L13 – Traction - LTH – Traction EIE050 Design of Electrical Machines, IEA, 2016 1 Industrial...

10
L13 – Traction EIE050 Design of Electrical Machines, IEA, 2016 1 Industrial Electrical Engineering and Automation Lund University, Sweden L13: Traction Technological development and computational power together with material and production engineering in the service of application requirements Avo R Design of Electrical Machines 3 Industrial Electrical Engineering and Automation Machine characteristics • Requirements – Torque capability Power capability – Cooling capability Limits versus margins Voltage balance U vs Ψ x ω Power balance P in , vs P out + P loss – Thermal margin max vs G th x P loss Mechanical margin F/A vs ultimate material strength Avo R Design of Electrical Machines 4 Industrial Electrical Engineering and Automation Realization examples

Transcript of L13 – Traction - LTH – Traction EIE050 Design of Electrical Machines, IEA, 2016 1 Industrial...

Page 1: L13 – Traction - LTH – Traction EIE050 Design of Electrical Machines, IEA, 2016 1 Industrial Electrical Engineering and Automation ... 0.6 0.8 Lsx*=0.14 Lsy*=0.14 Psim*=0.99-1

L13 – Traction

EIE050 Design of Electrical Machines, IEA, 2016 1

Industrial Electrical Engineering and AutomationLund University, Sweden

L13: Traction

Technological development and computational power together with material and production engineering in

the service of application requirements

Avo R Design of Electrical Machines 2

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

n

Avo R Design of Electrical Machines 3

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

n

Machine characteristics

• Requirements– Torque capability– Power capability– Cooling capability

• Limits versus margins– Voltage balance U vs Ψ x ω– Power balance Pin, vs Pout + Ploss

– Thermal margin max vs Gth x Ploss

– Mechanical margin F/A vs ultimate material strength

Avo R Design of Electrical Machines 4

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

n

Realization examples

Page 2: L13 – Traction - LTH – Traction EIE050 Design of Electrical Machines, IEA, 2016 1 Industrial Electrical Engineering and Automation ... 0.6 0.8 Lsx*=0.14 Lsy*=0.14 Psim*=0.99-1

L13 – Traction

EIE050 Design of Electrical Machines, IEA, 2016 2

Avo R Design of Electrical Machines 5

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

nRealization examples

250/277mmMachine size D/HMachine weight m kg 49Coolant, Dexron VI L/min 5-30Inlet temperature °C <90Current Iph, nom/pk A -/300

<65°CInlet temperature12-20L/minCoolant

300/111mmMachine size D/HMachine weight m kg 24

Current Iph, nom/pk A -/450

remyinc.com yasamotors.comAvo R Design of Electrical Machines 6

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

n

Scope of machine constructions

• Transversal Flux Machine• Simple winding & perfect for SM2C• Low power factor and high cogging

• Axial Flux Machine• Perfect for a high (Ro-Ri)/L configuration

• Radial Flux Machine• Perfect for a low (Ro-Ri)/L configuration

Avo R Design of Electrical Machines 7

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

n

Scope of torque production = types of machines

• Non-Salient M2/Lridiq

• SM and IM

• Rotor-Salient (Lq-Ld) idiq

• RM

• Stator-Salient Ψdiq

• DM

• Double-Salient 1/2i2dL/dθ

• SRMAvo R Design of Electrical Machines 8

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

n

Trying out different concepts

• CAD & FEM– Geometric modeller in Matlab

& FE by FEMM– Ansys RMxprt– Comsol

• Core, Coil, Winding, Drive, ..• …, Ambient and cooling• …, Assembling and

manufacturing

-0.05 0 0.05-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

gap radiustooth ref nodesyoke ref nodes

Page 3: L13 – Traction - LTH – Traction EIE050 Design of Electrical Machines, IEA, 2016 1 Industrial Electrical Engineering and Automation ... 0.6 0.8 Lsx*=0.14 Lsy*=0.14 Psim*=0.99-1

L13 – Traction

EIE050 Design of Electrical Machines, IEA, 2016 3

Avo R Design of Electrical Machines 9

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

n

TOPOLOGY Select machine type

EMSM, PMSM, RSM or in combination

A number of predefined constructions

Electromagnet

Permanent magnet

Reluctance magnet

PARAMETERISATION

L

Ro

Ri

Design specification

Geometry Materials Loading

Use default or specify proportions K, numbers N, dimensions d, etc

LOADING ESTIMATION B, , J - distribution

Magnetostatics Heat transfer Find J for given

minimum of 2 calculations

ROUGH OPTIMIZATION

Des

ign

para

met

er 2

Design parameter 1

Design selection

Sensitivity study of 2 design parameters

Magnetostatics Heat transfer Early performance

visualization

minimum of 3x3 calculations

OPERATION POINTS XY-mapping of T, ψ, B ...

