Lab 6 Roots - Napa Valley College 6 Roots.pdf ·...

10
1/8 Lab Exercise 6: Roots (Atlas pp. 130133, Text Ch. 24) The primary root system is the plant’s interface with its physical substrate (typically the soil). A root is the first organ to emerge when a seed germinates; the water absorbed by that first root (the radicle) is vital to the survival of the seedling. As underground structures, roots function to anchor the plant, absorb water and inorganic nutrients, and conduct those substances to the aboveground shoots. Many plants have roots that are adapted for additional specialized functions, such as food storage, structural support, gas exchange, photosynthesis, parasitism, and interaction with mutualistic microorganisms. Upon completion of this lab, the student should be able to: • Differentiate between taproot systems and fibrous root systems, and between primary roots and lateral roots. • Explain how adventitious roots differ developmentally from primary and lateral roots; locate/recognize adventitious roots on plants. •Identify the four growth regions of the root tip, and explain how the activity in each region contributes to the growth of the root. • Identify, and list the functions of, the three major regions of dicot and monocot root cross sections, and their component tissues and specialized structures. •Discuss the differences between dicot and monocot roots , and recognize each type based on their cross section. •Compare and contrast the structures of roots and stems as seen in cross section. •Answer the questions in the exercise and understand the terms presented in bold. I. External Morphology of Roots A) Root Systems 1. Distinguishing taproot from fibrous root systems: Examine the plant material available in lab and familiarize yourself with the different types of root systems they possess (taproot or fibrous). a) How do these two systems differ in appearance? b) How do they differ in development?

Transcript of Lab 6 Roots - Napa Valley College 6 Roots.pdf ·...

  1/8  

Lab  Exercise  6:  Roots  (Atlas  pp.  130-­‐133,  Text  Ch.  24)  

    The  primary  root  system  is  the  plant’s  interface  with  its  physical  substrate  (typically  the  soil).    A  root  is  the  first  organ  to  emerge  when  a  seed  germinates;  the  water  absorbed  by  that  first  root  (the  radicle)  is  vital  to  the  survival  of  the  seedling.  As  underground  structures,  roots  function  to  anchor  the  plant,  absorb  water  and  inorganic  nutrients,  and  conduct  those  substances  to  the  aboveground  shoots.  Many  plants  have  roots  that  are  adapted  for  additional  specialized  functions,  such  as  food  storage,  structural  support,  gas  exchange,  photosynthesis,  parasitism,  and  interaction  with  mutualistic  microorganisms.        Upon  completion  of  this  lab,  the  student  should  be  able  to:    •  Differentiate  between  taproot  systems  and  fibrous  root  systems,  and  between  primary  roots  and  lateral  roots.    

•  Explain  how  adventitious  roots  differ  developmentally  from  primary  and  lateral  roots;  locate/recognize  adventitious  roots  on  plants.  

•Identify  the  four  growth  regions  of  the  root  tip,  and  explain  how  the  activity  in  each  region  contributes  to  the  growth  of  the  root.  

•  Identify,  and  list  the  functions  of,  the  three  major  regions  of  dicot  and  monocot  root  cross  sections,  and  their  component  tissues  and  specialized  structures.  

•Discuss  the  differences  between  dicot    and    monocot  roots  ,  and  recognize  each  type  based  on  their  cross  section.  

•Compare  and  contrast  the  structures  of  roots  and  stems  as  seen  in  cross  section.  

•Answer  the  questions  in  the  exercise  and  understand  the  terms  presented  in  bold.  

 I. External  Morphology  of  Roots    A)  Root  Systems    

1. Distinguishing  taproot  from  fibrous  root  systems:  Examine  the  plant  material  available  in  lab  and  familiarize  yourself  with  the  different  types  of  root  systems  they  possess  (taproot  or  fibrous).      

a) How  do  these  two  systems  differ  in  appearance?    

b) How  do  they  differ  in  development?    

  2/8  

2. Identifying  adventitious  roots:  Examine  the  specimens  of  Chlorophytum  comosum  (“spider  plant”)  and  Echeveria  sp.  (“hen-­‐and-­‐chicks”).    Both  of  these  species  produce  adventitious  roots:  roots  that  arise  from  locations  outside  of  an  existing  root  system.    Can  you  find  them?    

a) From  what  organ(s)  do  the  adventitious  roots  of  Chlorophytum  seem  to  originate?    From  what  organ(s)  are  adventitious  roots  of  Echeveria  derived  (if  any  are  present)?      

