Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

88
Inverse Trig Functions Hyperbolic Sine and Cosine Lecture 6 Section 7.7 Inverse Trigonometric Functions Section 7.8 Hyperbolic Sine and Cosine Jiwen He Department of Mathematics, University of Houston [email protected] http://math.uh.edu/jiwenhe/Math1432 Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 1 / 18

Transcript of Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Page 1: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine

Lecture 6Section 7.7 Inverse Trigonometric Functions

Section 7.8 Hyperbolic Sine and Cosine

Jiwen He

Department of Mathematics, University of Houston

[email protected]://math.uh.edu/∼jiwenhe/Math1432

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 1 / 18

Page 2: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Inverse Since sin−1 x (or arcsin x)

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 2 / 18

Page 3: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Inverse Since sin−1 x (or arcsin x)

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 2 / 18

Page 4: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Inverse Since sin−1 x (or arcsin x)

domain:[− 12π, 1

2π]

range:[−1, 1]

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 2 / 18

Page 5: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Inverse Since sin−1 x (or arcsin x)

domain:[− 12π, 1

2π]

range:[−1, 1]

sin(sin−1 x) = x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 2 / 18

Page 6: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Inverse Since sin−1 x (or arcsin x)

domain:[− 12π, 1

2π]

range:[−1, 1]

sin(sin−1 x) = x

domain:[−1, 1]

range:[− 12π, 1

2π]

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 2 / 18

Page 7: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Trigonometric Properties

sin(sin−1 x) = x cos(sin−1 x) =√

1− x2

tan(sin−1 x) =x√

1− x2cot(sin−1 x) =

√1− x2

x

sec(sin−1 x) =1√

1− x2csc(sin−1 x) =

1

x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 3 / 18

Page 8: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Trigonometric Properties

sin(sin−1 x) = x cos(sin−1 x) =√

1− x2

tan(sin−1 x) =x√

1− x2cot(sin−1 x) =

√1− x2

x

sec(sin−1 x) =1√

1− x2csc(sin−1 x) =

1

x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 3 / 18

Page 9: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Trigonometric Properties

sin(sin−1 x) = x cos(sin−1 x) =√

1− x2

tan(sin−1 x) =x√

1− x2cot(sin−1 x) =

√1− x2

x

sec(sin−1 x) =1√

1− x2csc(sin−1 x) =

1

x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 3 / 18

Page 10: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Trigonometric Properties

sin(sin−1 x) = x cos(sin−1 x) =√

1− x2

tan(sin−1 x) =x√

1− x2cot(sin−1 x) =

√1− x2

x

sec(sin−1 x) =1√

1− x2csc(sin−1 x) =

1

x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 3 / 18

Page 11: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Trigonometric Properties

sin(sin−1 x) = x cos(sin−1 x) =√

1− x2

tan(sin−1 x) =x√

1− x2cot(sin−1 x) =

√1− x2

x

sec(sin−1 x) =1√

1− x2csc(sin−1 x) =

1

x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 3 / 18

Page 12: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Trigonometric Properties

sin(sin−1 x) = x cos(sin−1 x) =√

1− x2

tan(sin−1 x) =x√

1− x2cot(sin−1 x) =

√1− x2

x

sec(sin−1 x) =1√

1− x2csc(sin−1 x) =

1

x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 3 / 18

Page 13: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Differentiation

Theorem

d

dxsin−1 x =

1√1− x2

.

Proof.

Let y = sin−1 x . Then x = sin y ,

d

dxsin−1 x =

1ddy sin y

=1

cos y=

1

cos(sin−1 x)=

1√1− x2

.

Theorem

d

dxsin−1 u =

1√1− u2

du

dx,

∫1√

1− u2du = sin−1 u + C

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 4 / 18

Page 14: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Differentiation

Theorem

d

dxsin−1 x =

1√1− x2

.

Proof.

Let y = sin−1 x . Then x = sin y ,

d

dxsin−1 x =

1ddy sin y

=1

cos y=

1

cos(sin−1 x)=

1√1− x2

.

Theorem

d

dxsin−1 u =

1√1− u2

du

dx,

∫1√

1− u2du = sin−1 u + C

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 4 / 18

Page 15: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Differentiation

Theorem

d

dxsin−1 x =

1√1− x2

.

Proof.

Let y = sin−1 x . Then x = sin y ,

d

dxsin−1 x =

1ddy sin y

=1

cos y=

1

cos(sin−1 x)=

1√1− x2

.

Theorem

d

dxsin−1 u =

1√1− u2

du

dx,

∫1√

1− u2du = sin−1 u + C

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 4 / 18

Page 16: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Differentiation

Theorem

d

dxsin−1 x =

1√1− x2

.

Proof.

Let y = sin−1 x . Then x = sin y ,

d

dxsin−1 x =

1ddy sin y

=1

cos y=

1

cos(sin−1 x)=

1√1− x2

.