0,0,

,,

,,00,0,0

44

33

22

11

msxmm

msymsxmmm

msymm

m

ILI

ILILII

ILI

ψi

ψi

ψiψi

Usually many more operation points are read per revolution

[T,ψ,B]=f(isx,isy,r)

ψ1

ψ2 ψ3

ψ4 i1

i2 i3

i4

minimum of 1x2x7 calculations

OPERATION CYCLE Voltage-speed conditioning

sysxsysxsym

sxsxmsyssy

sysysxssx

LLiiipT

iLiRu

iLiRu

2

find maximum torque for minimum current

consider flux limitation consider current limitation

TORQUE-SPEED CHARACTERISTICPower-temperature balance

The torque speed diagram T=f(ω)

The power speed diagram P=f(T,ω)

The efficiency map η=f(T,ω)

Industrial Electrical Engineering and AutomationLund University, Sweden

Electric circuit

Forming, distributing, flux-linking …Assembling, cooling, …

Insulating, sustaining high temperature , …

Avo R Design of Electrical Machines 11

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

n

Design for manufacturability and production for “rational design”

• Electrical machine – arrangements of magnets,

temporal or permanent

• Magnetic core – facilitate magnetics and

support mechanics

• Limits for production (material utilisation) and performance (power waste)

Material

ProductionDesign

Avo R Design of Electrical Machines 12

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

n

Forming electric circuit

Tooth

Tooth-tip

A B C

Electric conductor Electric insulator Magnetic core

• Geometric layout → winding specification → production

• Flux linkage → mutual inductance → magnetic coupling

• Power losses →heat dissipation

Page 4: L13 – Traction - LTH – Traction EIE050 Design of Electrical Machines, IEA, 2016 1 Industrial Electrical Engineering and Automation ... 0.6 0.8 Lsx*=0.14 Lsy*=0.14 Psim*=0.99-1

L13 – Traction

EIE050 Design of Electrical Machines, IEA, 2016 4

Avo R Design of Electrical Machines 13

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

nWinding = arrangement of coils

• Concentrated winding –short pitch coils

– Compact, less copper and less torque

– Full pitch magnetisation

• Distributed winding – full pitch coils

– Spacious end turns, more copper and torque

– Short pitch magnetisation

Avo R Design of Electrical Machines 14

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

n

End-winding for distributed windings

• Distributed windings →sinusoidal distribution of coils in the slots → less power losses due to reduced harmonic content

• Overlapped windings →packaging → challenging cooling conditions

Avo R Design of Electrical Machines 15

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

n

Compacted coils • Compacted coils 78% copper

of slot area, insulated slot area 81%

• Simpler winding reduces cost and improves slot fill and heat removal

• Circular, rectangular, planar cross-section of coils

• Consequences in power losses, heat dissipation, partial discharge

Avo R Design of Electrical Machines 16

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

n

Production of windings

• Bend and wind with conventional or profiled wire

• Wind and bend with conventional, profiled wire, or laminated coil

• Wind and cut a foil or laminated coil

• Cut and wind a foil or laminated coil

Page 5: L13 – Traction - LTH – Traction EIE050 Design of Electrical Machines, IEA, 2016 1 Industrial Electrical Engineering and Automation ... 0.6 0.8 Lsx*=0.14 Lsy*=0.14 Psim*=0.99-1

L13 – Traction

EIE050 Design of Electrical Machines, IEA, 2016 5

Avo R Design of Electrical Machines 17

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

nModular windings

10 15 20 25 30

10

15

20

25

30

35

number of poles, Np []

num

ber o

f tee

th, N

t []