     

b) What  do    adventitious  roots  “do”  for  the  plants  that  the  primary  root  systems  can’t?    How  are  they  advantageous?              

c) In  monocots,  the  embryonic  root,  or  radicle,  is  short  lived,  and  serves  to  absorb  water  and  nutrients  only  during  the  initial  stages  of  germination  and  seedling  growth.      The  mature  fbrous  root  systems  develop  from  adventitious  roots  that  arise  from  the  base  of  the  stem.    

     

 3. Diagrams:  Diagram  a  taproot  system  and  a  fibrous  root  system.  Where  

appropriate,  label  the  primary  root,  lateral  roots,  and  adventitious  roots.                

                     

  3/8  

B)  The  Root  Tip    

Examine  a  prepared  slide  of  a  longitudinal  section  of  a  root  tip  from  Zea  mays  (corn),  Raphanus  sativa  (“radish”),  and  identify  these  four  growth  regions:  

 1. Root  Cap.    The  root  cap  is  a  thimble-­‐shaped  cell  mass  that  covers  the  apex  of  the  

root.    Its  main  function  is  to  protect  the  root  apical  meristem  as  the  root  tip  is  pushed  through  the  soil.      

 2. Meristematic  region.    This  is  the  root  apical  meristem,  a  region  of  active  cell  

division.    The  cells  in  this  region  should  appear  smaller,  and  the  density  of  cells  and  cellular  contents  should  appear  greater,  in  comparison  to  the  other  regions  of  the  root.  

 3. Region  of  Elongation.    Here,  the  cells  produced  by  in  the  meristematic  region  

are  actively  enlarging.    Most  of  the  size  increase  is  along  the  main  axis  of  the  root  (thus,  elongation).    The  cells  in  this  region  should  appear  somewhat  more  rectangular.    The  elongation  taking  place  in  this  region  pushes  the  root  tip  through  the  soil,  and  results  in  an  increase  in  the  length  of  the  root.  

 4. Region  of  Maturation.    Cells  in  this  region  are  beginning  to  differentiate  into  

mature  cell  types.    The  more  darkly  stained  cells  near  the  center  of  the  root  will  become  the  vascular  tissues.    You  may  be  able  to  distinguish  maturing  vessel  elements  that  have  begun  to  develop  their  secondary  wall  structure.    The  outer  layer  of  cells  differentiates  into  the  epidermis.    In  some  sections,  slender,  tapered  structures  can  be  seen  projecting  from  the  epidermis.  These  are  the  root  hairs.    Root  hairs  are  delicate  and  difficult  to  preserve  in  prepared  slides;  only  small  portions  of  the  hairs  remain  attached  to  the  epidermis.  The  remaining  cells  between  the  epidermis  and  vascular  tissues  will  become  the  cortex  of  the  root.    

5. Complete  the  diagram  of  the  root  tip  below  by  adding  root  hairs  to  show  their  general  distribution/location.    Label  the  root  hairs  and  the  four  growth  regions  of  the  root  tip.              

     

  4/8  

C)  Root  Hairs    Examine  the  intact  root  hairs  of  a  recently  germinated  radish  seedling.    Before  making  your  slide,  notice  the  general  appearance  of  the  young  root.        1. Make  a  wet  mount  of  the  root  from  a  radish  seedling:  Using  forceps,  transfer  the  

root  to  a  slide.    Do  not  let  the  root  hairs  dry  out!  Remove  the  seed  portion  before  adding  the  cover  slip.    After  putting  the  cover  slip  in  place,  check  that  the  root  is  completely  surrounded  by  water.    If  not,  add  a  drop  or  two  to  fill  the  space  under  the  cover  slip.  

 2. Examine  at  low  power,  paying  attention  to  the  youngest  (shortest)  root  hairs,  

found  closest  to  the  root  cap.    Are  the  root  hairs  unicellular  or  multicellular  structures?    (Q1)    

3. Add  a  drop  of  methylene  blue  at  the  edge  of  the  cover  slip  and  draw  it  under  by  touching  the  corner  of  a  paper  towel  to  the  water  on  the  opposite  edge  of  the  cover  slip.    The  dye  should  stain  the  nuclei  of  the  cells.    Nuclei  of  the  epidermal  cells  typically  migrate  into  the  developing  root  hairs.  If  you  look  carefully,  you  may  be  able  to  find  a  few  root  hairs  with  nuclei  in  them.  

 4. Draw  a  single  epidermal  cell  with  a  root  hair  extending  from  it,  and  with  the  

nucleus  present  in  the  root  hair.                II. Internal  Structure  of  Roots    A)  Herbaceous  dicot  root  cross  section.    Examine  a  prepared  slide  of  Ranunculus  (“butter-­‐cup”)  root  cross-­‐sections.    All  of  the  tissues  in  these  roots  are  primary  tissues.    What  does  this  mean?    1. Using  low  power,  observe  how  the  root  appears  to  be  divided  into  three  major  

regions  in  cross  section:  the  central  vascular  cylinder  (or  stele),  the  epidermis,  and  the  cortex  (the  region  between  the  epidermis  and  the  stele).    Then  switch  to  higher  power  for  detailed  examination  of  each  tissue  region.    

