Lecture 27 - University of California, Berkeleyee105/fa07/lectures/Lecture 27.pdf · Lecture 27...

24
Lecture 27 ANNOUNCEMENTS R l ffi h ill d M d 12/10 Regular office hours will end on Monday 12/10 Special office hours will be posted on the EE105 website Final Exam Review Session: Friday 12/14 3PM HP Auditorium Final Exam Review Session: Friday 12/14, 3PM, HP Auditorium Video will be posted online by Monday 12/17 Final Exam: Thursday 12/20, 12:30PM3:30PM, 277 Cory Closed book; 6 pages of notes only h Comprehensive in coverage: Material of MT#1 and MT#2, plus MOSFET amplifiers, MOSFET current sources, BJT and MOSFET differential amplifiers, feedback. EE105 Fall 2007 Lecture 27, Slide 1 Prof. Liu, UC Berkeley Qualitative questions on stateoftheart device technology

Transcript of Lecture 27 - University of California, Berkeleyee105/fa07/lectures/Lecture 27.pdf · Lecture 27...

Page 1: Lecture 27 - University of California, Berkeleyee105/fa07/lectures/Lecture 27.pdf · Lecture 27 ANNOUNCEMENTS • RlRegular office hours will end on MdMonday 12/10 • Special office

Lecture 27

ANNOUNCEMENTSR l ffi h ill d M d 12/10• Regular office hours will end on Monday 12/10• Special office hours will be posted on the EE105 website

• Final Exam Review Session: Friday 12/14 3PM HP AuditoriumFinal Exam Review Session: Friday 12/14, 3PM, HP Auditorium– Video will be posted online by Monday 12/17

• Final Exam:– Thursday 12/20, 12:30PM‐3:30PM, 277 Cory– Closed book; 6 pages of notes only

h– Comprehensive in coverage:• Material of MT#1 and MT#2, plus MOSFET amplifiers, MOSFET current sources, BJT and MOSFET differential amplifiers, feedback.

EE105 Fall 2007 Lecture 27, Slide 1 Prof. Liu, UC Berkeley

• Qualitative questions on state‐of‐the‐art device technology

Page 2: Lecture 27 - University of California, Berkeleyee105/fa07/lectures/Lecture 27.pdf · Lecture 27 ANNOUNCEMENTS • RlRegular office hours will end on MdMonday 12/10 • Special office

Outline

• IC technology advancementIC technology advancementQ: How did we get here?

• Modern BJT technologyQ: What is an HBT?

• Modern MOSFET technologyQ: What are the challenges (and potential solutions) for continued MOSFET scaling?

EE105 Fall 2007 Lecture 27, Slide 2 Prof. Liu, UC Berkeley

Page 3: Lecture 27 - University of California, Berkeleyee105/fa07/lectures/Lecture 27.pdf · Lecture 27 ANNOUNCEMENTS • RlRegular office hours will end on MdMonday 12/10 • Special office

The IC Market• The semiconductor industry is approaching $300B/yr in sales

Military

Communications24%

Military2%

Computers42%

Transportation Cons mer Electronics

Industrial8%

EE105 Fall 2007 Lecture 27, Slide 3 Prof. Liu, UC Berkeley

Transportation 8%

Consumer Electronics16%

Courtesy of Dr. Bill Flounders, UC Berkeley Microlab

Page 4: Lecture 27 - University of California, Berkeleyee105/fa07/lectures/Lecture 27.pdf · Lecture 27 ANNOUNCEMENTS • RlRegular office hours will end on MdMonday 12/10 • Special office

IC Technology Advancement

Improvements in IC performance and cost have been enabled by the steady miniaturization of the transistorenabled by the steady miniaturization of the transistor

International Technology Transistor Scaling

Better Performance/Cost100

m)

Roadmap for Semiconductors

Investment

SMIC’s Fab 4 (Beijing, China)Photo by L.R. Huang, DigiTimes

Market Growth 10

LEN

GTH

(n

PITCH

2000 2005 2010 2015 20201

GAT

E LOW POWER HIGH PERFORMANCE

YEAR: 2004 2007 2010 2013 2016

EE105 Fall 2007 Lecture 27, Slide 4 Prof. Liu, UC Berkeley

YEARHALF-PITCH: 90nm 65nm 45nm 32nm 22nm

Page 5: Lecture 27 - University of California, Berkeleyee105/fa07/lectures/Lecture 27.pdf · Lecture 27 ANNOUNCEMENTS • RlRegular office hours will end on MdMonday 12/10 • Special office