Theorem

d

dxsin−1 u =

1√1− u2

du

dx,

∫1√

1− u2du = sin−1 u + C

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 4 / 18

Page 17: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Integration: u-Substitution

Theorem

∫g ′(x)√

1− (g(x))2dx = sin−1(g(x)) + C

Proof

Let u = g(x). Then du = g ′(x) dx ,∫g ′(x)√

1− (g(x))2dx =

∫1√

1− u2du = sin−1 u+C = sin−1(g(x))+C

Examples∫1√

4− x2dx =

∫1√

1− u2du = sin−1 u + C = sin−1 x

2+ C .

Note that 4− x2 = 4(1−

(x2

)2). Let u = x

2 . Then du = 12dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 5 / 18

Page 18: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Integration: u-Substitution

Theorem

∫g ′(x)√

1− (g(x))2dx = sin−1(g(x)) + C

Proof

Let u = g(x). Then du = g ′(x) dx ,∫g ′(x)√

1− (g(x))2dx =

∫1√

1− u2du = sin−1 u+C = sin−1(g(x))+C

Examples∫1√

4− x2dx =

∫1√

1− u2du = sin−1 u + C = sin−1 x

2+ C .

Note that 4− x2 = 4(1−

(x2

)2). Let u = x

2 . Then du = 12dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 5 / 18

Page 19: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Integration: u-Substitution

Theorem

∫g ′(x)√

1− (g(x))2dx = sin−1(g(x)) + C

Proof

Let u = g(x). Then du = g ′(x) dx ,∫g ′(x)√

1− (g(x))2dx =

∫1√

1− u2du = sin−1 u+C = sin−1(g(x))+C

Examples∫1√

4− x2dx =

∫1√

1− u2du = sin−1 u + C = sin−1 x

2+ C .

Note that 4− x2 = 4(1−

(x2

)2). Let u = x

2 . Then du = 12dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 5 / 18

Page 20: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Integration: u-Substitution

Theorem

∫g ′(x)√

1− (g(x))2dx = sin−1(g(x)) + C

Proof

Let u = g(x). Then du = g ′(x) dx ,∫g ′(x)√

1− (g(x))2dx =

∫1√

1− u2du = sin−1 u+C = sin−1(g(x))+C

Examples∫1√

4− x2dx =

∫1√

1− u2du = sin−1 u + C = sin−1 x

2+ C .

Note that 4− x2 = 4(1−

(x2

)2). Let u = x

2 . Then du = 12dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 5 / 18

Page 21: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Integration: u-Substitution

Theorem

∫g ′(x)√

1− (g(x))2dx = sin−1(g(x)) + C

Proof

Let u = g(x). Then du = g ′(x) dx ,∫g ′(x)√

1− (g(x))2dx =

∫1√

1− u2du = sin−1 u+C = sin−1(g(x))+C

Examples∫1√

4− x2dx =

∫1√

1− u2du = sin−1 u + C = sin−1 x

2+ C .

Note that 4− x2 = 4(1−

(x2

)2). Let u = x

2 . Then du = 12dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 5 / 18

Page 22: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Integration: u-Substitution

Theorem

∫g ′(x)√

1− (g(x))2dx = sin−1(g(x)) + C

Proof

Let u = g(x). Then du = g ′(x) dx ,∫g ′(x)√

1− (g(x))2dx =

∫1√

1− u2du = sin−1 u+C = sin−1(g(x))+C

Examples∫1√

2x − x2dx =

∫1√

1− u2du = sin−1 u+C = sin−1(x−1)+C .

Note that 2x − x2 = 1− (x2 − 2x + 1) = 1− (x − 1)2 (completethe square). Let u = x − 1. Then du = dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 5 / 18

Page 23: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Integration: u-Substitution

Theorem

∫g ′(x)√

1− (g(x))2dx = sin−1(g(x)) + C

Proof

Let u = g(x). Then du = g ′(x) dx ,∫g ′(x)√

1− (g(x))2dx =

∫1√

1− u2du = sin−1 u+C = sin−1(g(x))+C

Examples∫1√

2x − x2dx =

∫1√

1− u2du = sin−1 u+C = sin−1(x−1)+C .

Note that 2x − x2 = 1− (x2 − 2x + 1) = 1− (x − 1)2 (completethe square). Let u = x − 1. Then du = dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 5 / 18

Page 24: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Integration: u-Substitution

Theorem

∫g ′(x)√

1− (g(x))2dx = sin−1(g(x)) + C

Proof

Let u = g(x). Then du = g ′(x) dx ,∫g ′(x)√

1− (g(x))2dx =

∫1√

1− u2du = sin−1 u+C = sin−1(g(x))+C

Examples∫1√

2x − x2dx =

∫1√

1− u2du = sin−1 u+C = sin−1(x−1)+C .