2. The  epidermis:  a  single  layer  of  cells  surrounding  the  entire  root.  

  5/8  

3. The  cortex  of  the  Ranunculus  root  consists  of  several  layers  of  cells.  Except  for  the  noticeably  concentric  layers  adjacent  to  the  epidermis  and  the  stele,  the  cortical  cells  lack  an  orderly  pattern  of  arrangement.  The  darkly  stained  bodies  within  the  cortical  cells  are  starch  grains.    What  does  this  tell  you  about  the  function  of  the  root  cortex?  (Q2)  

 a. What  type  of  tissue/cell  makes  up  the  bulk  of  the  cortex?    

 b. How  does  this  compare  to  the  cortex  of  the  stem,  as  observed  in  

Sunflower  (Helianthus)  for  instance?      

c. Can  you  think  of  any  possible  reasons  for  this  difference  between  stems  and  roots?  

 4. The  figure  below  shows  Ranunculus  root  in  cross  section.    Label  the  epidermis,  

cortex,  and  stele.                                              5. The  endodermis  is  the  innermost  layer  of  the  cortex,  and  often  appears  as  a      

red-­‐stained  ring  in  our  slides.    The  radial  and  transverse  walls  of  these  cells  are  impregnated  with  suberin,  a  hydrophobic  waxy  material  that  stains  red,  like  lignin.  Initially  suberin  is  deposited  in  a  thin  band  around  each  cell,  called  the  Casparian  Strip.    Suberin  solidifies  the  wall  and  renders  it  impermeable  to  water.    Thus  even  a  narrow  Casparian  strip  will  completely  block  the  apoplastic  pathways  through  the  endodermal  cell  walls,  and  prevent  nonselective  diffusion  of  solutes  into  the  stele.  

  6/8  

In  Ranunculus,  most  of  the  endodermal  cells  have  developed  a  uniformly  thickened  wall  impregnated  with  suberin  throughout,  so  the  Casparian  strip  is  not  visible.    Some  endodermal  cells,  called  passage  cells  in  the  text,  retain  a  relatively  thin  wall  with  an  evident  Casparian  strip.    Look  for  passage  cells  in  the  sections  on  your  slide.  

 6. The  stele  consists  of  all  of  the  tissues  enclosed  by  the  endodermis  (the  

endodermis  being  the  innermost  layer  of  the  cortex,  not  part  of  the  stele).    7. The  primary  xylem  occupies  the  central  portion  of  the  stele.    It  is  generally  

star-­‐  or  cross-­‐shaped,  with  arms  extending  toward  the  endodermis.    Differentiation  of  primary  xylem  begins  at  the  tips  of  the  arms  (protoxylem),  near  the  endodermis,  and  proceeds  inward.  Protoxylem  are  usually  the  smallest  xylem  cells.      The  larger  cells  of  the  primary  xylem  differentiated  last,  and  are  the  youngest.    These  are  the  metaxylem  elements.    (Q3)    

8. The  primary  phloem  develops  between  the  arms  of  the  xylem  in  dicot  roots.  The  phloem  cells  are  much  smaller  than  those  of  the  xylem,  and  lack  secondary  wall  thickenings.  Between  the  xylem  and  phloem  lies  a  band  of  parenchyma  cells  that  are  difficult  to  discern.  These  cells  develop  into  a  vascular  cambium  in  roots  as  they  begin  to  undergo  secondary  growth.    

9. The  pericycle  is  the  single  layer  of  cells  just  inside  the  endodermis;  it  is  most  easily  distinguished  where  it  runs  between  the  endodermis  and  the  tips  of  the  xylem  arms.    The  pericycle  gives  rise  to  lateral  roots.    

10. In  this  image  of  the  dicot  stele  cross  section,  label  the  cortex,  starch  grains,  endodermis,  passage  cell,  primary  xylem,  primary  phloem,  and  pericycle.                                      

  7/8  

B)  Monocot  root.    Examine  a  prepared  slide  of  root  cross  sections  from  the  monocot  species  provided  (Smilax  or  Zea).    The  tissues  of  the  monocot  root  are  organized  into  the  same  three  regions  seen  in  Ranunculus  (a  dicot).    1. Compare  the  relative  size  of  the  steles  in  dicot  and  monocot  roots.    