0.25

0.25

0.5

0.5

0.5

0.5

0.6

0.6

0.6

0.6

0.6

0.7

0.7

0.7

0.7

0.7

0.8

0.8

0.8

0.8

0.8

0.8

0.85

0.85

0.85

0.85

0.85

0.85

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.99

0.99

0.95

0.99

0.99

0.2

0.2

0.4

0.4

0.4

0.6

0.6

0.8

0.8

1

1.2

• Ns=Np – gives strongest electromagnetic coupling• Ns=Np – gives rarely symmetric 3φ winding

Ns=Np±1

Ns=Np±2

Avo R Design of Electrical Machines 18

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

n

1

611

16

21 26

ooxx

oxoo

xxooxxoxooxx

ooxx

oxoo

xxooxx

oxoo

xxoo xx ox oo xx

ooxx

oxoo

xx1

2

3

4

56

7 8

910

1112

13

14

15

16

17

18

19

2021

22 23

2425

2627

28

29

30

q=1.07 Kw=0.95

28p30s

Design for manufacturability

• Find machine construction that allows modular coils

– Ns=Np±2, Ns/Nph=integer

• Design the winding segment that the core is easily moldable

– Yoke, tooth, tooth-tip– Insulation system– Winding fixture

Tooth

-tip (t

t)

Tooth (th)

yoke

(yk)

Avo R Design of Electrical Machines 19

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

n

Segment of modular windingStator prototypes Ø Ns NtModular winding 0.8 17 12Single tooth winding 1.2 3 150Modular tooth winding 0.65 70 3Modular tooth winding 0.65 70 3

Production alternatives– Pre-wound winding

molded into a insulation system by using a form

– Stator core includes insulation and functions as a winding form

Avo R Design of Electrical Machines 20

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

n

Specification of stator cores

• Stator assembling– Single step molded SM2C

core– Mounted and molded

including compressed SMC inserts or/and wired yoke

Stator prototypes yk th ttModular winding m m mSingle tooth winding m c mModular tooth winding m c mModular tooth winding w c m

SM2CSM2C+SMC

SMC

Page 6: L13 – Traction - LTH – Traction EIE050 Design of Electrical Machines, IEA, 2016 1 Industrial Electrical Engineering and Automation ... 0.6 0.8 Lsx*=0.14 Lsy*=0.14 Psim*=0.99-1

L13 – Traction

EIE050 Design of Electrical Machines, IEA, 2016 6

Avo R Design of Electrical Machines 21

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

n

Material utilization: conductor vs core

• Vertical: more electric conductor, horizontal: more magnetic core• Resizing slot Kz from 0.8 to 1.2• Changing the core from low permeability core to medium

permeability powder core μ=[10 30 100 300 1000]

Avo R Design of Electrical Machines 22

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

n

Axial Flux Machine

• Higher amount of copper means more torque

• Higher amount of copper means less magnetic shear stress area

Industrial Electrical Engineering and AutomationLund University, Sweden

Electric Machines for VEH propulsion

Avo R Design of Electrical Machines 24

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

n

Assignment A5

-1 -0.5 0 0.5 1-1

-0.5

0

0.5

1

1

1

1

1

1

11

11.

2

1.2

1.2

1.2-0.8 -0.8

-0.6 -0.6

-0.4 -0.4

-0.2 -0.2

0 0

0.2 0.2

0.4 0.4

0.6 0.6

0.8 0.8

0.85

0 .9

0 .9

0 .9

0 .9 5

0 .95

0.9 5

1

11

1 .0 5

1.05

1.05

1 .1

1.1

1.1

0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

Lsx*=0.14 Lsy*=0.14 Psim*=0.99

-1 -0.5 0 0.5 1-1

-0.5

0

0.5

1

1

1

1

1

1

11

1

1.2

1.2

1.2

1.2

-1

-0.5

-0.5

0 0

0.5

0.5

1

0.6

0.6

0.8

0.8

0.8

1

1

1

1

1.2

1.2

1.2

1.4

1.4

0 0.5 1 1.5 2 2.5 3 3.5 40

0.2

0.4

0.6

0.8

1

Lsx*=0.44 Lsy*=0.87 Psim*=0.90

-1 -0.5 0 0.5 1-1

-0.5

0

0.5

1

1

1

1

1

1

11

11.

