Lecture 5 Single equilibrium stages (1) - CHERIC · relative volatility K ... all K-values are 1 no...

20
WG/MRLs-Brew IGG:TE ISM 14/3 INTERGOVERNMENTAL GROUP ON TEA INTERSESSIONAL MEETING Rome, Italy 5-6 May 2014 Working Group on MAXIMUM RESIDUE LEVELS IN BREW 1 Guidance document on risk Assessment using brew factor for fixation of MRLs of Pesticides in Tea 1 Submitted by China and India in their capacity as Co-chair of this Working Group.

Transcript of Lecture 5 Single equilibrium stages (1) - CHERIC · relative volatility K ... all K-values are 1 no...

Page 1: Lecture 5 Single equilibrium stages (1) - CHERIC · relative volatility K ... all K-values are 1 no separation by ordinary distillation. ... Lecture 5_Single equilibrium stages (1)

Lecture Lecture 5. 5. ( )( )Single Equilibrium Stages (1)Single Equilibrium Stages (1)

[Ch. 4][Ch. 4][Ch. 4][Ch. 4]

• Phase Separation

• Degree of Freedom Analysis

- Gibbs phase rule 2 PCF- General analysis

• Binary Vapor-Liquid Systems

- Examples of binary system

- Phase equilibrium diagram

- q-line

- Phase diagram for constant relative volatility

• Azeotropic Systems

Page 2: Lecture 5 Single equilibrium stages (1) - CHERIC · relative volatility K ... all K-values are 1 no separation by ordinary distillation. ... Lecture 5_Single equilibrium stages (1)

Phase SeparationPhase Separation

• Simplest separation processes V

- Two phases in contact physical equilibrium phase separation

If th ti f t i l- If the separation factor is large, a single contact stage may be sufficient

- If the separation factor is not large, V/L

p g ,multiple stages are required

• Separation factor for vapor-liquid equilibrium

L

p p q q

, ( ) LKLK HK

HK

Krelative volatilityK

HK

= 10,000 : almost perfect separation in a single stage = 1.10 : almost perfect separation requires hundreds of stages

• Calculation for separation operations : material balances, phase equilibrium relations, and energy balance

Page 3: Lecture 5 Single equilibrium stages (1) - CHERIC · relative volatility K ... all K-values are 1 no separation by ordinary distillation. ... Lecture 5_Single equilibrium stages (1)

Gibbs Phase RuleGibbs Phase Rule

• Variables

- Intensive variables : Do not depend on system size;

temperature, pressure, phase compositions

E t i i bl : D d t i ;- Extensive variables : Depend on system size;

mass, moles, energy; mass or molar flow rates, energy transfer rates

f f d• Degree of freedom, FNumber of independent variables (variance)

• Gibbs phase rule

Relation between the number of independent intensive variables at equilibriumequilibrium

2 PCFC : Number of components at equilibriumP : Number of phases at equilibrium

Page 4: Lecture 5 Single equilibrium stages (1) - CHERIC · relative volatility K ... all K-values are 1 no separation by ordinary distillation. ... Lecture 5_Single equilibrium stages (1)

Degree of Freedom Analysis (1)Degree of Freedom Analysis (1)

• Gibbs phase rule : consider equilibrium intensive variables only

yi

Variables

T, P : 2 variables

xi, yi, … : C×P variables

Equations

T, P 1 1C C

i ix and y P equations

Equations

1 1i i

or L V ii i i

yf f K C (P-1) equationsxii i i

i

f fx

C (P 1) equations

F = (2 + CP) – P – C(P - 1) = C – P + 2( ) ( )

For a binary VLE system (F=2) : given T, P determine x and y

Page 5: Lecture 5 Single equilibrium stages (1) - CHERIC · relative volatility K ... all K-values are 1 no separation by ordinary distillation. ... Lecture 5_Single equilibrium stages (1)

Degree of Freedom Analysis (2)Degree of Freedom Analysis (2)

• General analysis: consider all intensive and extensive variables

Variables

T, P : 2+

zi, TF, PF, F Q

C+P+4 in generalV

yxi, yi ,… : C×P

Equations

+ F, Q, [V, L,…]

(C+6 for VLE)yi

P + C(P-1) equations

q

Fzi Q

T,P+

L

ziTFPF

Qi i i

F V L

Fz Vy LxFh Q Vh Lh

C+1 equations

F = (2+CP) + (C+P+4) – [P+C(P-1)] - (C+1) = C + 5

xi

If we consider F = C + 41

1C

ii

z

Page 6: Lecture 5 Single equilibrium stages (1) - CHERIC · relative volatility K ... all K-values are 1 no separation by ordinary distillation. ... Lecture 5_Single equilibrium stages (1)

Binary VaporBinary Vapor--Liquid SystemsLiquid Systems

• Experimental vapor-liquid equilibrium data for binaryExperimental vapor liquid equilibrium data for binary systems (A and B) are widely available

e.g. Perry’s handbook

• Types of equilibrium data

- Isothermal : P-y-x

If P d T fi d h i i l l

Isothermal : P y x

- Isobaric : T-y-x

• If P and T are fixed phase compositions are completely defined

⇒ separation factor (relative volatility for vapor liquid) is

( / ) ( / )K

⇒ separation factor (relative volatility for vapor-liquid) is also fixed

,( / ) ( / )( / ) (1 ) /(1 )

A A A A AA B

B B B A A

K y x y xK y x y x

A is the more-volatile component (yA > xA)

Page 7: Lecture 5 Single equilibrium stages (1) - CHERIC · relative volatility K ... all K-values are 1 no separation by ordinary distillation. ... Lecture 5_Single equilibrium stages (1)

