Laboratory Diagnosis: An Overview

31
Laboratory Diagnosis: An Overview

description

Laboratory Diagnosis: An Overview. Goals. Provide an overview of pathogens tested in public health laboratories Describe laboratory tests commonly used in outbreak investigations. A Review of Specimens. - PowerPoint PPT Presentation

Transcript of Laboratory Diagnosis: An Overview

Page 1: Laboratory Diagnosis:  An Overview

Laboratory Diagnosis: An Overview

Page 2: Laboratory Diagnosis:  An Overview

Goals

Provide an overview of pathogens tested in public health laboratories

Describe laboratory tests commonly used in outbreak investigations

Page 3: Laboratory Diagnosis:  An Overview

A Review of Specimens

Laboratory staff analyze specimen to determine presence or absence of suspected pathogens

Specimens can tell us: Whether different individuals are

infected with the same pathogen Whether a particular source is

causing an outbreak

Page 4: Laboratory Diagnosis:  An Overview

A Review of Specimens

Environmental samples include: food (items suspected in a foodborne

outbreak) water (from a lake, water supply, or

drinking fountain) surfaces (medical equipment,

countertops, etc.)

Page 5: Laboratory Diagnosis:  An Overview

A Review of Specimens

Proper specimen collection is important (see FOCUS Volume 4, Issue 2) Right sample must be collected Collected in proper medium for survival Transported within proper time frame

and temperature Accompanied by appropriate information

Page 6: Laboratory Diagnosis:  An Overview

Microorganisms Bacteria: single-celled organisms

Examples: Salmonella, Streptococcus (“strep”), Staphylococcus (“staph”), Escherichia Coli (E. coli)

Viruses: DNA (or RNA) surrounded by protective coat of proteins Examples: Influenza, HIV, West Nile, Noroviruses,

common cold viruses (Coronavirus, Rhinovirus) Other pathogens: toxins produced by

bacteria, parasites, fungi, chemicals

Page 7: Laboratory Diagnosis:  An Overview

Why is Lab Diagnosis Necessary? Lab identification of the agent is crucial:

Because diagnosis should not be based on clinical symptoms alone

Many agents cause similar symptoms Clinical symptoms may be unclear or too general Physicians might not recognize a rare disease

To connect individual cases in outbreak To ensure proper medical treatment for

patients Norovirus and Shigella infections cause same

symptoms: Norovirus treatment is symptomatic relief; Shigella can be treated with antibiotic

Page 8: Laboratory Diagnosis:  An Overview

Why is Lab Diagnosis Necessary?

Sometimes necessary to conduct further studies to determine specific strain or serotype: a.k.a. subtyping Dozens of strains of Noroviruses (e.g.,

including Hawaii virus, Snow Mountain virus, Desert Shield virus, Toronto virus); if people infected with a Norovirus have different strains, the infections are unrelated

Page 9: Laboratory Diagnosis:  An Overview

Why is Lab Diagnosis Necessary? To help identify outbreaks across state lines

2006: CDC officials notified of several small clusters of E. coli 0157:H7 infections in Wisconsin and Oregon, with fresh spinach implicated as the probable source. The same day, New Mexico epidemiologists contacted Wisconsin and Oregon epidemiologists regarding similar cluster of infections. CDC’s PulseNet confirmed through laboratory testing that E. coli O157:H7 strains from infected patients in Wisconsin had same PFGE pattern and identified that pattern in patients from several other states.

Page 10: Laboratory Diagnosis:  An Overview

Laboratory Diagnosis and Surveillance Programs Council of State and Territorial Epidemiologists

and CDC recommend surveillance for list of pathogens

Each state decides which pathogens healthcare providers and laboratories must report

Lab reports to the state health department using disease reporting system

Guidelines specify which identification methods are used to ensure that only confirmed cases are reported

State lab responsible for identification when local labs do not have necessary expertise

State lab has final responsibility for reporting cases to state health department

If identification not possible at the state level, CDC may be asked to help

Page 11: Laboratory Diagnosis:  An Overview

Pathogen Identification and Typing

Method depends on the type of organism

Some methods are well established for particular organisms

Guidelines exist for identifying the organism

Page 12: Laboratory Diagnosis:  An Overview

Pathogen Identification and Typing

Identification method

Tests Pros (+) and cons (-)

MicroscopyExamination of organisms under magnification

After preparation with various stains and reagents, samples put onto glass slides, examined with microscopeSmaller microorganisms (viruses) may require use of electron microscope

+ Relatively quick, may provide immediate answers- Clinical specimen may not contain sufficient numbers of microorganisms for visualization without culture

CulturePropagation of microorganisms in a growth medium

Organism grown in a nutrient medium (culture plates, stab culture, slab culture, or liquid culture) OROrganism is grown in live cells or tissue (cell culture or tissue culture)

+ Is the “gold standard”: growth of the organism provides a definitive diagnosis- Limited by quality of specimen from which organism is grown- Not all pathogens can be cultured- Does not detect past infection

Antigen detectionUses antibodies to detect antigens

Latex agglutination (LA), complement fixation (CF), enzyme-linked immuno-assay (EIA), fluorescent antibody (FA) assay