The Nanometer Size ScaleMOSFET

Carbon nanotube

EE105 Fall 2007 Lecture 27, Slide 5 Prof. Liu, UC Berkeley

Page 6: Lecture 27 - University of California, Berkeleyee105/fa07/lectures/Lecture 27.pdf · Lecture 27 ANNOUNCEMENTS • RlRegular office hours will end on MdMonday 12/10 • Special office

Nanogap DNA Detector

Prof. Luke Lee, BioEngineering Dept., g g phttp://www-biopoems.berkeley.edu/

Double-stranded DNASingle-stranded DNA

Polysilicon

Poly-SiPoly-SiPoly-SiPoly-Si

EE105 Fall 2007 Lecture 27, Slide 6 Prof. Liu, UC Berkeley

Insulator (Insulator (Si3N4) Insulator (Insulator (Si3N4)

Page 7: Lecture 27 - University of California, Berkeleyee105/fa07/lectures/Lecture 27.pdf · Lecture 27 ANNOUNCEMENTS • RlRegular office hours will end on MdMonday 12/10 • Special office

IC Fabrication• Goal: Mass fabrication (i.e. simultaneous fabrication) of many 

IC “chips” on each wafer each containing millions or billions ofIC  chips  on each wafer, each containing millions or billions of transistors

• Approach:  Form thin films of semiconductors, metals, and insulators over an entire wafer, and pattern each layer with a process much like printing (lithography).

Planar processing consists of a sequence of additive and subtractive steps with lateral patterning

oxidationdeposition

ion implantation

etching lithography

EE105 Fall 2007 Lecture 27, Slide 7 Prof. Liu, UC Berkeley

p

Page 8: Lecture 27 - University of California, Berkeleyee105/fa07/lectures/Lecture 27.pdf · Lecture 27 ANNOUNCEMENTS • RlRegular office hours will end on MdMonday 12/10 • Special office

Planar Processing(patented by Fairchild Semiconductor in 1959: J A Hoerni US Patent 3 064 167)

• DEPOSITION of a thin film

(patented by Fairchild Semiconductor in 1959: J. A. Hoerni, US Patent 3,064,167)

• LITHOGRAPHY– Coat with a protective layer– Selectively expose the protective layer– Develop the protective layer– Develop the protective layer

• ETCH to selectively remove the thin film

EE105 Fall 2007 Lecture 27, Slide 8 Prof. Liu, UC Berkeley• Strip (etch) the protective layer

Courtesy of Dr. Bill Flounders, UC Berkeley Microlab

Page 9: Lecture 27 - University of California, Berkeleyee105/fa07/lectures/Lecture 27.pdf · Lecture 27 ANNOUNCEMENTS • RlRegular office hours will end on MdMonday 12/10 • Special office

Overview of IC Process Steps

E it

Test

EpitaxyBare SiliconWafer

ProcessedWafer

Deposition/growthAnneal

Mask PatternCMP

Ion Implantation

Mask Pattern Generation

CD SEMMetrology

DefectDetection

EE105 Fall 2007 Lecture 27, Slide 9 Prof. Liu, UC Berkeley

Etch Lithography

Courtesy of Dr. Bill Flounders, UC Berkeley Microlab

Page 10: Lecture 27 - University of California, Berkeleyee105/fa07/lectures/Lecture 27.pdf · Lecture 27 ANNOUNCEMENTS • RlRegular office hours will end on MdMonday 12/10 • Special office

Modern BJT StructureB E C

p+ p+ P baseN collector

N+ polySi

N+ Shallowtrench

P+polySiP+polySi

F

N+ subcollector

P− substrate

Deeptrench

Deep trench

Features:• Narrow base • n+ poly‐Si emitterS lf li d l Si b t t• Self‐aligned p+ poly‐Si base contacts

• Lightly‐doped collector• Heavily‐doped epitaxial subcollector• Shallow trenches and deep trenches filled with SiO for electrical isolation