Note that 2x − x2 = 1− (x2 − 2x + 1) = 1− (x − 1)2 (completethe square). Let u = x − 1. Then du = dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 5 / 18

Page 25: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Inverse Tangent tan−1 x (or arctan x)

y = tan x

domain:(− 12π, 1

2π)

range:(−∞,∞)

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 6 / 18

Page 26: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Inverse Tangent tan−1 x (or arctan x)

y = tan x

domain:(− 12π, 1

2π)

range:(−∞,∞)

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 6 / 18

Page 27: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Inverse Tangent tan−1 x (or arctan x)

y = tan x

domain:(− 12π, 1

2π)

range:(−∞,∞)

Trigonometric Properties

tan(tan−1 x) = x cot(tan−1 x) =1

x

sin(tan−1 x) =x√

1 + x2cos(tan−1 x) =

1√1 + x2

sec(tan−1 x) =√

1 + x2 csc(tan−1 x) =

√1 + x2

x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 6 / 18

Page 28: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Inverse Tangent tan−1 x (or arctan x)

y = tan x

domain:(− 12π, 1

2π)

range:(−∞,∞)

Trigonometric Properties

tan(tan−1 x) = x cot(tan−1 x) =1

x

sin(tan−1 x) =x√

1 + x2cos(tan−1 x) =

1√1 + x2

sec(tan−1 x) =√

1 + x2 csc(tan−1 x) =

√1 + x2

x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 6 / 18

Page 29: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Inverse Tangent tan−1 x (or arctan x)

y = tan x

domain:(− 12π, 1

2π)

range:(−∞,∞)

Trigonometric Properties

tan(tan−1 x) = x cot(tan−1 x) =1

x

sin(tan−1 x) =x√

1 + x2cos(tan−1 x) =

1√1 + x2

sec(tan−1 x) =√

1 + x2 csc(tan−1 x) =

√1 + x2

x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 6 / 18

Page 30: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Inverse Tangent tan−1 x (or arctan x)

y = tan x

domain:(− 12π, 1

2π)

range:(−∞,∞)

Trigonometric Properties

tan(tan−1 x) = x cot(tan−1 x) =1

x

sin(tan−1 x) =x√

1 + x2cos(tan−1 x) =

1√1 + x2

sec(tan−1 x) =√

1 + x2 csc(tan−1 x) =

√1 + x2

x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 6 / 18

Page 31: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Inverse Tangent tan−1 x (or arctan x)

y = tan x

domain:(− 12π, 1

2π)

range:(−∞,∞)

Trigonometric Properties

tan(tan−1 x) = x cot(tan−1 x) =1

x

sin(tan−1 x) =x√

1 + x2cos(tan−1 x) =

1√1 + x2

sec(tan−1 x) =√

1 + x2 csc(tan−1 x) =

√1 + x2

x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 6 / 18

Page 32: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Inverse Tangent tan−1 x (or arctan x)

y = tan x

domain:(− 12π, 1

2π)

range:(−∞,∞)

Trigonometric Properties

tan(tan−1 x) = x cot(tan−1 x) =1

x

sin(tan−1 x) =x√

1 + x2cos(tan−1 x) =

1√1 + x2

sec(tan−1 x) =√

1 + x2 csc(tan−1 x) =

√1 + x2

x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 6 / 18

Page 33: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Inverse Tangent tan−1 x (or arctan x)

y = tan x

domain:(− 12π, 1

2π)

range:(−∞,∞)

Trigonometric Properties

tan(tan−1 x) = x cot(tan−1 x) =1

x

sin(tan−1 x) =x√

1 + x2cos(tan−1 x) =

1√1 + x2

sec(tan−1 x) =√

1 + x2 csc(tan−1 x) =

√1 + x2

x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 6 / 18

Page 34: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Differentiation

Theorem

d

dxtan−1 x =

1

1 + x2.

Proof.

Let y = tan−1 x . Then x = tan y ,

d

dxtan−1 x =

1ddy tan y

=1

(sec y)2=

1(sec(tan−1 x)

)2=

1

1 + x2.

Theorem

d

dxtan−1 u =

1

1 + u2

du

dx,

∫1

1 + u2du = tan−1 u + C

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 7 / 18

Page 35: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Differentiation

Theorem

d

dxtan−1 x =

1

1 + x2.

Proof.

Let y = tan−1 x . Then x = tan y ,

d

dxtan−1 x =

1ddy tan y

=1

(sec y)2=

1(sec(tan−1 x)

)2=

1

1 + x2.

Theorem

d

dxtan−1 u =

1

1 + u2

du

dx,

∫1

1 + u2du = tan−1 u + C

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 7 / 18

Page 36: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Differentiation

Theorem

d

dxtan−1 x =

1

1 + x2.

Proof.

Let y = tan−1 x . Then x = tan y ,

d

dxtan−1 x =

1ddy tan y

=1

(sec y)2=

1(sec(tan−1 x)

)2=

1

1 + x2.

