-areas, Fall 04

    18-303 18-311

    Engineering

    electro-

    magnetics

    Semiconductor

    devices I

    18-401 18-410 18-412

    or

    Physical

    sensors,

    transducers andinstrumentation

    Semiconductor

    devices II,FETS

    Electro-

    mechanics

    18-815

    18-614

    IC fabrication

    processes

    MEMS18-578

    Mechatronics

    design

  • 8/11/2019 Lecture04 Fedder ECE 18 200 Fall2004

    21/21

    Course Content (Abridged Version)

    18-303 Engineering Electromagnetics IStatic electric and magnetic fields in free space and in materials;

    Maxwells equations, boundary conditions and potential functions;

    Uniform plane waves, transmission lines, waveguides, radiation and antennas.

    18-311 Semiconductor Devices IP-N diodes, bipolar transistors, MOSFETs, photodiodes, LEDs and solar cells;

    Doping, electron and hole transport, and band diagrams.

    18-401 Electromechanics

    Electromechanical statics and dynamics;Energy conversion in synchronous, induction, and commutator rotating machines,

    electromechanical relays, capacitive microphones and speakers, and magnetic

    levitation.

    18-410 Physical Sensors, Transducers and InstrumentationSensor physics, transducers, electronic detection, and signal conversion;

    Case study driven.

    18-412 Semiconductor Devices II

    MOSFETs, JFETs, MESFETs, TFTs;Device scaling; CCD imagers; active matrix flat panel displays; digital and RF

    applications.