+ Results often discernable by eye (no microscope needed)- Does not detect past infection- Not possible for all pathogens

SerologyDetects any past immunological response to pathogen

Latex agglutination (LA), complement fixation (CF), enzyme-linked immuno-assay (EIA), fluorescent antibody (FA) assay

+ Safe, does not require further growth of pathogen+ Routine methods of measurement available+ Detects past infection- Not all pathogens create immune response- May require sequential specimens

Page 13: Laboratory Diagnosis:  An Overview

Pathogen Identification and Typing

Typing method Tests Pros (+) and cons (-)

Phage typingUses viruses (phages) that infect specific bacteria

Tests using lambda phage, gamma phage, T4 phage, T7 phage, leviviruses, microviruses

+ Very useful for particular strains (Staphylococcus)- Many organisms are not typeable by this method- Not standardized for many organisms

Identification and typing method

Tests Pros (+) and cons (-)

Molecular techniquesUses nucleic acid identification methods

Pulsed field gel electrophoresis (PFGE), random fragment length polymorphism (RFLP), random amplified polymorphic DNA (RAPD), ribotyping

+ Relatively quick+ High sensitivity- Often initially expensive (high start-up costs)

Page 14: Laboratory Diagnosis:  An Overview

Microscopy Useful for larger organisms such as

bacteria or fungi For standard optical or light microscope Small part of specimen smeared onto

glass slide Stains applied to help identify cells and

substances within the specimen When using Gram stain, “Gram-positive”

bacteria have a cell wall that will stain purple while “Gram-negative” bacteria stain as red

Page 15: Laboratory Diagnosis:  An Overview

Microscopy Common bacteria shapes:

Round (cocci) Rod-shaped (bacilli)

Bacteria can cluster in pairs, chains, other arrangements E. coli is a Gram-negative rod S. pneumoniae or pneumococcus is a Gram-

positive diplococcus, a round bacterium that clusters in pairs

Shapes and growth patterns also used to identify fungi and fungal spores

Page 16: Laboratory Diagnosis:  An Overview

Microscopy Viruses are much smaller than bacteria

or fungi, require a very high degree of magnification

Electron microscope shoots electrons at virus (like a camera flash shoots light at an object to capture the image)

Many viruses have a characteristic shape, can be identified from microscope image

Page 17: Laboratory Diagnosis:  An Overview

Culture Provide right temperature, moisture, and

nutrients for a pathogen to thrive and replicate, introduce a sample, wait for growth

Case definition may require a definite case to be “culture confirmed” Outbreak of E. coli O157:H7 infections among

Colorado residents in June 2002, part of the case definition was that specimens taken from patients were culture-positive for E. coli. Contaminated beef was implicated and over 350,000 pounds of beef were recalled

Can increase amount of organism to perform other types of tests

Page 18: Laboratory Diagnosis:  An Overview

Culture Bacteria often grown on a Petri dish

Plate containing growth medium (gelatin-like substance called agar, nutrients other materials)

Bacteria form distinctive-looking coloniesCulture of Nocardia asteroids, a mycobacterium commonly found in soils. It causes illness in people with defects in cellular immunity.

Page 19: Laboratory Diagnosis:  An Overview

Culture Some bacteria grow inside the culture

nutrients: stab culture Test tube filled with agar and nutrients,

sterile wire is dipped into sample and stabbed into tube

Stab culture of Legionella pnuemophila, the agent that causes Legionnaire’s disease. It is found in aqueous environments.

Page 20: Laboratory Diagnosis:  An Overview

Culture Viruses need living cells to reproduce, so

often grown in tissue culture derived from growing cells or tissues.

May be tested by nucleic acid-based methods or viewed under an electron microscope June 2003: Multistate monkeypox outbreak,

with monkeypox virus isolated from multiple patients and cultured. All case patients found to have links to prairie dogs. Virus from patients grown in cell culture and confirmed using electron microscopy.

Page 21: Laboratory Diagnosis:  An Overview

Culture Different organisms require different

conditions Not all organisms can be grown in

culture; other methods must be used Requires considerable amount of time

to grow certain organisms, can slow investigation Pulmonary blastomycosis (fungal infection

that causes severe respiratory symptoms) can require up to 5 weeks in culture before confirmatory diagnostic tests can be performed

Page 22: Laboratory Diagnosis:  An Overview

Culturing a Clinical Specimen A clinical specimen is cultured for

microorganisms known to thrive in the particular environment and associated with certain clinical symptoms

Fecal samples in diarrheal illnesses are cultured for enteric pathogenic bacteria, including Salmonella serotypes (typhi, enteritidis, typhimurium, etc.), Shigella, Campylobacter, Yersinia, Escherichia coli 0157:H7, Vibrio 

Respiratory samples are cultured for pathogens such as Streptococcus pneumoniae, Bordetella pertussis, Haemophilus influenzae, Influenza, Legionella, mycobacterium

Cervical, vaginal or penile specimens may be cultured for Neisseria gonorrhoeae, herpes, other organisms that cause genital infections