Theorem

d

dxtan−1 u =

1

1 + u2

du

dx,

∫1

1 + u2du = tan−1 u + C

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 7 / 18

Page 37: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Differentiation

Theorem

d

dxtan−1 x =

1

1 + x2.

Proof.

Let y = tan−1 x . Then x = tan y ,

d

dxtan−1 x =

1ddy tan y

=1

(sec y)2=

1(sec(tan−1 x)

)2=

1

1 + x2.

Theorem

d

dxtan−1 u =

1

1 + u2

du

dx,

∫1

1 + u2du = tan−1 u + C

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 7 / 18

Page 38: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Integration: u-Substitution

Theorem

∫g ′(x)

1 + (g(x))2dx = tan−1(g(x)) + C

Proof

Let u = g(x). Then du = g ′(x) dx ,∫g ′(x)

1 + (g(x))2dx =

∫1

1 + u2du = tan−1 u + C = tan−1(g(x)) + C

Examples∫1

4 + x2dx =

1

2

∫1

1 + u2du =

1

2tan−1 u + C =

1

2tan−1 x

2+ C .

Note that 4 + x2 = 4(1 +

(x2

)2). Let u = x

2 . Then du = 12dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 8 / 18

Page 39: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Integration: u-Substitution

Theorem

∫g ′(x)

1 + (g(x))2dx = tan−1(g(x)) + C

Proof

Let u = g(x). Then du = g ′(x) dx ,∫g ′(x)

1 + (g(x))2dx =

∫1

1 + u2du = tan−1 u + C = tan−1(g(x)) + C

Examples∫1

4 + x2dx =

1

2

∫1

1 + u2du =

1

2tan−1 u + C =

1

2tan−1 x

2+ C .

Note that 4 + x2 = 4(1 +

(x2

)2). Let u = x

2 . Then du = 12dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 8 / 18

Page 40: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Integration: u-Substitution

Theorem

∫g ′(x)

1 + (g(x))2dx = tan−1(g(x)) + C

Proof

Let u = g(x). Then du = g ′(x) dx ,∫g ′(x)

1 + (g(x))2dx =

∫1

1 + u2du = tan−1 u + C = tan−1(g(x)) + C

Examples∫1

4 + x2dx =

1

2

∫1

1 + u2du =

1

2tan−1 u + C =

1

2tan−1 x

2+ C .

Note that 4 + x2 = 4(1 +

(x2

)2). Let u = x

2 . Then du = 12dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 8 / 18

Page 41: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Integration: u-Substitution

Theorem

∫g ′(x)

1 + (g(x))2dx = tan−1(g(x)) + C

Proof

Let u = g(x). Then du = g ′(x) dx ,∫g ′(x)

1 + (g(x))2dx =

∫1

1 + u2du = tan−1 u + C = tan−1(g(x)) + C

Examples∫1

4 + x2dx =

1

2

∫1

1 + u2du =

1

2tan−1 u + C =

1

2tan−1 x

2+ C .

Note that 4 + x2 = 4(1 +

(x2

)2). Let u = x

2 . Then du = 12dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 8 / 18

Page 42: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Integration: u-Substitution

Theorem

∫g ′(x)

1 + (g(x))2dx = tan−1(g(x)) + C

Proof

Let u = g(x). Then du = g ′(x) dx ,∫g ′(x)

1 + (g(x))2dx =

∫1

1 + u2du = tan−1 u + C = tan−1(g(x)) + C

Examples∫1

4 + x2dx =

1

2

∫1

1 + u2du =

1

2tan−1 u + C =

1

2tan−1 x

2+ C .

Note that 4 + x2 = 4(1 +

(x2

)2). Let u = x

2 . Then du = 12dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 8 / 18

Page 43: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Integration: u-Substitution

Theorem

∫g ′(x)

1 + (g(x))2dx = tan−1(g(x)) + C

Proof

Let u = g(x). Then du = g ′(x) dx ,∫g ′(x)

1 + (g(x))2dx =

∫1

1 + u2du = tan−1 u + C = tan−1(g(x)) + C

Examples∫1

2 + 2x + x2dx =

∫1

1 + u2du = tan−1(x + 1) + C .

Note that 2 + 2x + x2 = 1 + (x2 + 2x + 1) = 1 + (x + 1)2

(complete the square). Let u = x + 1. Then du = dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 8 / 18

Page 44: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Integration: u-Substitution

Theorem

∫g ′(x)

1 + (g(x))2dx = tan−1(g(x)) + C

Proof

Let u = g(x). Then du = g ′(x) dx ,∫g ′(x)

1 + (g(x))2dx =

∫1

1 + u2du = tan−1 u + C = tan−1(g(x)) + C

Examples∫1

2 + 2x + x2dx =

∫1

1 + u2du = tan−1(x + 1) + C .