EE105 Fall 2007 Lecture 27, Slide 10 Prof. Liu, UC Berkeley

• Shallow trenches and deep trenches filled with SiO2 for electrical isolation

Page 11: Lecture 27 - University of California, Berkeleyee105/fa07/lectures/Lecture 27.pdf · Lecture 27 ANNOUNCEMENTS • RlRegular office hours will end on MdMonday 12/10 • Special office

BJT Performance Parameters• Common emitter current gain, β :

DA 2 ⎞⎛

BBiEE

EEiBB

iEEE

BB

iBBE

B

C

WNnDWNnD

nDqAWN

nDqA

II

2

2

2

2

=⎞

⎜⎜⎛

⎟⎟⎠

⎞⎜⎜⎝

=≡β

• The cutoff frequency, fT, is the frequency at which β falls to 1.

EE

i

WN ⎠⎜⎜⎝

It is correlated with the maximum frequency of oscillation, fmax.

• Intrinsic gainT

A

C

A

T

Com V

VIV

VIrg =⋅≈

EE105 Fall 2007 Lecture 27, Slide 11 Prof. Liu, UC Berkeley

Page 12: Lecture 27 - University of California, Berkeleyee105/fa07/lectures/Lecture 27.pdf · Lecture 27 ANNOUNCEMENTS • RlRegular office hours will end on MdMonday 12/10 • Special office

Heterojunction Bipolar Transistor (HBT)

• To improve β , we can increase niB by using a base material (Si1 Ge ) that has a smaller band gap energy(Si1‐xGex) that has a smaller band gap energy

• for x = 0.2, Eg of Si1‐xGex is 0.1eV smaller than for Si

⎞⎜⎜⎛ − Eg2

⎠⎜⎜⎝

∝kT

n gi exp2

EEiBB WNnD 2

• Note that this allows a large β to be achieved with large NB(even >N ) which is advantageous for

BBiEE WNnD 2β

(even >NE), which is advantageous for

• increasing Early voltage (VA)

• reducing base resistance

EE105 Fall 2007 Lecture 27, Slide 12 Prof. Liu, UC Berkeley

g

Page 13: Lecture 27 - University of California, Berkeleyee105/fa07/lectures/Lecture 27.pdf · Lecture 27 ANNOUNCEMENTS • RlRegular office hours will end on MdMonday 12/10 • Special office

Modern MOSFET Structures(Intel Penryn© from www semiconductor com)(Intel Penryn©,  from www.semiconductor.com)

N-channel MOSFETs P-channel MOSFETs

• 45nm CMOS technology features:– High‐permittivity gate dielectric and metal gate electrodes

strained channel regions

EE105 Fall 2007 Lecture 27, Slide 13 Prof. Liu, UC Berkeley

– strained channel regions– shallow trench isolation

Page 14: Lecture 27 - University of California, Berkeleyee105/fa07/lectures/Lecture 27.pdf · Lecture 27 ANNOUNCEMENTS • RlRegular office hours will end on MdMonday 12/10 • Special office

MOSFET Performance Parameters

• Transconductance (short‐channel MOSFET):I

– The average carrier velocity v is dependent on the velocity

THGS

Doxm VV

IvWCg−

==

The average carrier velocity v is dependent on the velocity at which carriers are “injected” from the source into the channel, which is dependent on the carrier mobility

• The cutoff frequency of a MOSFET is given byGS

mT C

gf =π2

• Intrinsic gain: )(11D

om VVIVVIrg =⋅=

λλ

GS

EE105 Fall 2007 Lecture 27, Slide 14 Prof. Liu, UC Berkeley

)( THGSDTHGS VVIVV −− λλ

Page 15: Lecture 27 - University of California, Berkeleyee105/fa07/lectures/Lecture 27.pdf · Lecture 27 ANNOUNCEMENTS • RlRegular office hours will end on MdMonday 12/10 • Special office

MOSFET Scaling Challenges• Suppression of short‐channel effects

Gain in I is incommensurate with L scaling GateGate

MOSFET:Lg

Tox

– Gain in ION is incommensurate with Lg scaling

• Variability in performanceSubstrate

Source Drain

Substrate

Source DrainLeff Nsub

Xj

Variability in performance

– Sub‐wavelength lithography:(Costly resolution‐enhancement 

Design

Mask

250nm250nm 180nm180nm

OPCOPC

90nm and Below90nm and Below

PSM

180°

PSMPSM

180°

180°

techniques are needed)