Page 23: Laboratory Diagnosis:  An Overview

Serology Uses immune response to determine

whether a person has fought off an infection by a particular pathogen Compare blood samples taken at the time of

exposure (or shortly thereafter) and weeks later

Looks at antibodies, or immunoglobulins If no antibodies are present (or present in early

form) at first blood sample and fully mature antibodies are present at second sample, person has been recently exposed

Example: syphillis rapid plasma reagin (RPR) test detects presence of antibodies against syphilis in a blood sample

Page 24: Laboratory Diagnosis:  An Overview

Serology Limitations:

Not useful for a rapid intervention Often difficult to obtain a blood sample even

once, let alone twice May be useful:

When pathogen is not easily detected in other types of samples

When source of exposure has been eliminated with no remaining sample to test

For research purposes 

Page 25: Laboratory Diagnosis:  An Overview

Antigen Detection Small parts of a viral or bacterial pathogen Separate antigens from other material,

use antibodies to find a particular antigen If antibodies attach to the target antigen,

pathogen has been identified If the antibodies do not find anything to attach

to, do not know which organism is causing infection

Many ways antigens can be separated from other matter in a specimen, many ways antigen test can be performed

Page 26: Laboratory Diagnosis:  An Overview

Phage Typing Short for bacteriophage, a virus that infects

bacteria Each type of phage attacks a particular type of bacteria Most often used to identify strains of Staphylococcus

aureus A “known” phage mixed with “unknown”

bacterium, poured onto an agar plate, allowed to grow

If bacteria are correct strain, a plaque will form If no plaques, bacteria can be eliminated as possible

pathogen

A “gamma phage” is used to identify Bacillus anthracis growing on agar plate. Lawn of bacteria interrupted where the gamma phage has attacked the bacteria, causing a “plaque,” or hole in the bacterial growth.

Page 27: Laboratory Diagnosis:  An Overview

Molecular techniques Every pathogen has DNA, RNA, or both Can test a sample for presence of a

bacteria or virus by looking for the DNA Often referred to as “molecular

methods” Useful for distinguishing between strains

Can distinguish between strains of E. coli normally found in the human gut and a pathogenic strain causing disease

Identifying exact strain is important for finding source of an outbreak

Page 28: Laboratory Diagnosis:  An Overview

Summary

This overview of diagnostic techniques can give you a better sense of what happens once you send that specimen off to the laboratory

Future issues of FOCUS will delve further into more advanced laboratory techniques, such as molecular identification and typing

Page 29: Laboratory Diagnosis:  An Overview

Additional Resources To see examples of microorganisms that can often be

identified with a Gram stain, go to http://www.uphs.upenn.edu/bugdrug/ antibiotic_manual/gram.htm and click on “Typical Gram stains.”

To see electron micrographs of viruses, go to http://www.ncbi.nlm.nih.gov/ICTVdb/Images/index.htm.

To find information on the diseases most often tested at public health labs, visit the North Carolina State Laboratory of Public Health Microbiology Web site: http://204.211.171.13/Microbiology/default.asp.

To find infectious disease information from the National Center for Infectious Diseases, go to http://www.cdc.gov/ncidod/diseases/index.htm.

To use the American Society for Microbiology Microbe Library, visit http://www.microbelibrary.org.

Page 30: Laboratory Diagnosis:  An Overview

References1. Centers for Disease Control and Prevention. Ongoing multistate

outbreak of Escherichia coli serotype O157:H7 infections associated with consumption of fresh spinach --- United States, September 2006. MMWR Morb Mort Wkly Rep. 2006; 55(Dispatch):1-2. Available at: http://www.cdc.gov/mmwr/preview/mmwrhtml/ mm55d926a1.htm. Accessed December 8, 2006.

2. Centers for Disease Control and Prevention. Multistate outbreak of Escherichia coli O157:H7 infections associated with eating ground beef --- United States, June--July 2002. MMWR Morb Mort Wkly Rep. 2002;51:637—639. Available at: http://www.cdc.gov/mmwr/ preview/mmwrhtml/mm5129a1.htm. Accessed November 30, 2006.

3. Centers for Disease Control and Prevention. Multistate outbreak of monkeypox—-Illinois, Indiana, and Wisconsin, 2003. MMWR Morb Mort Wkly Rep. 2003;52:537-540. Available at: http://www.cdc.gov/ mmwr/PDF/wk/mm5223.pdf. Accessed November 30, 2006.

Page 31: Laboratory Diagnosis:  An Overview

References4. Martynowicz MA, Prakash, UBS. Pulmonary

blastomycosis: An appraisal of diagnostic techniques. Chest. 2002;121:768-773.

5. Mayer G. Bacteriology Chapter 7: Bacteriophage. In: University of South Carolina School of Medicine. Microbiology and Immunology On-line [Internet]. September 11, 2003. Available at: http://www.med.sc.edu:85/mayer/phage.htm. Accessed November 30, 2006.

6. Herwaldt, et al. Microbial Molecular Techniques. In: Epidemiologic Methods for the Study of Infectious Diseases, JC Thomas, DJ Weber, eds. Oxford University Press, 2001: 163-191.