Note that 2 + 2x + x2 = 1 + (x2 + 2x + 1) = 1 + (x + 1)2

(complete the square). Let u = x + 1. Then du = dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 8 / 18

Page 45: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Integration: u-Substitution

Theorem

∫g ′(x)

1 + (g(x))2dx = tan−1(g(x)) + C

Proof

Let u = g(x). Then du = g ′(x) dx ,∫g ′(x)

1 + (g(x))2dx =

∫1

1 + u2du = tan−1 u + C = tan−1(g(x)) + C

Examples∫1

2 + 2x + x2dx =

∫1

1 + u2du = tan−1(x + 1) + C .

Note that 2 + 2x + x2 = 1 + (x2 + 2x + 1) = 1 + (x + 1)2

(complete the square). Let u = x + 1. Then du = dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 8 / 18

Page 46: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Integration: u-Substitution

Theorem

∫g ′(x)

1 + (g(x))2dx = tan−1(g(x)) + C

Proof

Let u = g(x). Then du = g ′(x) dx ,∫g ′(x)

1 + (g(x))2dx =

∫1

1 + u2du = tan−1 u + C = tan−1(g(x)) + C

Examples∫e−x

1 + e−2xdx = −

∫1

1 + u2du = − tan−1(e−x) + C .

Note that 1 + e−2x = 1 + (e−x)2 (complete the square). Letu = e−x . Then du = −e−xdx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 8 / 18

Page 47: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Integration: u-Substitution

Theorem

∫g ′(x)

1 + (g(x))2dx = tan−1(g(x)) + C

Proof

Let u = g(x). Then du = g ′(x) dx ,∫g ′(x)

1 + (g(x))2dx =

∫1

1 + u2du = tan−1 u + C = tan−1(g(x)) + C

Examples∫e−x

1 + e−2xdx = −

∫1

1 + u2du = − tan−1(e−x) + C .

Note that 1 + e−2x = 1 + (e−x)2 (complete the square). Letu = e−x . Then du = −e−xdx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 8 / 18

Page 48: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Integration: u-Substitution

Theorem

∫g ′(x)

1 + (g(x))2dx = tan−1(g(x)) + C

Proof

Let u = g(x). Then du = g ′(x) dx ,∫g ′(x)

1 + (g(x))2dx =

∫1

1 + u2du = tan−1 u + C = tan−1(g(x)) + C

Examples∫e−x

1 + e−2xdx = −

∫1

1 + u2du = − tan−1(e−x) + C .

Note that 1 + e−2x = 1 + (e−x)2 (complete the square). Letu = e−x . Then du = −e−xdx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 8 / 18

Page 49: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Quiz

Quiz

Let f ′(t) = kf (t).

1. For f (0) = 4, f (t) =: (a) kt + 4, (b) 4ekt , (c) 4e−kt .

2. For k > 0, double time T =: (a)4

k, (b)

ln 2

k(c) − ln 2

k.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 9 / 18

Page 50: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Inverse Secant sec−1 x

y = sec x

domain:[0, 12π)∪

( 12π, π]

range:(−∞,−1]∪[1,∞)

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 10 / 18

Page 51: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Inverse Secant sec−1 x

y = sec x

domain:[0, 12π)∪

( 12π, π]

range:(−∞,−1]∪[1,∞)

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 10 / 18

Page 52: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Inverse Secant sec−1 x

y = sec x

domain:[0, 12π)∪

( 12π, π]

range:(−∞,−1]∪[1,∞)

Trigonometric Properties

sec(sec−1 x) = x csc(sec−1 x) =x√

x2 − 1

sin(sec−1 x) =

√x2 − 1

xcos(sec−1 x) =

1

x

tan(sec−1 x) =√

x2 − 1 cot(sec−1 x) =1√

x2 − 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 10 / 18

Page 53: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Inverse Secant sec−1 x

y = sec x

domain:[0, 12π)∪

( 12π, π]

range:(−∞,−1]∪[1,∞)

Trigonometric Properties

sec(sec−1 x) = x csc(sec−1 x) =x√

x2 − 1

sin(sec−1 x) =

√x2 − 1

xcos(sec−1 x) =

1

x

tan(sec−1 x) =√

x2 − 1 cot(sec−1 x) =1√

x2 − 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 10 / 18

Page 54: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Inverse Secant sec−1 x

y = sec x

domain:[0, 12π)∪

( 12π, π]

range:(−∞,−1]∪[1,∞)

Trigonometric Properties

sec(sec−1 x) = x csc(sec−1 x) =x√

x2 − 1

sin(sec−1 x) =

√x2 − 1

xcos(sec−1 x) =

1

x

tan(sec−1 x) =√

x2 − 1 cot(sec−1 x) =1√

x2 − 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 10 / 18

Page 55: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Inverse Secant sec−1 x

y = sec x

domain:[0, 12π)∪

( 12π, π]

range:(−∞,−1]∪[1,∞)