2

1.2

1.2

1.2

-0.6 -0.6

-0.4 -0.4

-0.2 -0.2

0 0

0.2 0.2

0.4 0.4

0.6 0.6

0.2

0.4

0.4

0.6

0 .6

0.6

0.8

0 .8

0.8

1

1

1

1.2

1.2

1.2

1.4

1. 4

1.4

0 0.5 1 1.5 2 2.5 3 3.5 40

0.2

0.4

0.6

0.8

Lsx*=0.71 Lsy*=0.71 Psim*=0.70

-1 -0.5 0 0.5 1-1

-0.5

0

0.5

1

1

1

1

1

1

11

11.

2

1.2

1.2

1.2-0.8

-0.6

-0.4

-0.4

-0.2

-0.2

0 0

0.2

0.2

0.4

0.4

0.6

0.8

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.60.6

0.6

0. 8

0.8

0 .8

1

11

1.21.2

1.2

1.41.4

1.4

1.4

0 1 2 3 4 5 6 7 80

0.1

0.2

0.3

0.4

0.5

0.6Lsx*=0.80 Lsy*=0.40 Psim*=0.60

Page 7: L13 – Traction - LTH – Traction EIE050 Design of Electrical Machines, IEA, 2016 1 Industrial Electrical Engineering and Automation ... 0.6 0.8 Lsx*=0.14 Lsy*=0.14 Psim*=0.99-1

L13 – Traction

EIE050 Design of Electrical Machines, IEA, 2016 7

Avo R Design of Electrical Machines 25

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

nArrangement of different excitations

– PM excitation according to max speed requirements– EM according to torque boost requirements– RM is used to extend the natural FW range

-600 -400 -200 0 200 400 600

-600

-400

-200

0

200

400

600

magnetising current, Isx [A]

acce

lera

ting

curre

nt, I

sy [A

]

-100

-50

0

50

50

100

60

60

80

80

100

100

100

120

120

120

709

709

709

709

709

0 5 10 15 20 250

20

40

60

80

100

120

speed, n [krpm]

elec

trom

agne

tic to

rque

, Tem

[Nm

]

0 5 10 15 20 250

10

20

30

40

50

60

70

80

elec

trom

agne

tic p

ower

, Pem

[kW

]

-600 -400 -200 0 200 400 600

-600

-400

-200

0

200

400

600

magnetising current, Isx [A]

acce

lera

ting

curre

nt, I

sy [A

]

-100

-50

0

50

100

80

80

1 00

100

12 0

1 20

1 40

1 40

160

1 60

709

709

7 09

709

709

0 5 10 15 20 250

20

40

60

80

100

120

140

speed, n [krpm]

elec

trom

agne

tic to

rque

, Tem

[Nm

]

0 5 10 15 20 250

20

40

60

80

100

elec

trom

agne

tic p

ower

, Pem

[kW

]

-600 -400 -200 0 200 400 600

-600

-400

-200

0

200

400

600

magnetising current, Isx [A]

acce

lera

ting

curre

nt, I

sy [A

]

-100

-50

0

50

100

40

60

60

8 0

80

10 0

100

1 20

120

1 40

140

16 0

1 60

18 0

70 9

709

709

709

709

0 5 10 15 20 2520

40

60

80

100

120

140

speed, n [krpm]

elec

trom

agne

tic to

rque

, Tem

[Nm

]

0 5 10 15 20 250

20

40

60

80

100

elec

trom

agne

tic p

ower

, Pem

[kW

]

Avo R Design of Electrical Machines 26

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

n

Electric traction motor for HEV

Holden /ECOmmo-dore (Australia)

PSA Peugeot-Citroën / Berlingo (France) Nissan/Tino (Japan)

Honda/Insight (Japan)

Toyota/Prius (Japan)

Renault/Kangoo (France) Chevrolet/Silverado (USA)

DaimlerChrysler/Durango (Germany/USA) BMW/X5 (Germany)