 Ranunculus  stele  =  __________________  of  the  total  root  diameter.                                                                                                                (estimate  %  or  fraction)  

             Monocot  stele  =  _________________  of  the  total  root  diameter.                                                                                                            (estimate  %  or  fraction)    

2. Notice  the  layer  of  cells  with  thickened  walls  that  lies  beneath  the  epidermis.  This  is  the  exodermis..    This  tissue  begins  to  develop  in  the  maturing  portion  of  the  root,  a  few  centimeters  behind  the  root  tip,  in  an  area  of  the  root  that  is  becoming  less  active  in  absorption  of  water  and  minerals.  What  is  the  function  of  the  exodermis?  (Q4)    

3. The  endodermis  should  appear  as  a  prominent  ring  of  cells  with  “U-­‐shaped”  wall  thickenings,  surrounding  the  stele.    Where  are  the  cell  walls  the  least  thickened?    Why  might  that  be  important?  (Q5)    

4. The  pericycle  in  monocots  is  found  in  the  same  relative  location  as  in  dicot  roots.    However,  some  monocots,  such  as  Smilax,  have  a  multiseriate  pericycle  (several  cell  layers  thick).      

5. Primary  xylem  and  primary  phloem  alternate  with  each  other,  just  inside  the  pericycle.    The  primary  xylem  is  more  conspicuous.    What  tissue  occupies  the  central  portion  of  this  stele?    How  does  this  differ  from    Ranunculus?  (Q6)    

6. In  the  photo  of  the  Smilax  root  section,  label:  epidermis,  exodermis,  cortex,  endodermis,  pericycle,  primary  phloem,  primary  xylem,  and  pith.  

  8/8  

C)  Lateral  root  origin  in  Salix.    Obtain  a  prepared  slide  of  a  cross  section  of  Salix  (willow)  roots  showing  the  development  of  lateral  branch  roots.    The  same  primary  root  tissues  are  present  as  were  observed  in  the  previous  sections,  with  the  addition  of  a  lateral  root  primordium  pushing  through  the  cortex  and  epidermis  to  emerge  into  the  soil.        1)  From  what  tissue  do  the  lateral  roots  develop?  Is  this  evident  in  the  cross  section?    2)  Do  the  lateral  roots  appear  to  develop  from  cells  adjacent  to  the  primary  phloem  or  the  primary  xylem?    3)  Can  you  identify  the  root  cap  covering  the  tip  of  the  newly  forming  root?    4)  What  is  the  advantage  of  lateral  root  emergence  from  within  the  stele  of  the  parent  root,  rather  than  from  the  cortex  or  epidermis?        5)  Is  Salix  a  monocot  or  a  dicot  plant?    How  can  you  tell  from  the  root  cross  section?      

     

(This  lab  exercise  was  adapted  in  part  from  Exercises  for  the  Botany  Laboratory,  Kazmiersky  1999).    

    1/2  

 Biology  241  General  Botany         Name:__________________________________    

Take  Home  Quiz  for  Lab  6:  Roots  Due  Wednesday  March  11  

 1)  It  is  hypothesized  that  the  endodermis  is  part  of  the  cortex  (ground  tissue)  in  roots.    Which  primary  meristematic  tissue  does  the  endodermis  develop  from?  (2)      2)  What  is  the  function  of  the  pericycle?  (1)      3)  What  isthe  function  of  the  root  hairs?  (1)      4)  How  do  root  hairs  make  roots  more  efficient  in  absorbing  water  and  mineral  nutrients  from  the  soil?(1)      5)  What  would  happen  to  root  hairs  if  they  formed  immediately  behind  the  apical  meristem  instead  of  in  the  zone  of  maturation?  (2)        6)  List  four  identifying/differentiating  characters  of  monocot  and  dicot  roots  visible  in  the  root  cross  sections.        (4)           Monocot  root  (Smilax)       Dicot  root  (Ranunculus)    a.             a.    b.             b.    c.             c.    d.             d.                

    2/2  

7)  List  three  characteristics  that  differ  between  dicot  roots  and  dicot  stems  seen  in  cross  section.    (4)       Dicot  Root(Ranunculus)         Dicot  Stem  (Helianthus)    a.               a.    b.               b.    c.               c.      8)  List  two  characteristics  that  differ  between  the  roots  and  stems  of  monocots  when  seen  in  cross  section.  (2)    

Monocot  Root  (Smilax  or  Zea)       Monocot  Stem  (Zea)    a.               a.    b.               b.      9)  How  do  branches  form  in  aboveground  stems?  How  does  this  compare  to  branch  (lateral  root)  formation  in  the  root  system?  (3)    Lateral  root:          Lateral  branch:                      ________/20