Trigonometric Properties

sec(sec−1 x) = x csc(sec−1 x) =x√

x2 − 1

sin(sec−1 x) =

√x2 − 1

xcos(sec−1 x) =

1

x

tan(sec−1 x) =√

x2 − 1 cot(sec−1 x) =1√

x2 − 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 10 / 18

Page 56: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Inverse Secant sec−1 x

y = sec x

domain:[0, 12π)∪

( 12π, π]

range:(−∞,−1]∪[1,∞)

Trigonometric Properties

sec(sec−1 x) = x csc(sec−1 x) =x√

x2 − 1

sin(sec−1 x) =

√x2 − 1

xcos(sec−1 x) =

1

x

tan(sec−1 x) =√

x2 − 1 cot(sec−1 x) =1√

x2 − 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 10 / 18

Page 57: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Inverse Secant sec−1 x

y = sec x

domain:[0, 12π)∪

( 12π, π]

range:(−∞,−1]∪[1,∞)

Trigonometric Properties

sec(sec−1 x) = x csc(sec−1 x) =x√

x2 − 1

sin(sec−1 x) =

√x2 − 1

xcos(sec−1 x) =

1

x

tan(sec−1 x) =√

x2 − 1 cot(sec−1 x) =1√

x2 − 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 10 / 18

Page 58: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Inverse Secant sec−1 x

y = sec x

domain:[0, 12π)∪

( 12π, π]

range:(−∞,−1]∪[1,∞)

Trigonometric Properties

sec(sec−1 x) = x csc(sec−1 x) =x√

x2 − 1

sin(sec−1 x) =

√x2 − 1

xcos(sec−1 x) =

1

x

tan(sec−1 x) =√

x2 − 1 cot(sec−1 x) =1√

x2 − 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 10 / 18

Page 59: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Differentiation

Theorem

d

dxsec−1 x =

1

|x |√

x2 − 1.

Proof.

Let y = sec−1 x . Then x = sec y ,

d

dxsec−1 x =

1ddy sec y

=1

(sec y tan y)2=

1

|x |√

x2 − 1.

Theorem

d

dxsec−1 u =

1

|u|√

u2 − 1

du

dx,

∫1

u√

u2 − 1du = sec−1 |u|+C

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 11 / 18

Page 60: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Differentiation

Theorem

d

dxsec−1 x =

1

|x |√

x2 − 1.

Proof.

Let y = sec−1 x . Then x = sec y ,

d

dxsec−1 x =

1ddy sec y

=1

(sec y tan y)2=

1

|x |√

x2 − 1.

Theorem

d

dxsec−1 u =

1

|u|√

u2 − 1

du

dx,

∫1

u√

u2 − 1du = sec−1 |u|+C

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 11 / 18

Page 61: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Differentiation

Theorem

d

dxsec−1 x =

1

|x |√

x2 − 1.

Proof.

Let y = sec−1 x . Then x = sec y ,

d

dxsec−1 x =

1ddy sec y

=1

(sec y tan y)2=

1

|x |√

x2 − 1.

Theorem

d

dxsec−1 u =

1

|u|√

u2 − 1

du

dx,

∫1

u√

u2 − 1du = sec−1 |u|+C

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 11 / 18

Page 62: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Differentiation

Theorem

d

dxsec−1 x =

1

|x |√

x2 − 1.

Proof.

Let y = sec−1 x . Then x = sec y ,

d

dxsec−1 x =

1ddy sec y

=1

(sec y tan y)2=

1

|x |√

x2 − 1.

Theorem

d

dxsec−1 u =

1

|u|√

u2 − 1

du

dx,

∫1

u√

u2 − 1du = sec−1 |u|+C

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 11 / 18

Page 63: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Integration: u-Substitution

Theorem

∫g ′(x)

g(x)√

(g(x))2 − 1dx = sec−1(|g(x)|) + C

Proof

Let u = g(x). Then du = g ′(x) dx ,∫g ′(x)

g(x)√

(g(x))2 − 1dx =

∫1

u√

u2 − 1du = sec−1(|g(x)|) + C

Examples∫1

x√

x − 1dx = 2

∫1

u√

u2 − 1du =

1

2sec−1√x + C .

Note that x − 1 = (√

x)2 − 1. Let u =√

x . Then x = u2,dx = 2udu.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 12 / 18

Page 64: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Integration: u-Substitution

Theorem

∫g ′(x)

g(x)√

(g(x))2 − 1dx = sec−1(|g(x)|) + C

Proof

Let u = g(x). Then du = g ′(x) dx ,∫g ′(x)

g(x)√

(g(x))2 − 1dx =

∫1

u√

u2 − 1du = sec−1(|g(x)|) + C

Examples∫1

x√

x − 1dx = 2

∫1

u√

u2 − 1du =

1

2sec−1√x + C .