Examples of Binary SystemExamples of Binary System

• Water + Glycerol

- Normal boiling point difference : 190 ℃

- Relative volatility : very high

⇒ Good separation in a single equilibrium stage

• Methanol + Water

- Normal boiling point difference : 35.5 ℃

- Relative volatility : intermediate

⇒ About 30 trays are required for an acceptable separation

• p-xylene + m-xylene

- Normal boiling point difference : 0.8 ℃

- Relative volatility : close to 1.0

Di till ti ti i i ti l b t 1 000 t i d- Distillation separation is impractical : about 1,000 trays are required

⇒ Crystallization or adsorption is preferred

Page 8: Lecture 5 Single equilibrium stages (1) - CHERIC · relative volatility K ... all K-values are 1 no separation by ordinary distillation. ... Lecture 5_Single equilibrium stages (1)

Equilibrium Data for Equilibrium Data for MethanolMethanol--Water System (1)Water System (1)

25089

MethanolMethanol Water System (1)Water System (1)T = 50 ℃ T = 150 ℃

150

200

sure, psia

45678

sure, psia

0

50

100

Press

01234

Press

0 0.2 0.4 0.6 0.8 1

Composition

0 0.2 0.4 0.6 0.8 1

Composition

T = 250 ℃

1000

1200

1400

psia

T 250 ℃

• As T becomes higher, relative volatility becomes smaller

200

400

600

800

Pressure, p

y

Separation becomes difficult

• At 250 oC no separation by 0

200

0 0.2 0.4 0.6 0.8 1

Composition

p ydistillation when x ≥ 0.772

Page 9: Lecture 5 Single equilibrium stages (1) - CHERIC · relative volatility K ... all K-values are 1 no separation by ordinary distillation. ... Lecture 5_Single equilibrium stages (1)

Equilibrium Data for Equilibrium Data for MethanolMethanol--Water System (2)Water System (2)MethanolMethanol Water System (2)Water System (2)

• (relative volatility) = 1.0

The separation by distillation is not possible

∵ Th iti f th∵ The compositions of the vapor and liquid are identical and two phases become one phase

yA = xA Tc (℃) Pc (psia)

0.000 374.1 3,208

0.772 250 1,219

1.000 240 1,154

In industry, distillation columns operate at pressures below Pc

Page 10: Lecture 5 Single equilibrium stages (1) - CHERIC · relative volatility K ... all K-values are 1 no separation by ordinary distillation. ... Lecture 5_Single equilibrium stages (1)

Phase Equilibrium DiagramPhase Equilibrium Diagram

di t 1 t

Methanol-water system n hexane-n octane system

y-x diagram at 1 atmT-y-x diagram at 1 atm

Dew point

Tie line

P-x diagram at 150 ℃Bubble point

Page 11: Lecture 5 Single equilibrium stages (1) - CHERIC · relative volatility K ... all K-values are 1 no separation by ordinary distillation. ... Lecture 5_Single equilibrium stages (1)

qq--lineline

H H HFz Vy Lx n hexane-n octane system

H H Hy

F V L y-x phase diagram at 1 atm

( / ) 1 1( / ) ( / )H H H

V Fy x zV F V F

Feed mixture, F with overall composition zH = 0.6

F 60 l% i tiFor 60 mol% vaporization,slope = (0.6-1)/0.6 = -2/3

⇒ Equilibrium composition q pfrom equilibrium curve : yH = 0.76 and xH = 0.37

Slope=0, (V/F)=1 : vapor only

Slope=∞, (V/F)=0 : liquid only

Page 12: Lecture 5 Single equilibrium stages (1) - CHERIC · relative volatility K ... all K-values are 1 no separation by ordinary distillation. ... Lecture 5_Single equilibrium stages (1)

yy--x Phase Diagram for Constant x Phase Diagram for Constant Relative VolatilityRelative VolatilityRelative VolatilityRelative Volatility

• Relative volatility

,/ // (1 ) /(1 )

A A A AA B

B B A A

y x y xy x y x

If A,B is assumed constant over the entire composition range, the

x

y-x phase equilibrium curve can be determined using A,B

)1(1 ,

,

BAA

ABAA x

xy

satsat

For an ideal solution, A,B can be approximated with Raoult’s law

satB

satA

satB

satA

B

ABA P

PPPPP

KK

//

,

Page 13: Lecture 5 Single equilibrium stages (1) - CHERIC · relative volatility K ... all K-values are 1 no separation by ordinary distillation. ... Lecture 5_Single equilibrium stages (1)

AzeotropicAzeotropic systems (1)systems (1)

• Azeotropes : formed by liquid mixtures exhibiting minimum- or i b ili i tmaximum-boiling points

- Homogeneous or heterogeneous azeotropes

Isopropyl ether-isopropyl alcohol at 101 kPa

Acetone-chloroform at 101 kPa

• Identical vapor and liquid compositions at the azeotropic composition all K-values are 1 no separation by ordinary distillation

Page 14: Lecture 5 Single equilibrium stages (1) - CHERIC · relative volatility K ... all K-values are 1 no separation by ordinary distillation. ... Lecture 5_Single equilibrium stages (1)

AzeotropicAzeotropic systems (2)systems (2)

• Azeotropes limit the separation achievable by ordinary distillationdistillation

⇒ Changing pressure sufficiently : shift the equilibrium to break the azeotrope or move itbreak the azeotrope or move it

• Azeotrope formation can be used to achieve difficult separationsseparations

An entrainer (MSA) is added combining with one or more combining with one or more of the components in the feed forming a minimum-boiling azeotropeazeotrope recover as the distillate

e g heterogeneous azeotropice.g. heterogeneous azeotropic distillation: addition of benzene to an alcohol-water mixture