– Random variations:• Photoresist line‐edge roughness

Wafer

180°180°180°

OPC0°

180°OPCOPCOPC

180°

Photoresist line edge roughness

photoresist SiO2 Gate

S D i

EE105 Fall 2007 Lecture 27, Slide 15 Prof. Liu, UC Berkeley

• Statistical dopant fluctuationsA. Brown et al., IEEE Trans. Nanotechnology, p. 195, 2002

Source Drain

Page 16: Lecture 27 - University of California, Berkeleyee105/fa07/lectures/Lecture 27.pdf · Lecture 27 ANNOUNCEMENTS • RlRegular office hours will end on MdMonday 12/10 • Special office

“VTH Roll‐Off”• |VTH| decreases with Lg

– Effect is exacerbated by

M. Okuno et al., 2005 IEDM p. 52

Effect is exacerbated by 

high values of |VDS|

• Qualitative explanation:Q p

– The source & drain p‐n junctions assist in depleting the Si underneath the gate.  The smaller the Lg, the greater the percentage of charge balanced by the S/D p n junctions:balanced by the S/D p‐n junctions:

Large Lg: S Dn+n+

VG

xj

EE105 Fall 2007 Lecture 27, Slide 16 Prof. Liu, UC Berkeley

Small Lg: DSp depletion region

j

Page 17: Lecture 27 - University of California, Berkeleyee105/fa07/lectures/Lecture 27.pdf · Lecture 27 ANNOUNCEMENTS • RlRegular office hours will end on MdMonday 12/10 • Special office

Why New Transistor Structures?

• DIBL must be suppressed to scale down Lg• Leakage occurs in region far from channel surface

Let’s get rid of it! Lg

G tGate

DrainSource

GateThin-BodyMOSFET Source Drain

Gate

“Silicon-on-I l t ” Buried Oxide

Substrate

Insulator” (SOI)Wafer

EE105 Fall 2007 Lecture 27, Slide 17 Prof. Liu, UC Berkeley

Page 18: Lecture 27 - University of California, Berkeleyee105/fa07/lectures/Lecture 27.pdf · Lecture 27 ANNOUNCEMENTS • RlRegular office hours will end on MdMonday 12/10 • Special office

Thin‐Body MOSFETs

• Leakage is suppressed by using a thin body (TSi < Lg)Ch l d i i t d d hi h i bilit– Channel doping is not needed  higher carrier mobility

• Double‐gate structure is more scalable (to Lg<10nm)

Ultra-Thin Body (UTB)L

Double-Gate (DG)

Gate

Lg

S D i

Gate

Buried Oxide

Source Drain TSiGate

Source Drain TSi

EE105 Fall 2007 Lecture 27, Slide 18 Prof. Liu, UC Berkeley

Substrate

Page 19: Lecture 27 - University of California, Berkeleyee105/fa07/lectures/Lecture 27.pdf · Lecture 27 ANNOUNCEMENTS • RlRegular office hours will end on MdMonday 12/10 • Special office

Double‐Gate “FinFET”

Planar DG-FET FinFET

Gate

Lg

D. Hisamoto et al. (UC Berkeley),IEDM T h i l Di t 1032

DrainGate

Lg

Source Drain

Gate

TSi

IEDM Technical Digest, pp. 1032-1034, 1998

N. Lindert et al. (UC Berkeley), IEEE Electron Device Letters, pp. 487 489 2001

Source

Gate

Fin Width = TSi

Fin Height HFIN = W/2

487-489, 2001

GATEDRAIN

20 nm

10 nmY.-K. Choi et al. (UC Berkeley), IEDMTechnical Digest, pp. 421-424, 200115nm Lg FinFET:

EE105 Fall 2007 Lecture 27, Slide 19 Prof. Liu, UC Berkeley

SOURCE

Page 20: Lecture 27 - University of California, Berkeleyee105/fa07/lectures/Lecture 27.pdf · Lecture 27 ANNOUNCEMENTS • RlRegular office hours will end on MdMonday 12/10 • Special office