Note that x − 1 = (√

x)2 − 1. Let u =√

x . Then x = u2,dx = 2udu.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 12 / 18

Page 65: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Integration: u-Substitution

Theorem

∫g ′(x)

g(x)√

(g(x))2 − 1dx = sec−1(|g(x)|) + C

Proof

Let u = g(x). Then du = g ′(x) dx ,∫g ′(x)

g(x)√

(g(x))2 − 1dx =

∫1

u√

u2 − 1du = sec−1(|g(x)|) + C

Examples∫1

x√

x − 1dx = 2

∫1

u√

u2 − 1du =

1

2sec−1√x + C .

Note that x − 1 = (√

x)2 − 1. Let u =√

x . Then x = u2,dx = 2udu.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 12 / 18

Page 66: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Integration: u-Substitution

Theorem

∫g ′(x)

g(x)√

(g(x))2 − 1dx = sec−1(|g(x)|) + C

Proof

Let u = g(x). Then du = g ′(x) dx ,∫g ′(x)

g(x)√

(g(x))2 − 1dx =

∫1

u√

u2 − 1du = sec−1(|g(x)|) + C

Examples∫1

x√

x − 1dx = 2

∫1

u√

u2 − 1du =

1

2sec−1√x + C .

Note that x − 1 = (√

x)2 − 1. Let u =√

x . Then x = u2,dx = 2udu.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 12 / 18

Page 67: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Integration: u-Substitution

Theorem

∫g ′(x)

g(x)√

(g(x))2 − 1dx = sec−1(|g(x)|) + C

Proof

Let u = g(x). Then du = g ′(x) dx ,∫g ′(x)

g(x)√

(g(x))2 − 1dx =

∫1

u√

u2 − 1du = sec−1(|g(x)|) + C

Examples∫1

x√

x − 1dx = 2

∫1

u√

u2 − 1du =

1

2sec−1√x + C .

Note that x − 1 = (√

x)2 − 1. Let u =√

x . Then x = u2,dx = 2udu.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 12 / 18

Page 68: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Other Trigonometric Inverses

Other Trigonometric Inverses

sin−1 x + cos−1 x =π

2or cos−1 x =

π

2− sin−1 x

tan−1 x + cot−1 x =π

2or cot−1 x =

π

2− tan−1 x

sec−1 x + csc−1 x =π

2or csc−1 x =

π

2− sec−1 x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 13 / 18

Page 69: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Other Trigonometric Inverses

Other Trigonometric Inverses

sin−1 x + cos−1 x =π

2or cos−1 x =

π

2− sin−1 x

tan−1 x + cot−1 x =π

2or cot−1 x =

π

2− tan−1 x

sec−1 x + csc−1 x =π

2or csc−1 x =

π

2− sec−1 x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 13 / 18

Page 70: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Other Trigonometric Inverses

Other Trigonometric Inverses

sin−1 x + cos−1 x =π

2or cos−1 x =

π

2− sin−1 x

tan−1 x + cot−1 x =π

2or cot−1 x =

π

2− tan−1 x

sec−1 x + csc−1 x =π

2or csc−1 x =

π

2− sec−1 x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 13 / 18

Page 71: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Other Trigonometric Inverses

Other Trigonometric Inverses

sin−1 x + cos−1 x =π

2or cos−1 x =

π

2− sin−1 x

tan−1 x + cot−1 x =π

2or cot−1 x =

π

2− tan−1 x

sec−1 x + csc−1 x =π

2or csc−1 x =

π

2− sec−1 x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 13 / 18

Page 72: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Other Trigonometric Inverses

Other Trigonometric Inverses

sin−1 x + cos−1 x =π

2or cos−1 x =

π

2− sin−1 x

tan−1 x + cot−1 x =π

2or cot−1 x =

π

2− tan−1 x

sec−1 x + csc−1 x =π

2or csc−1 x =

π

2− sec−1 x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 13 / 18

Page 73: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Other Trigonometric Inverses

Other Trigonometric Inverses

sin−1 x + cos−1 x =π

2or cos−1 x =

π

2− sin−1 x

tan−1 x + cot−1 x =π

2or cot−1 x =

π

2− tan−1 x

sec−1 x + csc−1 x =π

2or csc−1 x =

π

2− sec−1 x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 13 / 18

Page 74: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Other Trigonometric Inverses