PMSM

PMSM

PMSM

IM IM

IMIM

DCMRSM

Avo R Design of Electrical Machines 27

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

n

DC machine

• Built in field oriented control and commutation

– Field, armature, interpole– Brushes on geometrical

neutral axis– Inter & comp-poles

oppose reactance field, reactance voltage and enables sparklesscommutation

Avo R Design of Electrical Machines 28

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

n

DC machine: pro vs contra

• torque-speed characteristics suit traction requirement well

• speed controls are simple

• dc motor drives have bulky construction

• low efficiency• low reliability• need of maintenance

Page 8: L13 – Traction - LTH – Traction EIE050 Design of Electrical Machines, IEA, 2016 1 Industrial Electrical Engineering and Automation ... 0.6 0.8 Lsx*=0.14 Lsy*=0.14 Psim*=0.99-1

L13 – Traction

EIE050 Design of Electrical Machines, IEA, 2016 8

Avo R Design of Electrical Machines 29

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

nPMSM: pro and contra

• lightweight and small volume for a given output power

• higher efficiency • heat efficiently dissipated

to surroundings.

• inherently a short constant power region

• cogging• Cost of pm material

Avo R Design of Electrical Machines 30

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

n

PM machines at wide range of speeds

• Magnetic saturation of Ly/Lx reduces the saliency ratio to 2 that is large for unsaturated machine (5)

• Rated max power 50/80 kW @ 3600 rpm

• Base torque 163 Nm @ 3600 rpm

• Speed range 0-12000rpm

Belachen 2006

Soong 2000

Avo R Design of Electrical Machines 31

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

n

IPM motors for propulsion

Toyota’s example

Avo R Design of Electrical Machines 32

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

n

Induction machine +

• Externally excited EM• Reliability• Ruggedness• low maintenance• low cost• ability to operate in

hostile environments

Page 9: L13 – Traction - LTH – Traction EIE050 Design of Electrical Machines, IEA, 2016 1 Industrial Electrical Engineering and Automation ... 0.6 0.8 Lsx*=0.14 Lsy*=0.14 Psim*=0.99-1

L13 – Traction

EIE050 Design of Electrical Machines, IEA, 2016 9

Avo R Design of Electrical Machines 33

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

nInduction machine -

• high loss• low efficiency• low power factor • low inverter usage factor (more serious for high speed and large power motor)

Avo R Design of Electrical Machines 34

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

n

Induction machine

• Differential equations in the component form

sqksd

sdssd dtdiRu

sdksq

sqssq dtd

iRu

rqkrd

rdrrd dtdiRu

rdkrq

rqrrq dtd

iRu

sdsqsqsde iipT 23

Avo R Design of Electrical Machines 35

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

n

Induction machine

• us = 230*sqrt(2/3); %peak voltage• w = 2*pi*50; %omega• J = 0.04; %inertia• s = 0.0667; %slip• p = 4; %number of poles• ws= 1500; %synchronous speed

• Rs = 0.683; %stator resistance• Xsl = 1.665i; %stator reactance• Xm = 21.435i; %magnetizing reactance• Xrl = 1.665i; %rotor reactance• Rr_s = 0.971; %rotor resisntance referred to stator

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1- 6 0

- 4 0

- 2 0

0

2 0

4 0

6 0

8 0

t i m e t , s e c

i a , A

T , N mT l o a d , N m

x 0 . 5 , r a d / s

0 5 0 0 1 0 0 0 1 5 0 00

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

torq

ue, T

[Nm

]

s p e e d , n [rp m ]0 5 0 0 1 0 0 0 1 5 0 0

0

1

2

3

4

5

6

pow

er, P

[kW

]

Avo R Design of Electrical Machines 36

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

n

Reluctance machine +

• Externally excited SM• advantages of simple

and rugged construction• fault-tolerant operation,

simple control• outstanding torque-

speed characteristics

Page 10: L13 – Traction - LTH – Traction EIE050 Design of Electrical Machines, IEA, 2016 1 Industrial Electrical Engineering and Automation ... 0.6 0.8 Lsx*=0.14 Lsy*=0.14 Psim*=0.99-1

L13 – Traction

EIE050 Design of Electrical Machines, IEA, 2016 10

Avo R Design of Electrical Machines 37

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

nReluctance machine -

• acoustic noise generation• torque ripple• special converter topology• excessive bus current ripple• electromagnetic interference (EMI) noise generation

Avo R Design of Electrical Machines 38

Indu

stria

l Ele

ctric

alE

ngin

eerin

gan

d A

utom

atio

n

Electric propulsion system evaluation