15 nm Lg FinFETsY K Choi et al (UC Berkeley) IEDM Technical Digest pp 421 424 2001

TSi = 10 nm; Tox = 2.1 nm

Y.-K. Choi et al. (UC Berkeley), IEDM Technical Digest, pp. 421-424, 2001

10-2 10-2

P+Si0.4Ge0.6Vd=-1.0 V Vd=1.0 V

um] 600 600

|V V|=1 2V NMOSPMOS

/um

]Transfer Characteristics Output Characteristics

10-6

10-4

10-6

10-4Gate

Vd=-0.05 V

d

Vd=0.05 V

nt, I

d [A

/u

300

400

500

300

400

500

Voltage step: 0.2V

|Vg-Vt|=1.2VPMOS

t, I d[u

A/

10-10

10-8

10-10

10-8N-body=2x1018cm-3

n C

urre

n

100

200

300

100

200

300: 0.2V

Cur

ren

-1.0 -0.5 0.0 0.5 1.0 1.5 2.010-12 10-12

NMOSPMOS

Dra

in

Gate Voltage V [V]-1.5 -1.0 -0.5 0.0 0.5 1.0 1.50

100

0

100D

rain

Drain Voltage V [V]

EE105 Fall 2007 Lecture 27, Slide 20 Prof. Liu, UC Berkeley

Gate Voltage, Vg [V] Drain Voltage, Vd [V]

Page 21: Lecture 27 - University of California, Berkeleyee105/fa07/lectures/Lecture 27.pdf · Lecture 27 ANNOUNCEMENTS • RlRegular office hours will end on MdMonday 12/10 • Special office

10 nm Lg FinFETsB Yu et al (AMD & UC Berkeley) IEDM Technical Digest pp 251 254 2002B. Yu et al. (AMD & UC Berkeley), IEDM Technical Digest, pp. 251-254, 2002

DrainGate

220Å

NiSi

Poly-SiSource

SiO2 cap

Lg=10nmSi Fi

BOX

Si Fin

EE105 Fall 2007 Lecture 27, Slide 21 Prof. Liu, UC Berkeley

Page 22: Lecture 27 - University of California, Berkeleyee105/fa07/lectures/Lecture 27.pdf · Lecture 27 ANNOUNCEMENTS • RlRegular office hours will end on MdMonday 12/10 • Special office

MOSFET Scaling Scenario

t lli t

• Advanced structures will enable Si MOSFET scaling to Lg <10 nm

high-κ gate dielectric

metallic gate

Lg (nm): 50 40 30 20 10G

S D

Si classical

strained Si

forward body biasingal

multi-gateG

S DSi

G

forward body biasing

EE105 Fall 2007 Lecture 27, Slide 22 Prof. Liu, UC Berkeley

G

Page 23: Lecture 27 - University of California, Berkeleyee105/fa07/lectures/Lecture 27.pdf · Lecture 27 ANNOUNCEMENTS • RlRegular office hours will end on MdMonday 12/10 • Special office

The End is Not the Limit !Innovations in process technology, materials, and device design will

t i th Si l ti

Technology, Device & CircuitInnovations,

Heterogeneous Integrationsustain the Si revolution

Lower Power,Lower CostInvestment

UbiC ( 1 t )R PCs (1 person/computer)Mainframes (>1 persons per computer)

Information technologyMarket GrowthAcknowledgement:

Mark Weiser

UbiComp (>1 computers per person)

ALE

S($

)/Y

Information technology will befor better quality-of-lifepervasiveembeddedhuman-centered

today

SA

TIMEEnvironmentpervasive

embeddedhuman-centeredhuman centeredsolving societal-scale problems

Healthcare Disaster response

EnergySensatex

human centered

EE105 Fall 2007 Lecture 27, Slide 23 Prof. Liu, UC BerkeleyPhilips Transportation

Page 24: Lecture 27 - University of California, Berkeleyee105/fa07/lectures/Lecture 27.pdf · Lecture 27 ANNOUNCEMENTS • RlRegular office hours will end on MdMonday 12/10 • Special office

EECS 105 in the Grand Scheme • Example electronic system:  cell phone

EE105 Fall 2007 Lecture 27, Slide 24 Prof. Liu, UC Berkeley