Other Trigonometric Inverses

sin−1 x + cos−1 x =π

2or cos−1 x =

π

2− sin−1 x

tan−1 x + cot−1 x =π

2or cot−1 x =

π

2− tan−1 x

sec−1 x + csc−1 x =π

2or csc−1 x =

π

2− sec−1 x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 13 / 18

Page 75: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Differentiation

Theorem

d

dxcos−1 x = − d

dxsin−1 x = − 1√

1− x2

d

dxcot−1 x = − d

dxtan−1 x = − 1

1 + x2

d

dxcsc−1 x = − d

dxsec−1 x = − 1

|x |√

x2 − 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 14 / 18

Page 76: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Differentiation

Theorem

d

dxcos−1 x = − d

dxsin−1 x = − 1√

1− x2

d

dxcot−1 x = − d

dxtan−1 x = − 1

1 + x2

d

dxcsc−1 x = − d

dxsec−1 x = − 1

|x |√

x2 − 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 14 / 18

Page 77: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Differentiation

Theorem

d

dxcos−1 x = − d

dxsin−1 x = − 1√

1− x2

d

dxcot−1 x = − d

dxtan−1 x = − 1

1 + x2

d

dxcsc−1 x = − d

dxsec−1 x = − 1

|x |√

x2 − 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 14 / 18

Page 78: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Differentiation

Theorem

d

dxcos−1 x = − d

dxsin−1 x = − 1√

1− x2

d

dxcot−1 x = − d

dxtan−1 x = − 1

1 + x2

d

dxcsc−1 x = − d

dxsec−1 x = − 1

|x |√

x2 − 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 14 / 18

Page 79: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Inverse Sine Inverse Tangent Inverse Secant Other Trig Inverses

Quiz (cont.)

The value, at the end of the 4 years, of a principle of $100 investedat 4% compounded

3. annually: (a) 400(1 + 0.04), (b) 100(1 + 0.04)4, (c) 100(1 + 0.16).

4. continuously: (a) 100e0.04, (b) 100e0.16, (c) 100(1 + 0.04)4.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 15 / 18

Page 80: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Definition

Hyperbolic Sine and Cosine

Definition

sinh x =1

2

(ex − e−x

), cosh x =

1

2

(ex + e−x

)Theorem

d

dxsinh x = cosh,

d

dxcosh x = sinh,

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 16 / 18

Page 81: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Definition

Identities

cosh2 x − sinh2 x = 1

sinh(x + y) = sinh x cosh y + cosh x sinh y

cosh(x + y) = cosh x cosh y + sinh x sinh y

cos2 x + sin2 x = 1

sin(x + y) = sin x cos y + cos x sin y

cos(x + y) = cos x cos y − sin x sin y

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 17 / 18

Page 82: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Definition

Identities

cosh2 x − sinh2 x = 1

sinh(x + y) = sinh x cosh y + cosh x sinh y

cosh(x + y) = cosh x cosh y + sinh x sinh y

cos2 x + sin2 x = 1

sin(x + y) = sin x cos y + cos x sin y

cos(x + y) = cos x cos y − sin x sin y

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 17 / 18

Page 83: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Definition

Identities

cosh2 x − sinh2 x = 1

sinh(x + y) = sinh x cosh y + cosh x sinh y

cosh(x + y) = cosh x cosh y + sinh x sinh y

cos2 x + sin2 x = 1

sin(x + y) = sin x cos y + cos x sin y

cos(x + y) = cos x cos y − sin x sin y

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 17 / 18

Page 84: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Definition

Identities

cosh2 x − sinh2 x = 1

sinh(x + y) = sinh x cosh y + cosh x sinh y

cosh(x + y) = cosh x cosh y + sinh x sinh y

cos2 x + sin2 x = 1

sin(x + y) = sin x cos y + cos x sin y

cos(x + y) = cos x cos y − sin x sin y

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 17 / 18

Page 85: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Definition

Identities

cosh2 x − sinh2 x = 1

sinh(x + y) = sinh x cosh y + cosh x sinh y

cosh(x + y) = cosh x cosh y + sinh x sinh y

cos2 x + sin2 x = 1

sin(x + y) = sin x cos y + cos x sin y

cos(x + y) = cos x cos y − sin x sin y

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 17 / 18

Page 86: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Definition

Identities

cosh2 x − sinh2 x = 1

sinh(x + y) = sinh x cosh y + cosh x sinh y

cosh(x + y) = cosh x cosh y + sinh x sinh y

cos2 x + sin2 x = 1

sin(x + y) = sin x cos y + cos x sin y

cos(x + y) = cos x cos y − sin x sin y

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 17 / 18

Page 87: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Definition

Identities

cosh2 x − sinh2 x = 1

sinh(x + y) = sinh x cosh y + cosh x sinh y

cosh(x + y) = cosh x cosh y + sinh x sinh y

cos2 x + sin2 x = 1

sin(x + y) = sin x cos y + cos x sin y

cos(x + y) = cos x cos y − sin x sin y

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 17 / 18

Page 88: Lecture 6 - Section 7.7 Inverse Trigonometric Functions Section 7.8

Inverse Trig Functions Hyperbolic Sine and Cosine Definition

Outline

Inverse Trig FunctionsInverse SineInverse TangentInverse SecantOther Trig Inverses

Hyperbolic Sine and CosineDefinition

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 6 January 31, 2008 18 / 18